
8 PROOFS OF LEMMATA

8.1 Proof of Lemma 4.1

Due to the decomposability of (7), we observe 8X:

@h(X, ⌧)

@Xij
=

2Xij

⌧
·
 ✓

Xij

⌧

◆2

+ 1

!�1/2

=
Xij

⌧
· 2r⇣

Xij

⌧

⌘2
+ 1

Thus, in compact form, rh(X, ⌧) =
1

⌧X � S, where S is defined in the lemma.

Regarding the Hessian information, first observe that @2h(X,⌧)
@Xij@Xlq

=

@

0

B@
Xij
⌧ · 2s✓

Xij
⌧

◆
2

+1

1

CA

@Xlq
= 0, for indices (i, j) 6= (l, q).

This means that the off-diagonals of r2
h(X, ⌧) are zero. For the case where (i, j) = (l, q), we have:

@
2
h(X, ⌧)

@X2

ij

=

@

0

@Xij

⌧ · 2r⇣
Xij
⌧

⌘
2

+1

1

A

@Xij
=

2

⌧
·

p
(Xij/⌧)2 + 1� X2

ij

⌧2 ·
⇣
(Xij/⌧)

2
+ 1

⌘�1/2

⇣
Xij

⌧

⌘2
+ 1

=
2

⌧
· (

Xij/⌧)
2
+ 1� (Xij/⌧)

2

✓⇣
Xij

⌧

⌘2
+ 1

◆3/2
=

1

⌧
· 2

✓⇣
Xij

⌧

⌘2
+ 1

◆3/2

Then, r2
h(X, ⌧) =

1

⌧ I �Q, where Q is defined in the lemma.

8.2 Proof of Lemma 4.2

The first part of the lemma is easily deduced from Lemma 4.1. Observe that 0 � r2
h(X, ⌧) � 2

⌧ I, 8X; that is h

function is convex with Lipschitz constant 2

⌧ . Moreover, by combining h with any strongly convex function (·), say
 (X) :=

�
2
|X|2

2
, we easily observe that the composite form h(X, ⌧)+ (X) satisfies �I � r2

h(X, ⌧)+r2
 (X) ��

2

⌧ + �
�
I; i.e., the composite form is also strongly convex.

The last part of the lemma is true because

|X|1 � h(X, ⌧) =

mX

i=1

nX

j=1

h(Xij , ⌧) = ⌧ ·
mX

i=1

nX

j=1

0

@
s✓

Xij

⌧

◆2

+ 1� 1

1

A =

mX

i=1

nX

j=1

⇣q
X2

ij + ⌧2 � ⌧

⌘

�
mX

i=1

nX

j=1

|Xij |�mn⌧ = |X|1 �mn⌧.

8.3 Proof of Lemma 4.3

The proof is elementary as in Lemma 4.1 and we state it for completeness. First, observe that (9) can be re-written as
follows:

�(X, ⌧) = ⌧ · log
✓
Tr(1 · P)

2mn

◆

Observe that calculating gradients with respect to Xij , the denominator 2mn plays no role. Following similar motions,
we compute partial derivatives as:

@�(X, ⌧)

@Xij
= ⌧ · 1

Tr(1 · P)
·
@
�
e
Xij/⌧ + e

�Xij/⌧
�

@Xij
=

1

Tr(1 · P)
·
⇣
e
Xij/⌧ � e

�Xij/⌧
⌘

Gathering all the partial derivatives in a matrix, we get the reported result.

Computing second-order partial derivatives for �(X, ⌧), we distinct the cases of diagonal and off-diagonal elements.
For the former, we have:

@
2
�(X, ⌧)

@X2

ij

=
1

⌧
·
Tr(1 · P)�N

2

ij

Tr(1 · P)2

and for the latter:

@
2
�(X, ⌧)

@Xij@Xl,q
= �1

⌧
· �NijNlq

Tr(1 · P)2

Combining the two, we get the required result.

8.4 Proof of Lemma 4.4

Let us first prove convexity. By the definition of the Hessian, we want to prove

Tr(1 · P) · y>
✓
diag(vec(P))� vec(N)vec(N)

>

Tr(1 · P)

◆
y � 0, 8y 2 Rmn

.

First, observe that Tr(1 · P) � 0 since each element of P is positive by definition. Second, for Pij � 0, 8i, j,
it is obvious that vec(P)vec(P)

>

Tr(1·P)
� diag(vec(P)). Thus, what is left is to prove y

> �vec(N)vec(N)
>�

y 
y
> �vec(P)vec(P)

>�
y, which is true since:

y
> �vec(N)vec(N)

>�
y = ky>vec(N)k2

2
=

mnX

i=1

(yi · vec(N)i)
2 

mnX

i=1

y
2

i · vec(N)
2

i


mnX

i=1

y
2

i · vec(P)
2

i = ky>vec(P)k2
2
= y

> �vec(P)vec(P)
>�

y,

since Pij � Nij . Upper bounding the Hessian,

y
>r2

�(X, ⌧)y = y
>
✓
1

⌧
· 1

Tr(1 · P)
·
✓
diag(vec(P))� vec(N)vec(N)

>

Tr(1 · P)

◆◆
y

 y
>
✓
1

⌧
· 1

Tr(1 · P)
· (diag(vec(P)))

◆
y

=

Pmn
i=1

y
2

i · vec(P)i

⌧ · Tr(1 · P)

Pmn

i=1
|yi|2 · (

Pmn
i=1

vec(P)i)

⌧ · Tr(1 · P)
=

kyk2
2

⌧
.

This means that � function is Lipschitz gradient continuous with constant 1

⌧ . To prove the set of inequalities of the
lemma, we observe:

|X|1 � �(X, ⌧) � ⌧ · log
✓
e
|X|1/⌧

2mn

◆
= |X|1 � ⌧ log(2mn).

8.5 Proof of Theorem 5.1

Using Lemma 4.2, we bound |M � UTV
>
T |1 as follows:

|M � UTV
>
T |1  h(M � UTV

>
T , ⌧) +mn⌧

 h(M � UTV
>
T , ⌧) +

�

2
|UTV

>
T |2

2
+mn⌧

Define f : Rm⇥n ! R such as f(UV
>
) := h(M � UV

>
, ⌧) +

�
2
|UV

>|2
2
. Observe that f is �-strongly convex with

Lipscihtz continuous gradients with parameter (2⌧ + �). By Theorem 3.1, we know that:

f(UTV
>
T)� f(bU? bV ?>

)  10 · DIST(U0, V0;
bX?
r)

2

⌘T
.

where DIST(U0, V0;
bX?
r) 

p
2·�r(

bX?
r)

1/2

10
p


. Combining this bound with the above, we get:

|M � UTV
>
T |1  h(M � bU? bV ?>

, ⌧) +
�

2
| bX?|2

2
+

10 · DIST(U0, V0;
bX?
r)

2

⌘T
+mn⌧ (12)

We know from Lemma 4.2 that:

h(M � UV
>
, ⌧)  |M � UV

>|1 =) h(M � UV
>
, ⌧) +

�

2
|UV

>|2
2
 |M � UV

>|1 +
�

2
|UV

>|2
2

for every U, V . This further implies that:

min
U,V

✓
h(M � UV

>
, ⌧) +

�

2
|UV

>|2
2

◆
 min

U,V

✓
|M � UV

>|1 +
�

2
|UV

>|2
2

◆
)

h(M � bU? bV ?>
, ⌧) +

�

2
|bU? bV ?>|2

2

(i)
 min

U,V

✓
|M � UV

>|1 +
�

2
|UV

>|2
2

◆

(ii)
 |M � U

?
V

?>|1 +
�

2
|U?

V
?>|2

2

(iii)
= OPT+

�

2
|U?

V
?>|2

2

where (i) is due to the optimality of bU?
, bV ? as the minimizer of f(UV

>
) := h(M � UV

>
, ⌧) +

�
2
|UV

>|2
2
, (ii)

is due to U
?
, V

? not being necessarily the minimizers of minU,V

�
|M � UV

>|1 + �
2
|UV

>|2
2

�
, and (iii) OPT :=

minU,V |M � UV
>|1 = |M � U

?
V

?>|1. Thus, (12) becomes:

|M � UTV
>
T |1  OPT+

�

2
|X?|2

2
+

10 · DIST(U0, V0;X
?
r)

2

⌘T
+mn⌧

For " > 0, setting ⌧ =
"·OPT

3mn we observe that mn⌧ =
"·OPT

3
. Executing Algorithm 1 for T � 10·�r(

bX?
r)

50
· 3

⌘"OPT
, we

can guarantee that 10·DIST(U0,V0;
bX?
r)

2

⌘T  10�r(
bX?

)

50⌘· 3·10·�r(cX?)

50⌘"OPT

=
"·OPT

3
. Finally, setting � =

2"·OPT

3|X?|2
2

, we obtain: 2"·OPT

6|X?|2
2

·

|X?|2
2
=

"·OPT

3
. Substituting the above in the main recursion, we get:

|M � UTV
>
T |1  OPT+

�

2
|X?|2

2
+

10 · DIST(U0, V0;X
?
r)

2

⌘T
+mn⌧

 OPT+
" ·OPT

3
+
" ·OPT

3
+
" ·OPT

3

= (1 + ") ·OPT.

The number of iterations T required can be further analyzed to:

T � 10 · �r(bX?
r)

50
· 3

⌘"OPT

(i)
=

10 · �r(bX?
r)

50
· 3 ·O(L)

"OPT

(ii)
=

10 · �r(bX?
r)

50
·
3 ·O

�
1

⌧ + �
�

"OPT

(iii)
=

10 · �r(bX?
r)

50
·
3 ·O

⇣
3mn
"OPT

+
2"OPT

3kX?k2

2

⌘

"OPT

=
10 · �r(bX?

r)

50
·O
⇣

9mn
("OPT)

2 +
2

kX?k2

2

⌘

= O

⇣
�r(

bX?
r) ·

⇣
mn

("OPT)
2 +

1

kX?k2

2

⌘⌘

where (i) is due to the definition of the step size that ⌘ = O
�
1

L

�
, (ii) is due to the definition L =

1

⌧ + �, (iii) is
obtained by substituting � and ⌧ .

8.6 Proof of Corollary 5.2

The proof is similar to that of Theorem 5.1. Using Lemma 4.4, we bound |M � UTV
>
T |1 as follows:

|M � UTV
>
T |1  �(UTV

>
T , ⌧) + ⌧ log(2mn)

 �(UTV
>
T , ⌧) +

�

2
|UTV

>
T |2

2
+ ⌧ log(2mn)

Following similar motions with Theorem 5.1, and setting ⌧ =
"·OPT

3 log(2mn) , and T and � similar to the p = 1 case, we
get:

|M � UTV
>
T |1  (1 + ") ·OPT.

The number of iterations T required follow the same motions as the proof of Theorem 5.1, with a slight difference in
the definition of ⌧ .

9 CONNECTIONS WITH RELATED WORK

[10] considers probabilistic extensions of the PCA problem: starting with various generative probabilistic models, one
obtains different matrix factorization objectives. The authors rely on the fundamental work of Csiszar and Tusnady
[11], and propose an alternating minimization procedure; see also [49, 48].

[21, 45] show that the differences between many algorithms for matrix factorization can be viewed in terms of a
small number of modeling choices. Their view unifies methods for Bregman co-clustering, LSI, non-negative matrix
factorization, relational learning, to name a few.

While the bilinear factorization UV
> is common across different problems, there are cases where even a trilinear

representation is more preferable, from an interpretation perspective. Having constraints over the factors is a another
differentiation: An illustrative example of this case is that of matrix co-clustering where we are interested in M ⇡
C1C

>
2

, with C1 and C2 being matrices that denote the participation/indicator matrices. Our work is quite different to
this type of factorizations (i.e., with additional constraints on the factors); we defer the reader to [35, 18, 2, 53] for
some recent developments on similar subjects.

Finally, there is a recent line of work on robust PCA that further focuses on identifying the (sparse) grossly corrupted
elements in M ; see [56, 6, 59, 31, 32, 8, 24, 57]. That line of work differs from our problem in that, our approach
“models” the corruption through the penalization of the residual M � UV

> with an `1-norm, while in the aforemen-
tioned line of works, one optimizes over the residual S = M � UV

> in order to minimize the number of “active”
corruptions. In that sense our model is “simpler” as we are only interested in identifying the low rank component.

10 SUPPORTIVE EXPERIMENTAL RESULTS

SVD
Time (sec.) Error

Rank r [min, mean, median]

1 [2.63e-03, 1.10e-02, 1.08e-02] [8.36e-01, 9.02e-01, 9.19e-01]
2 [3.44e-03, 5.58e-03, 4.25e-03] [7.37e-01, 8.60e-01, 8.74e-01]
3 [4.08e-03, 8.55e-03, 6.67e-03] [6.72e-01, 7.51e-01, 7.27e-01]
4 [2.59e-03, 7.73e-03, 4.47e-03] [6.60e-01, 7.31e-01, 7.29e-01]
5 [2.59e-03, 3.69e-03, 3.63e-03] [6.94e-01, 7.21e-01, 7.21e-01]
6 [2.52e-03, 3.40e-03, 3.11e-03] [6.82e-01, 7.22e-01, 7.29e-01]
7 [2.44e-03, 3.21e-03, 3.29e-03] [6.87e-01, 7.35e-01, 7.30e-01]
8 [2.43e-03, 3.58e-03, 3.32e-03] [6.92e-01, 7.36e-01, 7.32e-01]
9 [2.50e-03, 3.01e-03, 2.97e-03] [7.00e-01, 7.27e-01, 7.19e-01]

10 [1.96e-03, 2.70e-03, 2.84e-03] [6.97e-01, 7.61e-01, 7.51e-01]

[17]
Time (sec.) Error

Rank r [min, mean, median]

1 [6.81e-02, 2.24e-01, 2.28e-01] [4.91e-01, 4.93e-01, 4.93e-01]
2 [1.55e-02, 2.75e-02, 2.31e-02] [5.33e-01, 6.00e-01, 5.96e-01]
3 [2.42e-02, 5.89e-02, 4.59e-02] [5.22e-01, 5.63e-01, 5.44e-01]
4 [2.69e-02, 4.61e-02, 4.04e-02] [5.24e-01, 5.66e-01, 5.42e-01]
5 [4.67e-02, 3.36e-01, 1.48e-01] [5.04e-01, 5.36e-01, 5.26e-01]
6 [6.72e-02, 6.24e-01, 1.34e-01] [4.98e-01, 5.20e-01, 5.22e-01]
7 [5.46e-02, 8.91e-01, 5.47e-01] [4.90e-01, 5.14e-01, 5.11e-01]
8 [1.36e-01, 1.66e+00, 5.39e-01] [4.81e-01, 5.15e-01, 5.02e-01]
9 [1.90e-01, 2.91e+00, 2.56e+00] [4.73e-01, 4.98e-01, 4.89e-01]

10 [2.30e-01, 9.60e+00, 4.25e+00] [4.59e-01, 4.97e-01, 4.79e-01]

This work
Time (sec.) Error

Rank r [min, mean, median]

1 [2.57e-02, 4.32e+01, 5.44e+01] [4.99e-01, 5.82e-01, 5.01e-01]
2 [2.60e-02, 4.95e+01, 5.44e+01] [5.04e-01, 5.49e-01, 5.07e-01]
3 [5.20e+01, 5.43e+01, 5.42e+01] [5.06e-01, 5.10e-01, 5.10e-01]
4 [1.55e-02, 3.67e+01, 5.15e+01] [5.05e-01, 5.90e-01, 5.10e-01]
5 [4.17e-02, 7.92e+01, 8.93e+01] [5.07e-01, 5.33e-01, 5.13e-01]
6 [7.27e+01, 8.03e+01, 7.76e+01] [5.02e-01, 5.08e-01, 5.09e-01]
7 [1.62e-02, 5.11e+01, 6.52e+01] [5.08e-01, 5.84e-01, 5.08e-01]
8 [5.51e+01, 6.55e+01, 6.73e+01] [4.95e-01, 5.09e-01, 5.02e-01]
9 [5.36e+01, 5.89e+01, 5.77e+01] [4.78e-01, 5.06e-01, 5.06e-01]

10 [1.69e-02, 3.86e+01, 5.23e+01] [4.69e-01, 5.94e-01, 4.75e-01]

Table 2: Attained objective function values and execution time. Table includes minimum, mean and median values for
10 Monte Carlo instances.

