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ABSTRACT

Similarity measures are indispensable in music informa-
tion retrieval. In recent years, various proposals have
been made for measuring melodic similarity in symboli-
cally encoded scores. Many of these approaches are ulti-
mately based on a dynamic programming approach such
as sequence alignment or edit distance, which has various
drawbacks. First, the similarity scores are not necessar-
ily metrics and are not directly comparable. Second, the
algorithms are mostly first-order and of quadratic time-
complexity, and finally, the features and weights need to
be defined precisely. We propose an alternative approach
which employs deep neural networks for end-to-end simi-
larity metric learning. We contrast and compare different
recurrent neural architectures (LSTM and GRU) for rep-
resenting symbolic melodies as continuous vectors, and
demonstrate how duplet and triplet loss functions can be
employed to learn compact distributional representations
of symbolic music in an induced melody space. This ap-
proach is contrasted with an alignment-based approach.
We present results for the Meertens Tune Collections,
which consists of a large number of vocal and instrumen-
tal monophonic pieces from Dutch musical sources, span-
ning five centuries, and demonstrate the robustness of the
learned similarity metrics.

1. INTRODUCTION

The question of how melodic similarity can be computa-
tionally modeled is of crucial importance for various Mu-
sic Information Retrieval (MIR) tasks [35]. One classic
MIR scenario is a user posing a sung or hummed query
to a retrieval system in order to retrieve resembling pieces
of music from a music collection [6, 24]. This query-
by-humming scenario requires melodic matching methods
that are robust against different kinds of melodic variation
arising from imprecise memory or limited singing skills.
Melody matching is also an important aspect in cover-song
detection, where the predominant melody contains infor-
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mation for song identification [29]. Musicologists benefit
from melodic similarity measures for exploring and map-
ping folk songs [19, 30], or other collections with mono-
phonic musical material, such as themes from classical
compositions [18], or score incipits [34]. Finally, mu-
sic similarity detection plays an important role in cases of
copyright violation [31], where objective similarity mea-
sures can support the court in making decisions.

In this paper, we present a Neural Network approach
for melodic similarity learning. The neural encoders learn
complex mappings from input sequences into distributed
melody representations. The primary aim of our system
is to be employable for music retrieval. In addition to ac-
curately modeling melodic similarity, desirable properties
of a retrieval system are speed and indexability. Neural
Networks very well accommodate both. Generally, once
trained, a neural network can compute results very fast by
making use of GPUs. Moreover, indexability is served by
the application of similarity metrics on top of the learned
encodings [3].

Various other approaches to melodic similarity have
been taken [35], including sequence alignment and other
dynamic programming approaches, such as edit distance
and dynamic time warping, and, recently, Recurrent Neu-
ral network representations [4, 9, 11, 16, 27, 30, 33]. In this
study, we contrast our approach with a sequence align-
ment method that has been successfully applied in the con-
text of folk melodies. Alignment-based methods suffer
from at least three drawbacks. First, they typically are
first-order, taking into account only adjacent items in se-
quences. Second, they have quadratic time-complexity. Fi-
nally, an alignment score is not a proper metric. Our neural
network approach overcomes these disadvantages but does
so at the cost of being a supervised learning algorithm.

2. DATA AND FEATURES

2.1 Data sets

The Meertens Tune Collections (MTC) 1 contains a se-
ries of data sets with melodic material from Dutch sources
(mainly manuscripts, printed sources, and audio record-
ings), spanning five centuries of music history [20, 22].
These data sets are subsets of the Dutch Song Database,
maintained by the KNAW Meertens Institute [21]. The lat-

1 http://www.liederenbank.nl/mtc/
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Figure 1. Complementary Cumulative Distribution Func-
tion of the tune family sizes in the subset of MTC-FS-INST
2.0 which we use in our experiments.

est release, MTC-FS-INST 2.0, contains 18,109 digitized
melodies with rich metadata. Many of these melodies oc-
cur in more than one source. Due to oral and semi-oral
transmission, these different occurrences typically show
melodic variation. As an example, Figure 3 depicts three
variant melodies, illustrating the kind and extent of varia-
tion. To denote such a group of variant melodies, we adopt
the concept of tune family from folk song research [1]. In a
long-term effort, the collection specialists of the Meertens
Institute aim to identify each melody in terms of tune fam-
ily membership.

In this paper, we use MTC-FS-INST 2.0, which reflects
the diversity of the contents of the Dutch Song Database.
One main distinction in the data set is between vocal and
instrumental music as illustrated in Figure 2. Generally,
the instrumental part of the data set dates from the 17th
and 18th centuries. It contains melodies that were played
in bars and brothels as well as theaters and upper-class pri-
vate settings. The vocal part of the data set mainly consists
of songs from the 19th and 20th centuries. As a whole, the
data set provides a rich variety in melodic styles, which
renders it a perfect source for training general purpose
melodic similarity measures.

To obtain training, development, and test sets, we filter
and split the data set. First, we exclude all 5,765 unla-
beled melodies and all 3,008 singleton tune families. This
leaves a selection of 9,336 melodies in 2,094 tune fami-
lies. The complementary cumulative distribution function
of the class sizes is presented in Figure 1. The distribution
of class sizes is heavy-tailed.

An important criterion to measure the level of success
achieved by the metric learning approach is its capability
to cluster together tune melodies belonging to families un-
seen during training. In order to make this possible, we
perform a controlled test set split, ensuring that all in-
stances from a proportion of tune families do not appear
in the training data. The actual proportions of seen and un-
seen families is shown in Table 1 together with further data
set size statistics. 2

2 Supplementary material, data sets and code to replicate the exper-
iments are available from https://github.com/fbkarsdorp/

# Mel # TF # TF in Train µ|TF| σ|TF|

Train 5,975 1,572 3.80 5.06
Dev 1,492 495 255 3.01 1.64
Test 1,869 611 287 3.06 1.55

Table 1. Composition of the subsets of MTC-FS-INST
2.0 used for training, development and testing. The table
provides the number of melodies (Mel) and tune families
(TF) in each set, the number of tune families that are shared
with the training set, and mean and standard deviation of
tune family sizes.
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Figure 2. Number of melodies per year in MTC-FS-
INST 2.0. The plot displays frequencies for instrumental
melodies (INST) and vocal melodies (FS).

2.2 Features

Melodies are represented as sequences of notes, and notes
as sets of feature-values. Since the MTC provide a rich
melody encoding, including key, meter, and phrase bound-
aries, we can assemble a diverse feature-set in which var-
ious musical parameters are represented: pitch, metric
structure, rhythm, tonality, and phrase structure. See the
supplementary material for an exact list of features.

3. METHODOLOGY

Our approach is based on two components. First, we
deploy distributional melody encoders implemented with
Neural Networks. Secondly, we train the encoders with
Stochastic Gradient Descent to minimize a Contrastive
Loss that we describe below.

3.1 Distributional Encoder

An input melody from the dataset xi ∈ X can be rep-
resented by a sequence xi = [x(i,1), . . . , x(i,k)] of length
k = |xi|, where each x(i,t) is a bundle of m features ex-
plained in Section 2.2. For simplicity, we refer to the jth

feature of sequence step t as xjt , thus dropping data set in-
dices. Our goal is to compute an encoding h = f(x) as a
function of the input sequence x, parameterized by a Neu-
ral Network f(x).

The encoding process can be described as follows. We
first process each time step in the input sequence indepen-
dently by concatenating all features into a single vector
et = [e1t ; . . . ; e

m
t ]. Categorical features are first encoded

into a one-hot vector and projected into their own embed-
ding space with model parameters Wj ∈ RJxE , where J

melodic-similarity.
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Figure 3. Three members of tune family Daar was laatstmaal een ruiter 2, showing various kinds of melodic variation.

is the total number of possible values of the jth categori-
cal feature and E is the dimensionality of the embedding
space. Continuous features are normalized to have a mean
of 0 and standard deviation of 1. For all feature types, the
sequences are padded at the beginning and the end using
special symbols in the case of categorical features and the
feature mean after re-scaling for continuous features. The
resulting sequence of input embeddings is fed to a stack of
recurrent layers 3 with the tth hidden activation at layer l
given by h(t,l) = RNNl(h(t,l−1), h(t−1,l)).

We also experiment with bidirectional RNNs, which ex-
tend each RNN layer with an additional RNN run back-
wards. In the case of the bidirectional RNN, the final
melody embedding is given by the concatenation of the
last activations of the forward and backward RNNs at the
last layer: h = [

−−−−→
h(k,|L|);

←−−−−
h(1,|L|)]. In the case of the unidi-

rectional RNN, the embedding is given by a feature-wise
max-pooling operation over the sequence of activations
at the last layer, with the pth output feature defined by
hp = max([h(1,|L|)]p, . . . , [h(k,|L|)]p). Instead of tradi-
tional RNN cells [7], we use LSTM [14] and GRU [5] cells
which have been shown to offer stronger performance and
better training behavior.

3.2 Contrastive Loss

The goal of our approach is to learn a distributional en-
coder such that melodic sequences of the same class are
embedded into neighboring regions and far from melodic
sequences belonging to different families. To this end, we
train the encoder using a contrastive loss [12].

3.2.1 Duplet Loss

Let the encodings of two input sequences with tune family
labels yi and yj be denoted by xi and xj . The goal we
want to achieve is that the similarity between xi and xj is
high when yi and yj are equal, and low otherwise. More
formally, we seek to achieve the following inequality:

D(xi, xj) < D(xi, xk) + α (1)

∀(xi, xj , xk) ∈ X | yi = yj ∧ yi 6= yk, where D is a dis-
tance function and α is a pre-specified margin. In order to
achieve this goal, we optimize a contrastive loss function
defined over input pairs that is therefore known as the du-
plet loss. The contrastive loss function is decomposed in a
positive term L+:

L+(xi, xj) = (β)D(xi, xj)
2 (2)

3 During preparatory work, we also experimented with convolutional
stacks but found no improvements over the recurrent counter-part, which
was, therefore, singled out for the purpose of the present study.
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Figure 4. Visualization of the two loss variants with a hard
margin and a soft margin.

and a negative term L−:

L−(xi, xj) = max(0, α−D(xi, xj))
2 (3)

where β is a parameter used to weight the contribution of
the negative term. 4 The two terms can be combined into
a single loss function with the help of a variable Yi,j that
takes value of 1 for yi = yj and 0 when yi 6= yj :

LD(xi, xj) = (Yij)L+(xi, xj)+(Yij−1)L−(xi, xj) (4)

For the current study, we restrict ourselves to the cosine
distance as defined by Eq. 5:

D(xi, xj) = 1− f(xi) · f(xj)
‖f(xi)‖‖f(xj)‖

(5)

Naturally, other distance functions are equally applica-
ble, but the two-sided boundedness of the cosine distance
(i.e. distances fall between [0, 2]) allows more efficient op-
timization of the parameters α and β. Moreover, the loss
specified above employs a soft margin. By contrast, [28]
propose the use of a hard margin, effectively reducing the
loss to zero if it falls below some value. With the hard
margin, the negative term in Eq. 3 becomes:

L−(xi, xj) =

{
(1−D(xi, xj))

2 D(xi, xj) < α

0 otherwise
(6)

Figure 4 visualizes the two loss variants. In the experi-
ments below, we compare both versions of the loss.

3.2.2 Triplet Loss

The triplet loss [13, 32] differs from the duplet loss in that
it considers input example triplets xi, xj , xk consisting
of a positive example xi, a negative example xj such that

4 The scaling parameter β and margin α are optimized on a develop-
ment data set, which we will discuss below.
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yj 6= yi and an anchor xk such that yk = yi. The triplet
loss shares the goal of the duplet loss from Eq. 1, but em-
ploys anchor positive examples to ensure that the distance
between any two instances of the same family is less than
the distance to an instance of a different family by at least
a pre-specified margin α. More formally, the triplet loss is
defined by Eq. 7:

LT (xi, xj , xk) = max(0, D(xi, xk)−D(xj , xk) + α)
(7)

The triplet loss, therefore, presents a more relaxed form
than the duplet loss, allowing instances of the same fam-
ily to occupy larger regions. As opposed to the composite
form of the duplet loss, the triplet loss is simple. However,
the triplet loss is more heavily dependent on the quality of
the sampled negative examples and anchors, which might
lead to poorer training dynamics.

3.3 Online Duplet and Triplet Mining

We train our encoder using mini-batches of duplets or
triplets from the data set. The number of possible du-
plets and triplets grows, respectively, quadratically and cu-
bically with the number of instances in the data set, which
renders exhaustive training costly. Feasibility aside, train-
ing with all possible duplets or triplets is not desirable as a
large proportion of the resulting duplets and triplets make
it either too easy or too difficult to fulfill the objective of
Eq. 4 and Eq. 7. Such examples prevent the network from
learning, and lead to slower convergence.

As suggested by [32] in the context of face recognition,
efficient and fast converging training can be achieved by
online selection of ‘hard’ duplets or triplets, i.e. the most
dissimilar positive examples, and the least dissimilar neg-
ative examples. We apply this approach by first sampling
a mini-batch of k instances per each of n sampled unique
tune families. Subsequently, using the current model we
compute the encodings of all n× k instances and for each
instance we sample positive and negative, or anchor and
negative examples from the mini-batch. In the case of the
duplet loss, for each instance we select all possible pos-
itive examples (i.e. all other instances in the mini-batch
from the same family) and an equal number of negative
examples from the least dissimilar negatives. In the case
of the triplet loss, for each instance xi we select pairs of
anchor xk and negative example xj such that the distance
between positive and anchor is smaller than the distance
between negative and anchor, while the difference between
the distances lies inside the margin α:

0 < D(xi, xk)−D(xj , xk) < α (8)

In case no negative example can be found that satisfies this
condition, we select a random negative.

3.4 Baseline: Alignment

We compare our results with the performance of a previ-
ously proposed alignment method [23]. In this method, the
Needleman-Wunsch-Gotoh algorithm is used [10], which
computes a global alignment score for two sequences of

symbols. The alignment is constructed by inserting gaps at
appropriate locations in the sequences following a dynamic
programming approach. The alignment score is based on a
similarity function for symbols and a gap scoring scheme.
The Gotoh-variant of the algorithm applies an affine gap
scoring function in which the continuation of a gap obtains
a different score than the opening of a gap, opposed to the
basic variant of the algorithm in which all gaps obtain the
same score. We use the best scoring configuration in [23],
which uses pitch, metric weight and the position of a note
in its phrase.

3.5 Evaluation

We formulate the task of tune family identification as a
ranking problem: given a query melody qi and a data set of
melodies X, qi /∈ X , the models should provide a ranked
list of the melodies in X . To evaluate how well our mod-
els solve this problem, we measure the performance of the
models by means of three evaluation measures: (i) ‘Av-
erage Precision’, (ii) ‘Precision at rank 1’, and (iii) ‘Sil-
houette Coefficient’. Each of these measures addresses a
different aspect of the performance quality of the mod-
els. First, Average Precision (AP) addresses the ques-
tion whether given a query melody, all or most relevant
melodies are high up in the ranking:

AP =

∑N
k=1 P (k)× rel(k)

number of relevant melodies
, (9)

where k is the position in the ranked list of N retrieved
melodies. P (k) represents the precision at position k,
and rel(k) = 1 if the melody at position k is relevant,
rel(k) = 0 otherwise. By computing the average AP over
all query melodies, we obtain the Mean Average Precision
(MAP). As a second ranking measure, we focus on the Pre-
cision at rank 1 score (P@1), which computes the fraction
of queries for which the highest ranked sequence is rel-
evant. Third and finally, we compare these two ranking
based evaluation measures with the Silhouette Coefficient,
which is a measure of cluster homogeneity and separation.
The Silhouette Coefficient contrasts the mean similarity
between a sample and all other samples from the same fam-
ily with the similarity of that sample with members of other
families. By taking the average over all silhouette scores,
we obtain a measure of cluster homogeneity ranging from
-1 (incorrect clustering) to 1 (perfect clustering). 5

3.6 Training and Hyper-Parameter Optimization

The networks were trained on the training data sets spec-
ified in Table 1. We use the Adam optimizer [17] and
stop training after no improvement in MAP score was
made on the development data for ten consecutive epochs.
The neural network consists of a large number of hyper-
parameters, making hyper-parameter tuning expensive and
time-consuming. Following [2], we perform a random-
ized hyper-parameter search, in which we train n differ-

5 See the Supplementary Materials for more information.
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MAP P@1 Sil.

all seen unseen

RNND 0.72 0.71 0.73 0.78 0.34
RNNT 0.71 0.70 0.71 0.77 0.29
Alignment 0.69 – – 0.78 0.23

Table 2. Best evaluation scores for the development data.
RNND is an RNN with duplet loss, and RNNT is an RNN
with triplet loss.

MAP P@1 Sil.

all seen unseen

RNND 0.72 0.70 0.74 0.78 0.33
RNNT 0.68 0.64 0.71 0.75 0.28
Alignment 0.67 – – 0.78 0.22

Table 3. Evaluation scores for the test data. RNND is an
RNN with duplet loss; RNNT is an RNN with triplet loss.

ent models with random hyper-parameter settings sampled
from parameter-specific, relatively flat distributions. 6

4. RESULTS

Table 2 presents the results for the development data set
with MAP scores for the best performing models trained
with duplet (RNND) and triplet loss (RNNT ). The best
RNND achieves a MAP of 0.72, which is markedly better
than the Alignment method (0.69), and slightly better than
the best RNNT (0.71). However, as will be discussed in
more detail below, RNNT models are significantly harder
to optimize than RNND models (at least for the current
data set). The columns ‘seen’ and ‘unseen’ represent MAP
scores for queries of which the corresponding tune fami-
lies were either seen or unseen during training. Crucially,
the scores are almost equivalent, indicating that the neural
networks are capable of actually learning a similarity met-
ric, and not just a clustering or classification procedure,
in which the systems learn to assign sequences to known
class labels and data points. The performance differences
between the models are further expressed by the Silhou-
ette coefficient, which indicates superior performance of
the RNND model. However, note that for P@1, all sys-
tems perform equally well.

The best performing models were employed to encode
the melodies in the test set. The test results in Table 3 show
a similar picture. Again, RNND outperforms the other
systems. Note that the performance of RNNT slightly
dropped in comparison to the development results and that
the performance difference with respect to RNND has be-
come larger. Overall, the RNNs appear to have adequately
learned how to form compact distributional representations
of symbolic music in an induced melody space. This ca-
pability is further illustrated by the two-dimensional pro-

6 The full list of hyper-parameters and the predefined priors are listed
in Section 2 of the Supplementary Materials.

INST
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9668_1
1876_0
720_0

Figure 5. Two-dimensional UMAP [25] projection of the
induced melody space obtained with RNND. The left
subplot visualizes the positions of instrumental melodies
(INST) and vocal melodies (FS). The subplot to the right
highlights the positions of a small number of randomly
chosen tune families.

jection of the melody space in Figure 5. The left subplot
demonstrates that the learned representations clearly sep-
arate vocal (FS) from instrumental melodies (INST). The
subplot to the right serves as a validation of the cluster-
ing capabilities of the encoder. It highlights the positions
of a small number of randomly chosen tune families, the
members of which all cluster together.

4.1 Hyper-Parameter Importance

We assess the importance of the different hyper-parameters
of the neural networks by modelling their influence on
the MAP scores resulting from the randomized parameter
search [26]. To this end, we fit the following linear regres-
sion model:

MAPi ∼ N (µi, σ) (10)

µi = γ + βlli + βmmi + βhhi + βddi (11)

+βbbi + βcci + βlmlimi,

where Eq. 10 specifies the likelihood function with mean
µ and standard deviation σ, and Eq. 11 represents the lin-
ear model. Here, γ represents the intercept of the linear
model, li is the loss type of model i (i.e. triplet or duplet
loss), mi is the margin value α, hi is the dimension of the
hidden layer, di refers to the embedding dropout value, bi
dummy encodes whether a model employed bidirectional
versus unidirectional RNNs, and ci is the cell type of the
RNN (i.e. LSTM or GRU). Since the margin functions dif-
ferently in the triplet and duplet loss, we model the inter-
action between margin and loss type (βlmlimi). All cat-
egorical predictors are dummy encoded, and the contin-
uous predictors are zero centered. β priors are sampled
from uninformative Normal distributions, N (0, 1), and σ
is sampled from a weakly regularizing half-Cauchy prior
with location 0 and scale 1.

Table 4 presents the posterior distribution estimates of
the model along with their estimation errors, their 95%
credible intervals (CI95), and the R̂ statistic. 7 The mean

7 Since the linear model is Bayesian, the credible intervals can be inter-
preted straightforwardly as the 95% probability that the estimates fall in
a particular range. The ‘No U-Turn Sampler’ (NUTS) was used for sam-
pling [15], which is a specific type of Hamiltonian Monte Carlo (HMC).
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Estimate Error l-CI95 u-CI95 R̂

γ 0.66 0.00 0.65 0.67 1.0
βl -0.08 0.01 -0.09 -0.07 1.0
βm 0.01 0.01 -0.02 0.04 1.0
βd -0.05 0.02 -0.09 0.00 1.0
βb 0.03 0.01 0.02 0.04 1.0
βc -0.05 0.00 -0.06 -0.04 1.0
βh 0.02 0.00 0.01 0.03 1.0
βlm -0.18 0.02 -0.22 -0.13 1.0
σ 0.04 0.00 0.04 0.04 1.0

Table 4. Posterior distribution estimates for the hyper-
parameters of the Neural Networks. In addition to the
mean estimates, the table provides the estimation errors,
95% Credible Intervals, and the R̂ statistic.
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Figure 6. Marginal effects plot showing the interaction be-
tween loss type (i.e. Duplet and triplet loss) and the margin
α.

intercept γ = 0.66 represents the mean posterior esti-
mate of MAP values for unidirectional models, fit with
GRU cells (ci = 0), duplet loss (li = 0) and mean (i.e.
0) values for the continuous predictors. Given this base
model, several interesting observations can be made. First,
as suggested by the negative βl estimate, triplet loss mod-
els markedly underperform duplet loss models with, ce-
teris paribus, a mean drop in performance of 0.08. Sec-
ond, employing larger hidden dimensions (βh) and using
bidirectional RNNs (βb) both positively influence the MAP
scores. Third, on average adding too much dropout hurts
performance (βd = −0.05). Fourth, the strong negative
posterior distribution estimate for the interaction between
the margin α and loss type indicates that careful tuning
of α is especially important for the triplet loss. By con-
trast, different values of α barely impact the performance
of duplet loss models. The marginal effects plot in Fig-
ure 6 highlights this interaction. Finally, RNNs trained
with GRU cells markedly outperform models trained with
LSTM cells (βc = −0.05). Figure 7 illustrates this perfor-
mance difference. Additionally, the plot demonstrates the

R̂ is a statistic to assess the convergence of the sampler, and should be be-
low 1.1 [8]. For more information about the convergence and parameters,
see the Supplementary Information.
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Figure 7. Marginal effects plot of RNN cell type (i.e.
LSTM or GRU) and bidirectional versus unidirectional
RNNs.

benefits of employing bidirectional RNNs, which consis-
tently outperform unidirectional models.

5. CONCLUSION & FUTURE WORK

This paper proposed a method for end-to-end melody sim-
ilarity metric learning using deep neural networks. We
trained distributional melody encoders to minimize Du-
plet and Triplet Contrastive loss functions with which we
achieve state-of-the-art retrieval performance on a large set
of instrumental and vocal melodies. A thorough statistical
analysis of the hyper-parameters of the Neural Networks
indicates that on average Duplet Loss RNNs are easier to
tune and less sensitive to specific hyper-parameter settings.
Additionally, RNNs trained with GRU cells consistently
outperform LSTM cell implementations. Our system has
several major advantages over more traditional, alignment-
based methods. First, thanks to its ability to infer com-
plex interactions between input variables, the Neural Net-
work approach is less sensitive to specific feature combi-
nations and feature selection. Second, as shown by our
study, the Neural Network approach displays more robust-
ness, achieving similar MAP scores across exclusive sets
of tune families (seen vs unseen).

For future work, we have the following three recom-
mendations. First, the applicability of the proposed ap-
proach should be carefully examined on more diverse data
sets, in order to test for the cross-domain robustness of the
learned similarity metrics. Second, a more extensive and
thorough comparison (including error analysis) with other
existing melodic similarity methods is desired to highlight
advantages and possible disadvantages of the neural sys-
tems. Finally, we acknowledge that, while successful, the
proposed architecture still leaves room for improvement.
Inspired by progress in similarity metric learning within
the fields of Paraphrase Detection and Semantic Textual
Similarity, we would like to experiment with more expres-
sive neural architectures and feature extraction to explore
the performance limits of the Neural Network approach on
melodic similarity metric learning.
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