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ABSTRACT

The task of melodic segmentation is a long-standing MIR
task that has not yet been solved. In this paper, a rule
mining algorithm is employed to find rule sets that clas-
sify notes within their local context as phrase boundaries.
Both the discovered rule set and a Random Forest Classi-
fier trained on the same data set outperform previous meth-
ods on the task of melodic segmentation of melodies from
the Essen Folk Song Collection, the Meertens Tune Col-
lections, and the set of Bach Chorales. By inspecting the
rules, some important clues are revealed about what con-
stitutes a melodic phrase boundary, notably a prevalence of
rhythm features over pitch features.

1. INTRODUCTION

Melody is one of the basic aspects of music. As such, it
has been the object of study in numerous research projects
in various fields, including music theory, ethnomusicology,
music cognition, and music information retrieval. In virtu-
ally all those studies, it is generally accepted that a given
melody can be analysed in terms of smaller constituents.
The availability of a musically sensible segmentation facil-
itates various music information retrieval tasks [1]. There
is, however, no coherent theoretical answer to the ques-
tions what exactly are these constituents and how to isolate
them from the holistic construct of a melody.

One line of research has been to design computational
models to detect segment boundaries at the surface level
of the melody. Typically, these models have been tested
on a corpus of melodies in which segment boundaries are
annotated, mainly the Essen Folk Song Collection [2].

Computational models that have been proposed to par-
tition a melody into a sequence of segments, basically take
one of two approaches. In the first approach, which is
theory-driven, a set of rules is designed based on theories
of human perception and cognition of melodic informa-
tion, typically drawing on a combination of Gestalt Psy-
chology [3] and Music Theory. These rules are then for-
malised and quantised in such a way that they can be im-
plemented in software to automatically detect possible seg-
ment boundaries in the melodies. The underlying assump-

© P. van Kranenburg. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: P. van
Kranenburg, “Rule Mining for Local Boundary Detection in Melodies”,
in Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

tion is that these rules reflect the way humans detect pat-
terns in sensory input.

In the other approach, which is data-driven, a model is
learnt from data without strong a-priori theoretic assump-
tions. This approach is based on the idea that a human lis-
tener learns to recognise musical events (such as segment
boundaries) by exposure.

In this article, we apply a rule mining algorithm that
infers from a large corpus of segmented melodies a rule-
based model of what is a phrase boundary. The choice for
rule mining is motivated by the explainability of the result-
ing models, which consist of human readable sets of rules.
By examining the discovered rules we gain a better under-
standing of what constitutes a melodic segment boundary,
and what features play a role for detecting segment bound-
aries. We include many features to allow the mining algo-
rithm to choose which features are necessary for the task.
We apply the rule-mining algorithm RIPPER [27] as wel as
a Random Forest classifier [29] on several subsets of fea-
tures. By using other data sets next to the Essen Folk Song
Collection, we broaden the information on which the mod-
els are based, and we are able to compare phrase bound-
aries across different melodic styles.

2. RELATED WORK

In this section, we review relevant related work. First,
we present theory-driven, rule-based approaches (Section
2.1), and then data-driven approaches (Section 2.2).

2.1 Theory-Driven Approaches

The seminal book on Emotion and Meaning in Music by
Leonard Meyer [4] was one of the first to explicitly re-
late music expectation to principles of gestalt theory. This
publication initiated major lines of research in music cog-
nition and music theory. Tenney and Polansky [5] were
among the first to define an implementable, quantitative
model for detecting segment boundaries. Their model is
based on the principles of proximity (in time) and similar-
ity (in pitch). Several other models are based on gestalt
principles as well: the Local Boundary Detection Model
(LBDM) by Cambouropoulos [6, 7], the Grouper model
by Temperley [8], the preference rules for grouping as de-
fined in A Generative Theory of Tonal Music (GTTM) by
Lerdahl and Jackendoff [9], the quantisation of these rules
by Frankland and Cohen [10], the Implication-Realization
theory by Narmour [11, 12], and the partial quantisation
of this theory by Schellenberg [13]. More recently, vari-



ous theory-based approaches have been proposed by Ro-
driguez Lépez [14]. A rule-based model not explicitly
grounded on gestalt principles was proposed by Cenkerova
etal. [15].

2.2 Data-Driven Approaches

Explicitly challenging the gestalt principles, Bod [16] in-
troduces Data Oriented Parsing (DOP). A DOP-Markov
parser learns probabilities for rewrite rules from a set of
examples. One of the applications of this model was the
prediction of segment boundaries in the Essen Folk Song
Collection. In an error analysis, Bod shows that the DOP-
Markov parser is able to learn regularities in phrase-ending
patterns that do not adhere to gestalt rules.

Various data-driven approaches are based on informa-
tion theory. Generally, a phrase boundary is inferred either
before an unexpected melodic event or after an event for
which the continuation is hard to predict. Methods differ in
the way of computing the conditional probability of events
given their preceding context. Juhasz [17] takes this ap-
proach to segment a collection of Hungarian folk songs.
The multiple viewpoint statistical modelling method by
Conklin and Witten [18] has been used for many sym-
bolic music processing tasks such as generation, classi-
fication, and pattern discovery. The IDyOM model [19]
employed the multiple viewpoint method for melodic seg-
mentation. Lattner [20] employs a Restricted Bolzmann
Machine to model the probability of a melodic event. This
approach outperforms IDyOM, and sets the state-of-the-art
for recognising phrase boundaries in the Essen Collection.

Rodriguez Lépez [14] also introduced a data-driven
component. A part of his segmentation system needs to
be trained on a corpus.

3. DATA

An often used collection of segmented melodies is the Es-
sen Folksong Collection (EFSC). This collection contains
thousands of folk song melodies mainly from Germany,
but also from other parts of Europe, and a relatively small
number of melodies from other continents. In the process
of creating this collection, the melodies have been seg-
mented into phrases. Therefore, it offers a large amount
of data on melodic segmentation which allows for statisti-
cal evaluation. Following earlier work, we use the database
Erk, a subset of EFSC consisting of c¢. 1,700 melodies.

We also employ a recently published corpus from the
Meertens Tune Collections (MTC), consisting of collec-
tions of thousands of instrumental and vocal songs from
Dutch sources [21]. The collection we use in this paper is
MTC-FS-INST-2.0, more specifically, those melodies that
have lyrics, are dated after 1850, and have a time signa-
ture. This results in a selection of c. 7,500 melodies. For
reasons that will be explained in section 3.1.2 we apply a
further selection: from each tune family, we randomly se-
lect one melody. This results in a set of 1,323 melodies.

The third corpus we use is the collection of 371 harmon-
isations of chorales (CHOR) by Johann Sebastian Bach

Dataset | #songs #boundary #noboundary  total
MTC 1,323 7,054 63,856 70,910

ESSEN | 1,632 7,703 62,490 70,193

CHOR 370 1,907 15,455 17,362

Table 1. Overview of the datasets indicating the number
of songs and the sizes of the classes (number of 5-grams).

(1685-1750).! Since our focus is on melodic segmenta-
tion, we only use the melodies (i.e., the soprano parts).

An overview of the datasets, the number of songs, and
the class sizes is included in Table 1.

3.1 Some Caveats

Employing a collection of folk song melodies has some
important consequences that have often not been discussed
in previous work. We focus on two problems: tune family
relations, and the rest as notational device.

3.1.1 Tune Families

One defining property of folk music is that it has been in
oral circulation [22]. In the process of oral transmission,
changes are introduced to the melodies and texts. There-
fore, in a typical collection of folk songs, several variants
of the same melody are included, exhibiting minor to large
differences among each other. Such a group of related
melodies is often designated as a fune family [23]. EFSC
and MTC are no exceptions to this. For the collections
in MTC, the tune families have largely been identified by
collection specialists at the Meertens Institute. The tune
family labels are included in the metadata that comes with
the collection. For the ESFC this has not been done. From
the titles of the songs, which are available in the metadata,
it is clear that duplicates and variants of melodies are in-
cluded, but there is no account of precisely which melodies
are related.

The consequence of this for a data mining approach is
that the independence of the train and test sets is not guar-
anteed since members of the same tune family may end up
in both the train and test sets. Especially when the differ-
ences are small, this is problematic.

To solve this issue, we take advantage of the tune family
labels as provided in the metadata of MTC.

3.1.2 Rests

In related work, the presence of a rest appeared to be a
strong indicator of a phrase boundary. For example, one
of the quantised GTTM preference rules (GPR 2a) states
that the boundary strength is proportional to the length of a
rest. In LBDM, next to pitch and inter-onset-intervals, rests
are explicitly incorporated as one of the three features that
contribute to the resulting local boundary strength. Fur-
thermore, the occurrence of a rest is the first of Narmour’s
six conditions of melodic closure [11, p. 11].

There is, however, a difference between the meaning of
a rest in composed music and in folk song transcriptions.

! This corpus is available as part of the humdrum-data repository:
https://github.com/humdrum-tools/humdrum-data
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Figure 1. Transcriptions of two variants of the same
melody showing different uses of the rest as notational de-
vice.

Again, this is related to the process of oral transmission. A
composer typically uses common music notation as the pri-
mary device to communicate a piece of music to perform-
ers. Here, the notation of a rest is prescriptive, indicating
the performers not to make sound. On the contrary, mu-
sic notation as found in folk song collections is typically
descriptive. The melodies have been transcribed from au-
dio recordings, or from aural observation. Here, the rest is
an indication of something a performer already has done.
The example from the MTC that is shown in Figure 1 il-
lustrates the resulting confusion that can arise if various
transcribers contribute independently (or if one transcriber
works inconsistently). In the upper transcription, the fi-
nal note of each phrase is extended to fill the measure,
while in the lower transcription, rests are included at the
phrase boundaries. Crucially, inspecting the audio record-
ings that are the sources of these two transcriptions, > no
noticeable differences are observable between the way the
singers separate the phrases.

It appears that the rest as a symbol has a use in folk song
transcription to represent a phrase boundary, rather than to
indicate absence of sound. As a consequence, using the
rest as a feature actually includes the ground truth in the
feature set, which obviously results in an optimistic esti-
mation of classification performance. We will therefore re-
port results without using rests, and results including rests
— and other ground truth dependent features — separately.

2These are available at http://www.liederenbank.nl/
index.php?lan=en by entering the respective record numbers
(73639 and 74427) in the search field.

4. METHOD

The approach in this paper largely is a feature engineer-
ing exercise. From previous studies and from general mu-
sic theoretic considerations, we take inspiration of what
features may contribute to the establishment of a phrase
boundary. Next, we apply two machine learning algo-
rithms: RIPPER and Random Forest. Thus, we do not take
an a-priori theoretical basis, such as the gestalt principles,
but we let the learning algorithm explore which features
are of value and in what combination.

4.1 Objects and Features

The target of the classification is to find those notes af-
ter which a phrase ends. As object of classification we
take each note in the melody with its local context of the
two preceding and the two following notes, resulting in se-
quences of five notes, 5-grams. Since the aim is segmen-
tation, the final phrase end, which also ends the melody,
is excluded from the data set. Those 5-grams of which
the third note is the final note of a phrase get the class la-
bel boundary, while all other 5-grams get the class label
noboundary.

For each of the 5-grams we extract a large number of
features. Each of those features can be considered a hy-
pothesis of which information contributes to the concept
of phrase boundary. We discern various groups of features.
For extracting the feature values, the music21 toolkit has
been used [24].

Elementary pitch features include for each of the five
notes: the scale degree, the absolute pitch value in MIDI-
representation, the interval with the previous note in semi-
tones, the pitchcontour (up, down, equal), and the Har-
mony and the Center of Gravity as defined in [25].

Elementary rhythm features include the meter ‘numera-
tor’ and ‘denominator’, the duration of the beat, the num-
ber of beats in the measure, and for each of the five notes:
the metric weight, the duration (inter-onset-interval) in
units of the beat-length, whether the note starts on or off
the beat, and whether the duration increases for each of the
first three notes. Furthermore, following the reasoning of
Temperley [8, p. 70], we include a boolean feature that is
True when the onset time of the fourth note is at the same
position in the measure as the onset of the very first note
of the melody. This accounts for the preference to start
phrases at corresponding positions in the measures. To al-
low a more fine-grained version of this preference, we also
include a boolean feature that is True if the onset time of
the fourth note completes the time-span of a beat, starting
the first time-span at the onset of the first note (which pos-
sibly is not on the beat in case of an anacrusis). The metric
weight (beatstrength) and the length of the beat, both in-
cluded as feature, are computed with the music21 toolkit.

Elementary lyric features (MTC only) include for each
of the five notes: whether the lyric syllable is stressed,
whether the lyric is a content word, whether the lyric sylla-
ble ends a content-word that rhymes with another content-
word anywhere in the lyrics, whether the lyric syllable is
the final syllable of a word, and whether the note is part
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of a melisma. For labeling non-content words, detection
of thyme, and determining the word stress, the methods as
described in [26] are used. Furthermore, we measure the
distance between the third note of the 5-gram and the most
recent rhyming syllable, both as number of notes and as
number of beats.

Wherever applicable, we include the first-order contour
of these elementary features as separate features, register-
ing whether the value for a note is higher, equal, or lower
than the value for the previous note. This provides the rule
mining algorithm with relational information for the con-
secutive notes, which is beneficial because RIPPER is not
able to include comparisons between features into the con-
ditions that constitute the rules. Each condition consists of
a single feature compared to an absolute value.

Next to these elementary features, we include features
that are derived from previous models. For each of the five
notes, the following values are included as feature:

o the sum of the values for the quantised GTTM GPRs
2a, 2b, 3a, and 3d, as defined in [10];

e the Local Boundary Strength as computed by the
LBDM [7];

e the values for pitch proximity and pitch reversal as
defined in [13];

e the prediction of Grouper [8];

e the information content as computed by the IDyOM
model according to [19];

e features that are based on the conditions of closure
as stated by Narmour [11, p. 11]: the metric weight
contour for the third note, whether the third note is
longer than the second, whether the interval between
the first and second notes is larger than the interval
between the second and third notes, and whether the
direction of the melodic contour changes between
the second and the third note.

Finally, we include several features that are not indepen-
dent of earlier annotated segment boundaries. In an inspec-
tion of classification results, it appeared that often a bound-
ary very close to the beginning of a phrase was predicted.
To prevent this, we include the distance between the third
note of the 5-gram and the beginning of the phrase, both
as number of notes, and as number of beats. Furthermore,
we include a boolean feature that is True if the onset of the
fourth note is at the same position in the bar as the onset of
the first note in the phrase. Lastly, we include for each of
the five notes whether a rest follows the note.

In total, we have 162 features (excluding the class la-
bel), 31 of which are lyric features.® The lyric features
are only computed for the MTC dataset, since lyrics are
not present in the ESSEN and CHOR collections.

4.2 Learning Algorithms

RIPPER [27] is a rule mining algorithm that infers a set
of classification rules from a data set. The basic procedure

3 The full feature set is included in the supplementary material.

that is implemented in this algorithm is to split the train-
ing data into two folds (1/3 and 2/3), grow a rule on the
2/3 split, prune the rule using the 1/3 split, and remove the
objects that are covered by the rule from the training set.
This is repeated until no objects remain in the training set.
Each iteration results in a rule that is added to the rule set.
The algorithm starts finding rules that target the minority
class, which is appropriate for the segmentation problem
in which phrase boundaries are a minority class. The re-
sulting rules are not independent. To reach a classification,
the rules have to be applied in the order as provided by the
mining algorithm. The advantage of a rule-set as resulting
model is its interpretability. From the rules it is clear how
a classification is established.

One important parameter of the RIPPER algorithm is
the minimum number of objects per rule. By setting this
to a low value, many rules result that might be too specific,
while setting this to a high value results in less, and more
general rules. We found that in general for our purpose
32 is a sensible value. Smaller values lead to much more
rules, without considerably improving classification per-
formance. Furthermore, since songs in general have much
less than 32 phrase boundaries, this value forces the algo-
rithm to generalise over songs. We use the implementation
that is provided in the Weka workbench [28].

To better show the potential of the feature set, we also
use a Random Forest classifier [29]. During training, a
large number of decision trees are fitted to random sub-
sets of the data. The classification is a majority vote of
these individual trees. The models that result from this
approach are not easily interpretable, but they generally
reach a higher classification performance compared to a
single decision tree or rule set. We experimentally found
that the optimal number of trees in the forest is around 40.
Larger forests do not considerably add to the classification
performance. We use the implementation as provided in
the Python module sklearn [30]. For evaluation, we em-
ploy a 5-fold cross-validation procedure, both for RIPPER
and Random Forest. To further raise the independence be-
tween test and train sets in case of the Random Forest, we
make the splits between the train and test sets at the level
of melody. Thus, the 5-grams from the same melody all
are either in the test or in the train set. For MTC, this im-
plies that also tune families are always separated, while for
EFSC and CHOR this cannot be guaranteed. The code for
this paper is publicly available. *

5. RESULTS

Table 2 shows the classification results for the three
datasets, the two classifiers, and various feature subsets.

5.1 General Remarks

The separate groups of elementary features (pitch, rhythm,
lyrics) only reach moderate performance. Rhythm fea-
tures consistently score better than pitch features. Lyric
features clearly have considerable discriminative power,

4https://github.com/pvankranenburg/ismir2020
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MTC

RIPPER Random Forest

Features Pr Rce F1 Pr Re F1
El. Pitch 0.58 0.17 026 | 043 026 0.32
El. Rhythm | 0.75 0.53 0.62 | 0.72 0.57 0.63
El. Lyrics 0.64 038 048 | 0.56 043 0.49
El. NoLyr 0.73 0.61 0.67 | 0.80 0.58 0.68

EL All 077 073 0.75 | 0.85 0.69 0.76
Prev. 0.81 062 070 | 0.83 0.62 0.71
NoLyr 079 066 0.72 | 0.86 0.64 0.73
All 082 076 0.79 | 0.89 0.72 0.80
NoLyr+GT | 0.84 0.80 0.82 | 090 0.76 0.82
All+GT 0.86 0.87 087 | 092 0.82 0.87
EFSC
RIPPER Random Forest

Features Pr Rc F1 Pr Rc F1

EL Pitch 0.57 0.18 027 | 049 031 0.38
El. Rhythm | 0.78 0.53 0.63 | 0.77 0.62 0.69
El. Lyrics - - - - - -
El. NoLyr 0.78 0.63 0.69 | 0.83 0.69 0.76
El All - - - - - -
Prev. 0.81 0.66 073 | 0.88 0.64 0.74

NoLyr 083 0.68 0.75 | 090 0.70 0.79
All

NoLyr+GT | 0.90 0.88 0.89 | 0.95 0.87 0.90
All+GT - - - - - -

CHOR
RIPPER Random Forest
Features Pr Rc F1 Pr Rc F1
EL Pitch 0,68 049 057 | 0.77 065 0.71
El. Rhythm | 0.76 0.66 0.71 | 0.84 0.69 0.76

El. Lyrics - - - - - -
El. NoLyr 084 075 079 | 0.94 0.85 0.89
El. All - - - - - -
Prev. 081 0.73 077 | 093 0.82 0.87
NoLyr 085 0.77 081 | 095 0.86 0.90
All

NoLyr+GT | 0.94 084 0.89 | 098 091 0.94
All+GT - - - - - -

Table 2. Classification results (precision, recall, and F1
for the boundary class) on MTC, EFSC, and CHOR for
various feature subsets, both for the rule miner (RIPPER)
and for the Random Forest classifier. “El” denotes the
elementary features. “NoLyr” denotes all features except
for the lyrics features. “Prev.” denotes the features from
previous models. “GT” denotes the group of features that
are not independent of the annotated phrase boundaries.

as is observable in the increase of the recall between the
“El. NoLyr” and “El. All” subsets for MTC.

Comparing the performance between using elementary
features only and using all features shows some improve-
ment in the later case for MTC and EFSC, but not for
CHOR. The “Prev.” subset on its own consistently shows a
good performance. This implies that the explainable power
of the elementary features is comparable to the explainable
power of the previous models. A large part of the bound-
aries remains unexplained with either which method.

Overall, MTC is the hardest to classify. Undoubtedly,
this is a consequence of the careful compilation, ensuring
only one melody per tune family. Since we have no tune
family labels for EFSC and CHOR, the independence of

train and test sets cannot be fully guaranteed. Therefore,
the classification results might be too optimistic.

5.2 Rule Sets

The contents of the rules as found by the RIPPER algo-
rithm reveals which features are paramount in detecting
phrase boundaries. Although all rule sets give rise to in-
teresting observations, it is not possible to discuss them all
within the scope of this article. We show for two cases
the first few rules, which typically cover many objects.
As these rules are not directly derived from a theory of
melodic perception, we are specifically interested to see
to what extent the rules confirm existing understanding of
melodic closure. Furthermore, these rules have the poten-
tial to lead to new hypotheses about what establishes clo-
sure in a melody.

First, we focus on the cases in which only elementary
features are used. These are the first three discovered rules
for MTC using the elementary pitch and rhythm features: 3

Rule O:
(IOIbeatfractionthirdfourth = -) and
completesmeasuresong = True) and

(
(IOIbeatfractionthird >= 1.25) and
(meternumerator >= 4) and
(IOIbeatfractionfirst <= 0.666667)
=> class=boundary (739.0/54.0)
Rule 1:
(IO0Ibeatfractionthirdfourth = -) and
(completesmeasuresong = True) and
(IO0OIbeatfractionthird >= 1) and
(I0Ibeatfractionsecondthird = +) and
(beatstrengthfourth >= 1)
=> class=boundary (705.0/88.0)
Rule 2:
(IOIbeatfractionthirdfourth = -) and
completesmeasuresong = True) and
IOIbeatfractionthird >= 1.25) and
IOIbeatfractionfifth <= 1.5) and
VosHarmonyfourth >= 4) and
intervalsecond <= 0) and
diatonicpitchthird <= 30)
=> class=boundary (272.0/15.0)

(
(
(
(
(
(

Rule O classifies 739 5-grams from the train set
correctly, and additionally covers 54 false positives.
IO0Ibeatfraction denotes the duration of the note in
units of the beat-length. The first rule mainly states that
the fourth note should be shorter than the third, the third
note ends at the position in the measure that is parallel to
the start of the first note of the melody, the third note is
longer than the beat (>=1.25 times), the first note is fairly
short, and the meternumerator is 4. The last condition
excludes all songs in e.g., 6/8 or 3/4 meter. The condi-
tions that have been selected for these rules confirm con-
siderations for several previous models. One of the central
properties of a phrase-closing note seems to be its length,
which should be longer than the beat. Furthermore, these
rules all state that the length of the fourth note should be
shorter than the third. This condition is present in 22 of
the 30 discovered rules in this set. It contrasts with one of
Narmour’s conditions of closure [11, p. 11], which states
that the closing note is longer than the previous note. Ap-
parently, the data indicates that the relation with the next

3 The full rule set is included in the supplemental material.



Dataset RIPPER Random Forest IDyOM Grouper LBDM Rest Always
MTC | 0.730.610.67 0.800.580.68 0.650.510.57 0.69 0.67 0.68 0.600.510.55 0.920.260.40 0.101.000.18
EFSC | 0.780.630.69 0.830.690.76 0.710.490.58 0.700.610.65 0.600.470.53 0.960.310.47 0.11 1.00 0.20
CHOR | 0.840.750.79 0.940.850.89 0.610.390.47 0.640.590.62 0.480.420.45 0.990.090.17 0.111.000.20

Table 3. Classification performance of related models. For each model, precision, recall, and F1 (bold) for the boundary
class are reported. Results for RIPPER and Random Forest are for the featureset El. NoLyr.

note is more indicative, instead. One could speculate that
the perception of closure at the third note is reinforced in
retrospective when noticing that the next note is shorter.
The rules that are found for the EFSC bear a similarity to
those for MTC. The rules for CHOR differ more. But for
all three data sets rhythm features dominate the top rules.
This confirms earlier results as reported by Weyde [31].
The pitch features that are included mainly refer to pitch
contour and the level of dissonance of the melodic interval
(as registered by the features based on [25]).

Next, we consider the top rules that are discovered for
MTC with the feature subset of all features (“All”): ©

Rule O:
(grouperthird = True) and
(rhymesthird = True) and
(lbdmthird >= 0.280929)
=> class=boundary (2413.0/149.0)
Rule 1:
(grouperthird = True) and
(wordendthird = True) and
(informationcontentfourth >= 7.252784) and
(contourthird = -) and
(lbdmfifth <= 0.159635)
=> class=boundary (641.0/33.0)

It is clear that the combined models of LBDM and
Grouper, and the condition of rhyme constitute a very pow-
erful rule that covers 2,413 boundary 5-grams in the train-
ing set, and only 149 noboundary 5-grams. In the second
rule, also the information content as computed by IDyOM
plays a role. But also some elementary features are used.

5.3 Existing Models

Table 3 shows a comparison with the performance of sev-
eral existing models. The values for the RIPPER and Ran-
dom Forest classifiers are those for the set of elementary
features without the lyrics. This is not the best performing
feature subset, but the larger subset would include IDyOM,
Grouper and LBDM as features, which would not ren-
der a fair comparison. The IDyOM segmentation is com-
puted with the implementation of IDyOM as available on
GitHub.” Grouper is available as part of the Melisma Mu-
sic Analyzer.® LBDM is implemented according to [7].
The threshold for peak-picking is chosen such that the re-
sulting Fl-value is maximised. The Rest model assumes
a phrase boundary wherever a rest is notated in the score.
This quantifies the effect of including the rest as a feature
in a segmentation model that is evaluated on a collection
of folk song melodies. As can be seen, the rest model typ-
ically results in high-precision, low-recall segmentation.

6 The full rule set is included in the supplemental material.
Thttp://mtpearce.github.io/idyom/
8https://www.link.cs.cmu.edu/music-analysis/

Dataset MTC ESFC CHOR
MTC 0.800.580.68 0.830.570.67 0.850.49 0.62
ESFC | 0.76 0.61 0.68 0.830.69 0.76  0.83 0.68 0.74
CHOR | 0.770.320.45 0.800.370.51 0.950.86 0.90

Table 4. Performance of cross-evaluation. The rows show
the train sets, the columns the test sets. The values are:
precision recall F1 (bold) for the boundary class.

For both MTC and EFSC the occurrence of a rest explains
around 30% of the phrase boundaries. This is a consider-
able effect. Finally, a baseline model is included that clas-
sifies each note as a phrase boundary. The Random Forest
classifier with the elementary feature set outperforms the
other methods for ESFC and CHOR, and performs com-
parable to Grouper on MTC, although precision and recall
are more balanced with Grouper. It also outperforms Lat-
tner’s RBM approach on EFSC (0.80 0.55 0.63) [20]. No-
tably the recall is higher. However, the currently presented
approach is supervised and uses more features.

5.4 Cross Relations

We now examine the performance of the classifiers on the
datasets they are not trained on. We use the Random For-
est classifier and the feature subset “El. NoLyr”. Most no-
table in the results as shown in Table 4 is the compara-
ble cross-performance between ESFC and MTC. Appar-
ently, the phrase endings in the Dutch and German folk
song styles have comparable properties. The higher self-
performance of ESFC might partly be caused by the tune-
family problem (Section 3.1.1). The low performances of
the classifiers trained on CHOR are mainly caused by low
recall. This could indicate that some types of phrase end-
ings that occur in MTC and ESFC are absent in CHOR.

6. CONCLUSION

We presented an approach to melodic segmentation that
builds on and integrates elementary melodic features and
existing segmentation models in a theory-agnostic way. By
deriving a rule-set using a large number of features, we
get an indication of which features are crucial for detect-
ing phrase boundaries in melodies. A notable observation
is that a phrase boundary is mainly detectable with rhythm
features. By employing a Random Forest classification, we
get an indication of the discriminative power of the con-
sidered feature sets. The resulting classifier outperforms
all earlier approaches to the problem of automatic melodic
segmentation. By cross-evaluation, we detect a connection
between MTC and EFSC.
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