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ABSTRACT 19 

The aim of this study is to validate the Ozone Monitoring Instrument (OMI) erythemal dose rates 20 

using ground-based measurements in Thessaloniki, Greece. In the Laboratory of Atmospheric 21 

Physics of the Aristotle University of Thessaloniki, a Yankee Environmental System UVB-1 22 

radiometer measures the erythemal dose rates every minute, and a Norsk Institutt for Luftforskning 23 

(NILU) multi-filter radiometer provides multi-filter based irradiances that were used to derive 24 

erythemal dose rates for the period 2005-2014. Both these datasets were independently validated 25 

against collocated UV irradiance spectra from a Brewer MkIII spectrophotometer. Cloud detection 26 

was performed based on measurements of the global horizontal radiation from a Kipp & Zonen 27 

pyranometer and from NILU measurements in the visible range. The satellite versus ground 28 

observation validation was performed taking into account the effect of temporal averaging, 29 

limitations related to OMI quality control criteria, cloud conditions, the solar zenith angle and 30 

atmospheric aerosol loading. Aerosol optical depth was also retrieved using a collocated CIMEL 31 

sunphotometer in order to assess its impact on the comparisons. The effect of total ozone columns 32 
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satellite versus ground-based differences on the erythemal dose comparisons was also investigated. 33 

Since most of the public awareness alerts are based on UV Index (UVI) classifications, an analysis 34 

and assessment of OMI capability for retrieving UVIs was also performed. 35 

An overestimation of the OMI erythemal product by 3-6% and 4-8% with respect to ground 36 

measurements is observed when examining overpass and noontime estimates respectively. The 37 

comparisons revealed a relatively small solar zenith angle dependence, with the OMI data showing 38 

a slight dependence on aerosol load, especially at high aerosol optical depth values. A mean 39 

underestimation of 2% in OMI total ozone columns under cloud-free conditions was found to lead 40 

to an overestimation in OMI erythemal doses of 1 - 5%.While OMI overestimated the erythemal 41 

dose rates over the range of cloudiness conditions examined, its UVIs were found to be reliable for 42 

the purpose of characterizing the ambient UV radiation impact. 43 

 44 

KEYWORDS 45 
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1. INTRODUCTION 48 

Changes in climate and atmospheric composition may lead to unprecedented changes in the 49 

Ultraviolet (UV) radiation that reaches the Earth’s surface, raising the concern of indirect and direct 50 

effects to plants, ecosystems and humans (IPCC AR5, 2014; Tevini, 1993; WMO, 2007; WHO, 51 

2008; Gao, Schmoldt, and Slusser, 2010;among others).Since 1982,when the ozone depletion was 52 

firstly observed (e.g. Farman et al., 1985; Bhartia et al., 1985), ground-based UV monitoring sites 53 

have been deployed at several locations all over the globe as a response to the raising concern of 54 

potential enhanced surface UV levels (Ghetti, Checcucci and Bornman, 2006). Most of these sites 55 

nowadays provide high frequency measurements for a variety of surface UV radiation products, 56 

such as the erythemal weighted dose rates, UV index, and so on. These data are used to validate 57 

model projections and satellite estimates, and to alert public awareness regarding the effects of the 58 

exposure to high solar UV radiation levels (Schmalwieser et al., 2002; Gies et al., 2004; Taskanen 59 

et al., 2007; Weihs et al., 2008; McKenzie et al., 2001; WHO, 2008; among others). 60 

Up-to-date, space-borne UV product estimates originate from a variety of instruments onboard 61 

different platforms (Arola et al., 2002; Taskanen et al., 2006). One of them is the Ozone Monitoring 62 

Instrument (OMI) on board the Aura platform that provides estimates of surface erythemal dose 63 

rates and daily doses at overpass and noontime along with UV index (UVI) values since its launch 64 

in July 2004. Studies on OMI UV products (irradiances, erythemal doses and UV index) have 65 

reported differences of up to 30% or even higher under certain conditions overestimation in OMI 66 

UV products when compared with corresponding ground-based measurements, while these 67 

discrepancies were mainly observed at urban areas with higher aerosol loads (Kazadzis et al., 68 

2009a; Kazadzis et al., 2009b; Ialongo et al., 2010; Antón et al. 2010; Cachorro et al., 2010; A Jebar 69 

et al., 2017). In 2009, a study by Arola et al. (2009) introduced a correction on the OMI data for 70 

absorbing aerosols which led to smaller discrepancies between OMI and ground-based data, with 71 

OMI performance being improved due to the imposed aerosol correction (Mateos et al., 2013; 72 

Muyimbwa et al., 2015; Cadet et al., 2017; Bernhard et al., 2015). 73 

In this study, OMI UV erythemal dose rates and UVI values at overpass and local noontimes were 74 

thoroughly evaluated in Thessaloniki, Greece (lat: 40.69o N, lon: 22.96o E, alt: 60 m) for the period 75 

2005-2014, using a suite of ground-based instruments located at the Laboratory of Atmospheric 76 

Physics (LAP), at the Aristotle University of Thessaloniki, Greece together with retrieval models. 77 

The influence of solar zenith angle (SZA), total ozone column (TOC) and aerosol optical depth 78 

(AOD) on the satellite UV products was also analysed, while the impact of three basic types of 79 
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cloudiness conditions defined as: unstable cloudy (partially covered sun disk), stable cloudy (fully 80 

covered sun disk), and unoccluded sun disk, were also investigated. 81 

Consequently, this study provides an innovative, complete and in-depth evaluation of the erythemal 82 

products provided by OMI/Aura, where the synergy of a wide suite of ground-based measurements 83 

is proven invaluable in order to examine, quantify and eventually unfold the dynamics of all the 84 

parameters potentially affecting the satellite retrievals. 85 

The backbone of the paper is as follows. In Section 2 the ground-based instrumentation with the 86 

corresponding measurements are provided, while the OMI measurements are presented in the 87 

second subsection. In the following section (Section 3), the methodology applied to retrieve 88 

erythemal dose rates from irradiance measurements originating from the NILU-UV multi-filter 89 

radiometer is analysed, and the results are validated against collocated erythemal dose rate 90 

measurements from the UVB-1 radiometer placed also in the site. Then, the evaluation of the OMI 91 

erythemal dose rates is presented in Section 4, where the influence of the SZA, ozone, aerosols and 92 

cloudiness type is examined. At the end of the same section, the UV index comparisons are 93 

presented in order to elaborate on the ability of OMI UV Index estimations to serve as a public alert 94 

source, especially during the summer when the impact of the exposure to excess UV doses is more 95 

detrimental. The study concludes with its 5th and final section by summarizing the main findings of 96 

the validation process. 97 

 98 

2. DATASETS AND INSTRUMENTATION 99 

2.1. Ground-based measurements 100 

At the Laboratory of Atmospheric Physics at Aristotle University of Thessaloniki, Greece, 101 

(LAP/AUTh: http://lap.physics.auth.gr) three different types of solar radiation sensors provide 102 

estimates of erythemal dose rates continuously since 2005 as per the joint International 103 

Organisation for Standardisation and Commission Internationale de l' Éclairage standard ISO 104 

17166:1999(E)/CIE S 007-1998 (and which we will abbreviate as ‘CIE’ here). For each instrument, 105 

different methods were applied in order to derive the erythemal dose rates, based on the 106 

characteristics of the measurements and the technical aspects of each instrument. 107 

A Brewer MkIII spectrophotometer with serial number #086 (B086) measures the UV solar 108 

spectrum (286.5 - 363 nm) with a wavelength step of 0.5 nm at LAP since 1993. It is equipped with 109 

a double monochromator which is eliminating influences of stray light (scattered photons/signal at 110 

one wavelength that is affected by radiation from other wavelengths) in the measurements, thus 111 
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providing better accuracy especially in the shorter UV wavelengths (Zerefos and Bais, 1997; 112 

Karppinen et al., 2014). The uncertainty in the B086 spectra that are used in this study is 5% for 113 

wavelengths higher than 305 nm and solar zenith angles (SZA) smaller than 80° (Fountoulakis et 114 

al., 2016a), while low recorded signals at lower wavelengths and higher SZAs lead to higher 115 

uncertainties in the measurements (Fountoulakis et al., 2016b; Gröbner et al., 2006). In order to 116 

obtain solar spectra up to 400 nm, the SHICrivm algorithm (Slaper et al., 1995) has been applied to 117 

the original data, while the outcome was weighted with the erythemal dose action spectrum 118 

(McKinlay & Diffey, 1987) and integrated over the nominal wavelength range. Although B086 119 

provides high accuracy erythemal dose rates, the frequency of the measurements is one every 20-40 120 

minutes while a complete scan lasts ~7 minutes. Therefore, even though B086 scans cannot capture 121 

high frequency changes in the radiation field, these measurements provide a unique tool to monitor 122 

and assess the stability of other instruments that provide measurements with higher frequency 123 

(Zempila et al., 2016a). 124 

A Yankee Environmental System (YES) UVB-1 radiometer has also been operating since 1991. 125 

The UVB-1 is a broadband instrument with a spectral response that simulates the erythemal action 126 

spectrum proposed by McKinlay & Diffey (1987) and thus provides erythemal dose measurements 127 

on a 1-minute basis. Using libRadtran radiative transfer model simulations (Emde et al., 2015), look 128 

up tables are calculated with respect to SZA and the TOC which are used to convert the UVB-1 129 

measurements into erythemal irradiance due to differences between the actual and the desired 130 

spectral response (Lantz & Disterhoft, 1998; Webb et al., 2006;). The TOC values for these 131 

corrections are obtained from collocated measurements from a second Brewer spectrophotometer 132 

with serial number 005 (B005) (Meleti et al., 2012, Zerefos et al., 2002, Fragkos et al. 2014, 133 

Fragkos et al. 2016). Under clear (cloudless) skies, the erythemal irradiances from B086 and UVB-134 

1 (within one minute from the mean time of the B086 scan) have shown a satisfactory agreement; 135 

within 4% (1σ) for SZAs less than 80° for the period 2004 – 2014, that is in compliance with the 136 

results presented in Hülsen et al. (2008). This agreement testifies that UVB-1 erythemal dose rates 137 

have similar uncertainty level with the ones derived from B086 UV spectra (Garane et al., 2006; 138 

Bais et al., 1996; Bais et al., 2001). Periodic intercalibrations of UVB-1 and B086 ensure the long-139 

term stability of the instrument. 140 

A Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer has been operational since 141 

2005 and forms part of the Greek UV network of NILU-UV radiometers (Kazantzidis et al., 2006). 142 

The NILU-UV with serial number 04103 provides 1-minute measurements in 5 UV channels with 143 
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nominal central wavelength at 302, 312, 320, 340 and 380 nm and a full width at half maximum 144 

(FWHM) of 10 nm. The instrument is also equipped with an additional channel that measures the 145 

photosynthetically active radiation (PAR). In this study, measurements of the PAR channel were 146 

used to determine cloud-free cases based on the cloud detection algorithm proposed by Zempila et 147 

al., 2016b. By calibrating the NILU measurements with the B086 coincident irradiances, we 148 

estimate that the uncertainties of the NILU irradiance measurements used in this study are less than 149 

5.5% (Zempila et al., 2016a). In Section 3 a description of the methodology used to derive 150 

erythemal dose rates from the NILU UV irradiances measurements is provided, while comparisons 151 

with UVB-1 measurements are presented in the second part of the section. 152 

Additionally at LAP, a CM21 (Kipp&Zonen) pyranometer provides global horizontal irradiance 153 

(GHI) measurements at one-minute intervals along with the corresponding standard deviation. 154 

Although the manufacturer states that the CM type of pyranometers have a stability of less than 155 

±0.5%/year, recalibration of the instrument that took place in 2005 revealed a high stability in its 156 

sensitivity with changes less than 0.1% during its 12 years of continuous operation (Bais et al., 157 

2013). According to Zempila et al. (2016c) the maximum uncertainty inherent in the CM21 158 

measurements is 6.4% based on error propagation techniques, while its records can provide 159 

information on the cloudiness status, distinguishing cases where the sun is unoccluded or 160 

fully/partially covered by clouds based on the methodology described by Vasaras et al. (2001). This 161 

information is used to further investigate the cloud effect on the satellite against ground-based 162 

erythemal dose rate comparisons. 163 

Furthermore, a CE318-N Sun Sky photometer (CIMEL) provides atmospheric observations as part 164 

of the NASA aerosol robotic network (AERONET) (Holben et al., 1998; Balis et al., 2010). CIMEL 165 

provides AOD at the 340 nm wavelength, which is used to investigate the effect of aerosol 166 

variability over the station within the comparisons between the satellite- and ground-based 167 

erythemal data. 168 

 169 

2.2. Satellite measurements 170 

OMI is a contribution of the Netherlands's Agency for Aerospace Programs (NIVR) in collaboration 171 

with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura 172 

platform. OMI is a nadir viewing hyperspectral imager capable of measuring the backscatter solar 173 

radiation in the UV and visible. With its high spectral resolution (0.45 nm), OMI is able to provide 174 

high accuracy estimations of several atmospheric parameters (Levelt et al., 2006). OMI scans in 740 175 
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wavelength bands with a swath width of 2600 km that allows OMI to view the globe within one day 176 

(14 orbits). With its optimal 13x24 km2 spatial resolution, OMI footprint centered to Thessaloniki 177 

coordinates, is covered by 50% of urban area while the city suburbs, rural area and the sea (with 178 

coverage of 25%) occupy the rest half percentage. The OMI surface UV irradiance data include the 179 

erythemally-weighted daily doses and the dose rates both at the overpass time (mean Thessaloniki 180 

visiting time: 11:45 UT) and at the local solar noon (mean Thessaloniki local noon time: 10:26 UT). 181 

For this study, surface UV overpass data for Thessaloniki have been extracted from the NASA Aura 182 

Data Validation Centre for the period 2005-2014, http://avdc.gsfc.nasa.gov/. The OMI retrieval 183 

algorithm estimates the clear-sky surface irradiance using as inputs to radiative transfer model basic 184 

geophysical information, the measured total ozone column and climatological surface albedo 185 

(Torres et al., 2007 and references therein). Then, the clear-sky irradiances are adjusted to real 186 

scene values by a transmittance factor that is derived from the ratio of the backscattered radiance 187 

over the solar irradiances at 360 nm accounting for both clouds and scattering aerosols. Currently 188 

the UV algorithm uses a monthly aerosol climatology to also correct for absorbing aerosols (Arola 189 

et al., 2009). Regarding the cloud information, the radiative transfer model does not account for 190 

broken, multi-layer or mixed phase clouds resulting in more noisy comparisons with ground-based 191 

measurements under cloudy conditions. Furthermore, the derivation of the local noon values does 192 

not take into account changes in cloudiness, ozone and aerosols between local noon and overpass 193 

time, introducing higher uncertainty in the local noon retrievals (Torres et al., 2007). More details 194 

regarding the OMI UVB algorithm can be found in the Algorithm Theoretical Basis Document 195 

(Krotkov et al., 2002) and examples of its validation may be viewed in Tanskanen et al. (2007), 196 

Arola et al. (2009), and, specifically for Thessaloniki, in Kazadzis et al. (2009a; 2009b). 197 

 198 

3. The NILU-UV Erythemal product 199 

3.1.Effective UV doses from NILU-UV irradiances using a neural network model 200 

To retrieve the effective UV dose rates from the original NILU irradiance measurements, a feed-201 

forward function-approximating neural network (NN) model (Hornik, Stinchcombe and White, 202 

1989) was coded using MATLAB’s object-oriented scripting language in conjunction with its 203 

Neural Network Toolbox (Beale, Hagan and Demuth, 2012). As inputs, the NN has NILU 204 

irradiance measurements at 302, 312, 320, 340 and 380 nm and various temporal variables 205 

(Kolehmainen, Martikainen and Ruuskanen, 2001) including the SZA, the day of the week (DOW) 206 

and the day of the year (DOY) and its sinusoidal components. The target (output) variable is the 207 
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erythemal UV dose rate resulting from B086 erythemal weighted spectra.  208 

From the available data, 47908 co-located input-output vectors were extracted to train and validate 209 

the NN model. As per the NN method described in Zempila et al (2017b), the input and output 210 

vectors were connected via 2 network layers – the first containing hidden neurons with hyperbolic 211 

tangent (tanh) activation functions and the second containing linear activation functions. The NN 212 

architecture was optimized following the method of Taylor et al (2014) where the number of hidden 213 

neurons was varied from 5 to 15 and the proportion of training data used in NN learning was varied 214 

from 50% to 95% in steps of 5% with a mean squared error (MSE) cost function measuring the 215 

difference in NN retrievals and target erythemal dose rates for 100 different NN architectures. The 216 

optimal NN has a training proportion of 90% and 13 hidden neurons and used the same NN learning 217 

scheme based on Bayesian regularization back-propagation described in Zempila et al (2017b). 218 

In Error! Reference source not found.the range of the validity of the trained optimal NN is 219 

provided based on the input data range of the subset used to train the model. The addition temporal 220 

variables are not listed as they have the standard ranges (see Zempila et al (2017b) for details). 221 

 222 

Table 1. Range of validity of the trained optimal NN as determined by its input parameters (upper 223 

list) and output parameters (lower list). 224 

Parameter Min Max Mean St. Dev. 

Ir (305) (W/m2/nm) 0 0.017 0.003 0.004 

Ir(312) (W/m2/nm) 0 0.229 0.064 0.055 

Ir(320) (W/m2/nm) 0 0.333 0.108 0.079 

Ir(340) (W/m2/nm) 0 0.678 0.252 0.159 

Ir(380) (W/m2/nm) 0 0.871 0.327 0.208 

SZA (Degrees) 15.63 81.162 54.373 16.120 

Erythemal dose rate (W/m2) 0 0.234 0.056 0.054 

 225 

Following the approach of Zempila et al (2017b), the trained and validated NN was then run in 226 

unsupervised mode using the full record of available coincident NILU irradiances (2.47 million 227 

cases) to extract all vectors closest to local noon and within ± 30 minutes of the satellite overpass 228 

time. 229 

To calculate the uncertainty of the neural-network-based estimates of the retrieved erythemal dose 230 

rates, the median absolute percentage error (MAPE) was calculated for the differences between the 231 

NN estimates and the target values. Based on this statistical measure, we calculate that the 232 
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uncertainty of the NN in the dose rates was 3.6%, which is within the level of uncertainty of both 233 

NILU and B086 irradiances which are 5.6% and 5% respectively. Taking the higher NILU 234 

uncertainty as an upper bound on the radiance uncertainty and combining this in quadrature with the 235 

NN uncertainty, we estimate the overall uncertainty on the NILU NN erythemal dose rate retrievals 236 

to be 6.5%.  237 

3.2.Comparisons of NILU-UV and UVB-1 erythemal data 238 

To further verify the validity of the NILU NN erythemal retrievals, comparisons with the collocated 239 

UVB-1 measurements were performed as an independent source of information. For these 240 

comparisons, 1-minute synchronous NILU and UVB-1 data were used, while hourly mean values 241 

were calculated in order to eliminate the influence of any possible time shifts and random 242 

incidences (e.g. temporarily shading of the input optics) into the datasets. Additionally, hourly data 243 

with more than 70% abundance in cloud-free minute measurements, as identified from the NILU 244 

PAR algorithm (Zempila et al., 2016b), were characterized as “NILU clear skies”.  245 

In Figure 1 the relative percentage differences between OMI and UVB-1 are presented for all and 246 

cloud-free sky cases respectively. Although the distribution of the relative percentage differences is 247 

normal, we provide the median and the 20-80 percentile values as measures of statistical 248 

differences. 249 

(a)

 

(b)

 

Figure 1 (a) Histogram of the relative percentage differences of hourly mean values for the NILU and UVB-1 erythemal dose 250 
rates. Cases were more than 70% of the data were identified as cloud-free based on NILU PAR measurements, are indicated 251 
in red. The median and 20/80 percentiles are also presented. (b) The SZA dependence of the relative percentage differences is 252 
also depicted, along with the median percentage differences of 5oSZA bins. The error bars in the lower panel refer to the 253 
20/80 percentile values. 254 

As seen in Figure 1 (a), the overall conformity between the two ground-based datasets was quite 255 
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good with small median differences, -0.86% and 1.09% for all and cloud-free skies respectively, on 256 

a large number of coincidences (30506 for all skies, and 10108 for the NILU-based cloud free 257 

instances, as shown in Figure 1). Low values of the 20/80 percentiles were found within the 258 

uncertainty of both data sets; this shows that both time series result in comparable values.  259 

To elaborate more on these comparisons, the influence of the SZA was also investigated (Figure 260 

1(b)). It was found that for SZAs less than 70o under cloud-free conditions the relative percentage 261 

differences resulted to a median of 0.45% with corresponding 20/80 percentiles of -3.25%/4.60% 262 

respectively. Furthermore, the SZA pattern seen in Figure 1(b) can be attributed to the different 263 

geometry of the input optics, differences in angular responses and calibration procedures applied to 264 

each dataset. For SZAs>70° we observe larger scatter for both cloudless and clear sky cases as an 265 

impact of the non-ideal angular response of both instrument and the increasing signal to noise ratio. 266 

Summarizing, the comparisons of the NILU NN erythemal hourly doses revealed a good agreement 267 

with the collocated UVB-1 measurements. Therefore, the NILU NN erythemal data represent a 268 

valid dataset, with denoted uncertainty of 6.5% that is comparable with the uncertainty of the UVB-269 

1 measurements. 270 

 271 

4. Evaluation of OMI /Aura erythemal product 272 

In the following section, comparisons among the OMI and theNILU, UVB-1 and B086 erythemal 273 

data were performed. The OMI/Aura NASA algorithm provides erythemal dose rates at overpass 274 

time (measurement) as well as at local noon (interpolated). Both cases were investigated, while at 275 

the same time identification of cloud-free cases took place in two different ways: i) a cloud 276 

screening algorithm based on NILU-PAR measurements was used to define the NILU clear sky 277 

cases (NILU clear skies), according to Zempila et al., 2016b, and ii) the limitation of Lambertian 278 

equivalent reflectivity (LER) at 360 nm less than 0.1 was applied to satellite estimates in order to 279 

derive the satellite cloudless cases (OMI clear skies), according to Antón et al., 2010. Since most of 280 

the relevant studies use average values of 1 hour (±30min) around the overpass time of the satellite 281 

(e.g. Chubarova et al., 2002), compensating in this way for moving clouds within the OMI pixel, 282 

the same statistics were recalculated for the 1 hour averaging as well. For the identification of the 283 

NILU cloud-free 1-hour averages, data within this timeframe with more than 70% cloud-free 1-284 

minute measurements were characterized as hourly averages under clear skies (NILU clear skies). 285 

For the OMI clear skies, the same criterion, as above, was used (LER<0.1). In Table 3 we present a 286 

statistical summary of the comparisons performed for the overpass and local noontime, based on 287 
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both temporal matching approaches. For all comparisons, only satellite data within a radius of 50 288 

km were taken into account, while comparisons within ±150% were analysed to avoid including 289 

erratic data (e.g. random drop of signal due to obscured ground sensor) into the statistics. The later 290 

limitation ended to a 2.5% and 2.7% reduction of the original OMI/NILU and OMI/UVB-1 exact 291 

overpass datasets respectively, while the reduction in the 1-hour overpass comparisons was 1.5% 292 

for both OMI/NILU and OMI/UVB-1 comparisons. For the local noon comparisons, both 293 

OMI/NILU and OMI/UVB-1 are reduced by 2.5% for the exact coincidences when limiting the 294 

dataset within the range of ±150%, while this limitation reduced the amount of coincidences of the 295 

1-hour averages around local noon by 1.7% for both the two types of the ground-based instruments. 296 

An overview of the backbone of this section is presented in Table2 and Flow Chart 1, to facilitate 297 

the readers. 298 

 299 

Table2. Overview of the measurement characteristics and datasets used in this study for the period 300 

2005-2014 over Thessaloniki, Greece (lat: 40.69o N, lon: 22.96o E, alt: 60 m). 301 

Instrument Recording 

Frequency 

Original 

Measurements 

Derived Data Cloud Information 

Ground-based     

NILU-UV 1-min Irradiances at 5 

wv[W/m2/nm] 

PAR [W/m2] 

Erythemal dose rates 

[W/m2] 

Cloud binary 

information 

YES 

[using the PAR data] 

UVB-1 1-min Erythemal dose rates 

[W/m2] 

Erythemal dose rates 

[W/m2] 

NO 

B086 20-40 min Spectral irradiances 

[W/m2/nm] 

Erythemal dose rates 

[W/m2] 

NO 

CM21 1-min Solar radiation 

[W/m2] 

Cloudiness 

information 

YES 

CIMEL ≥15-min unitless AOD @ 340 nm Cloud free cases 

Spaceborne     

OMI Daily Erythemal dose rates 

[W/m2] 

Erythemal dose rates 

[W/m2] 

YES 

 302 
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 303 
Flow Chart 1. Overview of the data inventory used in this study, along with a short description of the schematic of the 304 
validation and dependency studies performed between the ground- and satellite-based erythemal data. 305 

The comparison statistics are presented in the form of median and 20/80 percentile values since the 306 

dataset cannot be represented with a normal distribution because the comparisons showed a 307 

persistent tendency towards higher relative percentage differences. In Table 3, for all skies at the 308 

exact overpass time, the agreement between the NILU and OMI erythemal dose rates is 2.5% while 309 

the satellite overestimates by 4.1% at local noon, with a percentile range (80%-20%) of 24% and 310 

11.2% respectively. Limiting the dataset to cloud-free cases based on OMI observations leads to 311 
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higher relative percentage differences, 4.0% for the overpass and 5.8% for the local noontime, with 312 

the 20/80 percentile difference ranging between 11-12%. For the overpass comparisons, although 313 

the median of the relative percentage differences seen under the NILU defined clear days is less 314 

than the one referring to OMI clear skies cases, the later one presented lower scatter based on the 315 

observed 20/80 percentiles. This was also the case when examining the noon values, where the 316 

scatter seems to be marginally larger for the NILU clear results. The larger scatter in the noon 317 

comparisons under all sky cases can be attributed to differences in the model/algorithm estimations 318 

and differences in the geometry and type of the two sensors, since the OMI noontime values are 319 

calculated through time extrapolation using the overpass time and assuming similar atmospheric 320 

(cloud) conditions. Although the cloud-free cases result in lower amount of coincidences, the 321 

median differences observed in OMI/NILU comparisons imply that the agreement of the OMI 322 

erythemal dose rates is equally good under all-sky conditions as it is for the cloud-free cases. 323 

 324 
Table 3. Statistical analysis of the differences between erythemal dose rates provided by OMI/Aura 325 

and NILU/UVB-1/B086 for the exact overpass and local noontime coincidences. OMI/AURA data 326 

are provided within a radius of 50 km from the site location. Differences with absolute values more 327 

than 150% were eliminated. 328 

 Overpass Local Noon 

(OMI-NILU)/NILU  All Skies OMI Clear NILU Clear All Skies OMI Clear NILU Clear  

N counts 2013 691 761 2267 740 915 

Median (%) 2.5 4.0 2.1 4.1 5.8 3.2 

20/80 percentiles (%) -8.5/15.5 -1.1/10.0 -4.7/8.4 -7.1/21.1 0.8/11.8 -4.4/9.4 

(OMI-UVB1)/UVB1        

N counts 2009 691 761 2269 740 915 

Median (%) 3.9 4.0 2.0 5.3 5.0 2.2 

20/80 percentiles (%) -7.7/22.5 -3.3/13.0 -6.1/10.3 -7.4/28.2 -1.9/14.7 -7.5/10 

(OMI-B086)/B086       

N counts 43 14 18 162 63 69 

Median (%) 4.5 4.7 4.4 4.9 6.3 2.9 

20/80 percentiles (%) -2.5/20.4 3.9/13.4 0.0/9.4 -4.8/16.7 -0.2/12.8 -4.4/10.4 
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Similarly, the OMI/UVB-1 comparisons revealed an agreement of 3.9% for the all skies cases 329 

during the overpass time, which is slightly improved at 2% under the NILU defined clear cases, 330 

while it remained unaltered at 4% for the OMI cloud-free limited dataset. The number of 331 

coincidences was the same as for the OMI/NILU comparisons for both OMI and NILU cloudless 332 

days. When analysing the local noon exact matching, the percentage differences were increased to 333 

5.3%, 5.0% and 2.2% for all, OMI clear and NILU clear skies, and the number of coincidences was 334 

also increased to 2269, 740 and 915 respectively. In general, the comparisons between OMI and 335 

UVB-1 data at the exact overpass result in similar median differences with the OMI/NILU 336 

comparisons, but the denoted percentile ranges are higher than the later ones. This aspect could be 337 

an indicator on the uncertainty of the UVB- 1 erythemal dose rates, especially for high SZAs since 338 

they are not corrected for the non-ideal angular response of the instrument. 339 

OMI/B086 comparisons result in extremely few collocations for the exact overpass minute (43 for 340 

the all skies cases), thus the statistical significance of the results is considered low, although the 341 

percentages are not different from those of the OMI/NILU and OMI/UVB-1 differences. The low 342 

number of coincidences during the satellite overpass is expected since B086 performs sky scans 343 

within steps of 20 up to 40 minutes apart, making the existence of coincident overpass 344 

measurements statistically rare. When checking the local noon exact coincidences, the number of 345 

paired satellite and B086 data is almost quadrupled, 162, 63 and 69 for all skies, OMI clear skies 346 

and NILU clear skies respectively, but still small to deduce a solid conclusion. It is though 347 

reassuring that the results are similar to the ones obtained from the other comparisons, and as seen 348 

in Table 3, for all cases and all comparisons, the NILU clear skies incidences provide the smallest 349 

median value of the relative percentage differences, providing an additional means of verification of 350 

the accuracy of the NILU data. 351 

 352 

Table 4. Statistical analysis of the differences between erythemal dose rates provided by OMI/Aura 353 

and NILU/UVB-1/B086 for the 1-hour average values around the OMI overpass and local noontime 354 

(±30 minute). OMI/AURA data are provided within a radius of 50 km from the site location. 355 

Differences with absolute values more than 150% were eliminated. 356 

 1h around Overpass 1h around Local Noon 

(OMI-NILU)/NILU  All Skies OMI Clear NILU Clear All Skies OMI Clear NILU Clear  

N counts 2300 756 735 2298 755 774 
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Median (%) 3.9 4.8 2.8 5.6 6.6 4.6 

20/80 percentiles (%) -5.3/16.5 0.0/11.1 -3/8.6 -4.7/19.5 1.4/12.7 -1.8/10.4 

(OMI-UVB1)/UVB1        

N counts 2300 756 735 2299 755 774 

Median (%) 5.9 5.1 2.7 6.6 6.0 3.2 

20/80 percentiles (%) -4.9/22.8 -2.1/13.8 -5.1/10.3 -4.8/26.6 -0.9/15.3 -5.0/11.1 

(OMI-B086)/B086       

N counts 1751 572 558 1448 485 523 

Median (%) 6.9 7.1 4.6 5.2 6.1 3.7 

20/80 percentiles (%) -4.3/25.6 0.0/14.8 -2.9/12.2 -5.3/24.0 0.7/13.4 -1.7/11.1 

 357 

When examining the 1-hour averaged values in Table 4, in all cases, apart from the B086 dataset 358 

(1751 coincidences instead of 1448 for all skies, 572 instead of 485 for the OMI clear skies and 558 359 

instead of 523 for the NILU cloud-free cases at the overpass and local noon respectively), the 360 

number of coincidences were similar between the 1 hour data around the overpass and the local 361 

noon. The median differences tend to show an enhanced overestimation by OMI for all cases (1h 362 

around overpass and local noon), for all and clear sky conditions, when compared to the exact time 363 

coincidences. On the other hand, the 20/80 percentile range seemed to be little affected by the 364 

temporal averaging of ground-based data, with the comparisons for the 1-hour averaged values to 365 

correspond in slightly smaller percentile ranges (~20%), again with the clear skies cases presenting 366 

the smaller range (12%-15%). As seen in the table, the 1-hour averaging favoured the number of 367 

coincidences under all skies cases in all comparisons with the ground-based instruments. 368 

Furthermore, the temporal averaging ended to smaller percentile ranges in most of the cases for 369 

both, exact and local noon, time matching. On the other hand, the median differences were slightly 370 

higher since OMI sees the pixel area at the exact overpass time, while the characterization of NILU 371 

cloud-free cases within 1 hour can result to different outcomes based on the limitation set on the 1-372 

minute cloud-free cases (in our case a 70% abundance of cloud-free minute points was applied). 373 

Therefore, careful consideration of all available choices should take place based on the available 374 

data and the scope of each study, since exact overpass match and time averaging present their own 375 

benefits, while also introduce certain limitations. 376 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

To further investigate the accuracy of the OMI erythemal dose rates and since the OMI dataset also 377 

provides additional information regarding the Quality Flags on Pixel Level (UVBQF), an analysis 378 

on limiting OMI dataset based on the UVBQF was also performed. This 16 digits binary flag 379 

elaborates on special characteristics for the quality of the OMI retrieved data and the input 380 

information used in the satellite retrieval algorithm. For the UVBQF limitation, the usage of the 381 

TOMS 380 nm monthly LER (MLER) climatology (Herman and Celarier, 1997) and the usage of 382 

the moving time-window (MTW) climatology (Tanskanen et al. 2003) were permitted for the 383 

surface albedo, along with the application of the aerosol correction. 384 

Again the exact overpass and local noontime were examined (Table 5), while the potential of any 385 

improvement on the comparisons by a time averaging, was also analysed in Table 6. 386 

 387 

Table 5 Statistical analysis of the differences between erythemal dose rates provided by OMI/Aura 388 

and NILU/UVB-1/B086 for the exact overpass and local noontime coincidences when restrictions 389 

on the UVBQFlags were imposed. Differences with absolute value more than 150% were 390 

eliminated. 391 

UVBQF Limited Overpass Local Noon 

(OMI-NILU)/NILU  All Skies OMI Clear NILU Clear All Skies OMI Clear NILU Clear  

N counts 947 277 322 1121 310 381 

Median (%) 3.0 4.7 4.6 4.9 6.3 3.2 

20/80 percentiles (%) -8.6/17.7 -1.0/11.3 -5.1/8.4 -7.3/24.6 1.3/13.2 -3.8/9.7 

(OMI-UVB1)/UVB1        

N counts 948 277 322 1122 310 381 

Median (%) 5.1 4.5 2.0 6.8 6.1 2.2 

20/80 percentiles (%) -6.8/23.2 -2.7/13.9 -5.9/9.6 -6.4/32.1 -1.0/16.6 -6.2/9.8 

(OMI-B086)/B086       

N counts 20 4 6 96 31 34 

Median (%) 5.2 9.0 2.4 4.2 9.3 0.2 

20/80 percentiles (%) -1.2/38.2 1.3/15.1 -0.7/6.0 -7.0/15.4 -0.4/12.9 -9.4/9.8 

 392 

Once again, the temporal averaging of 1-hour favoured the number of coincidences between 393 
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satellite- and ground-based data, while the UVBQF limitation results in a significant reduction of 394 

the original coincidences. The quality flag that produced almost 36% reduction of the original OMI 395 

dataset under all skies was the second in order UVBQF flag, which refers to data retrieved under 396 

suspicious inputs into the radiative transfer model. For the limited dataset, the observed median 397 

differences under all skies conditions denoted that the OMI local noon data, exact and 1-hour 398 

averages, overestimate the NILU erythemal slightly more, by 4.9% and 5.8% respectively, when 399 

compared with the values at the exact and 1-hour averages at the satellite overpass time (3.0% and 400 

3.9% respectively). The same pattern was observed for the OMI/UVB-1 comparisons, though the 401 

overestimation of the OMI data was found to be 5.1% and 6.4% for the exact and 1-hour averages at 402 

the overpass time, compared to the respective 6.8% and 7.5% median differences of the noontime. 403 

In general, the 20/80 percentile ranges are larger for the noontime values when compared with the 404 

ones at the overpass for both NILU/UVB-1 and OMI comparisons (31.9% for the NILU and 38.5% 405 

for the UVB-1), while the 1-hour mean values end to smaller range due to the time averaging, 406 

27.2% and 34.3% respectively. Again, the 1-hour time averaging resulted in higher overestimation 407 

in OMI retrieved erythemal dose rates, while it favoured the number of the paired satellite and 408 

ground-based data. The percentile range was smaller for the time averaging case, meaning that the 409 

compared data, OMI and NILU/UVB-1, presented less scattering that those that resulted from the 410 

exact matching with imposing the UVBQF limitation. Since the UVBQF limitations did not 411 

improve the comparison statistics and reduced significantly the number of coincidences on the exact 412 

overpass, the application of such limitation should be carefully considered especially in cases where 413 

the original dataset is limited in number. 414 

 415 

Table 6. Statistical analysis of the differences between erythemal dose rates provided by OMI/Aura 416 

and NILU/UVB-1/B086 the 1-hour averaged values around the OMI overpass and local noontime 417 

(±30 minute). Differences with absolute value more than 150% were eliminated. 418 

UVBQF Limited 1h around Overpass 1h around Local Noon 

(OMI-NILU)/NILU  All Skies OMI Clear NILU Clear All Skies OMI Clear NILU Clear  

N counts 1131 312 315 1151 315 332 

Median (%) 3.9 5.5 2.3 5.8 7.1 4.5 

20/80 percentiles (%) -5.3/17 0.0/12.1 -4.2/8.8 -5.4/21.8 1.5/13.6 -2.6/10.9 

(OMI-UVB1)/UVB1        
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N counts 1132 312 315 1152 315 332 

Median (%) 6.4 6.1 1.9 7.5 6.6 3.1 

20/80 percentiles (%) -4.8/24.6 -1.3/14.3 -5.1/9.6 -4.7/29.6 -0.1/16.6 -5.5/11.3 

(OMI-B086)/B086       

N counts 857 248 241 708 206 223 

Median (%) 7.9 8.3 4.7 5.6 6.8 3.7 

20/80 percentiles (%) -4.8/26.1 0.3/16.8 -3.0/13.1 -6.5/27.0 1.1/13.6 -2.1/11.2 

 419 

For the cloud-free cases identified by OMI, the median value at the exact overpass was equal to 420 

4.7%, while at the local noon the corresponding value is 6.3%. These numbers were slightly 421 

improved to 4.5% and 6.1% for the UVB-1 comparisons. A similar behaviour was detected for the 422 

1-hour average comparisons for the OMI clear cases, where the overestimation of the satellite 423 

against NILU retrieved dose rates was 5.5% for the overpass and 7.1% for the local noon. The 424 

corresponding values for the UVB-1 data were 6.1% and 6.6%. When imposing the cloudiness 425 

characterization, the scatter of the coupled OMI/NILU data at the overpass, which is presented in 426 

the 20/80 percentile form, was restrained to -1.0%/11.3% for the OMI clear cases to -5.1%/8.4% for 427 

the NILU clear cases for the exact matching. However, the time averaging did not improve much 428 

the interquartile range in the OMI/NILU comparisons. 429 

Regarding the OMI/UVB-1 results, again the NILU defined clear cases resulted to lower median 430 

differences and scattering for both overpass and local noontime exact time matching. The averaging 431 

around the overpass time, similarly to the OMI/NILU comparisons, resulted to slightly higher 432 

median values of the relative percentage differences, whereas the interquartile range of the results 433 

was not improved drastically. 434 

Although the OMI/B086 comparisons resulted in a smaller sample size, especially during the exact 435 

time matching, the comparison results were in agreement with the comparison results using NILU 436 

and UVB-1 data. 437 

 438 

Based on these findings, we can conclude that imposing the UVBQF limitation to the original OMI 439 

dataset did not significantly improve the comparison results. The number of coincident ground- and 440 

satellite-based data was significantly reduced in all tested cases under the imposed limitation, while 441 

the 1-hour averaging with UVBQF imposed limitations favoured the number of coincidences 442 
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between OMI and NILU/UVB-1 data when compared with the exact time matching. Similarly to 443 

previous findings, the scattering of the comparisons was generally less when applying the 1-hour 444 

time averaging, but the overestimation of OMI was a bit higher for this case. 445 

 446 

Summarizing, no significant deviations between the correlation statistics were seen in all tested 447 

combinations: exact overpass, exact local noon, 1-hour averages around the exact overpass and 448 

local noon, and the implementation of the UVBQF limitation on all previous combinations. 449 

Although cloud-free cases resulted in better correlation statistics, the all sky cases also presented 450 

low median differences as well, while the scattering of the comparisons was higher under all 451 

cloudiness conditions, as expected. In general, an overestimation of the OMI erythemal product by 452 

3-6% on average is expected when examining the overpass comparisons. For the noontime 453 

estimations, OMI seems to overestimate by 4-8%. Since the overpass time and the local noontime 454 

do not match (the mean visiting time over Thessaloniki is 11:45 UT, while the local noon is at 455 

10:26±10 UT), the noontime values are in practice projections of the overpass time values through 456 

model simulations based on the overpass atmospheric constituent retrievals, which can introduce 457 

higher uncertainty levels in the OMI retrievals. 458 

 459 

To visualize the findings of the discussion above, normalized Taylor diagrams (Taylor, 2001) of the 460 

1-hour averages for each ground-based time series were produced for the overpass and noontime for 461 

all skies, NILU clear skies, and OMI clear skies without taking into account the UVBQF limitation 462 

that would lead to lower number of coincidences. OMI time series statistics were used as the 463 

reference dataset (black reference dot/line on Figure 2) for the shake of comparability between the 464 

different ground-based instruments. 465 

 466 
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Figure 2 Normalized Taylor diagrams between OMI and NILU, UVB-1 and B086 erythemal dose rates for the 1-hour time 467 
matching choice around overpass (left panel) and around noontime (right panel). OMI erythemal data were used as the 468 
reference dataset (black dot on the diagrams), while the statistics of NILU data are presented as circles, UVB-1 data as 469 
squares and B086 data as diamonds. The colours represent the cloudiness constriction imposed on each ground-based 470 
dataset. Both standard deviations and centered root mean square errors were normalized to the standard deviation of the 471 
reference dataset. 472 

For the overpass comparisons in Figure 2 (left panel), both NILU and UVB-1 data under all 473 

cloudiness conditions, showed high correlation coefficients (>0.95) when compared with the 474 

corresponding OMI dataset, while the standard deviations for most of the ground-based data were 475 

found to be slightly higher than that of the OMI dataset, apart for the NILU data under the NILU 476 

clear sky restriction. The centered root mean square error (CRMSE) is a means of measuring the 477 

difference between the two compared datasets neglecting any observed bias between the two of 478 

them. For the overpass comparisons, the normalized CRMSE ranged between 0.21 (for the 479 

OMI/NILU comparison under NILU defined cloud free cases) and 0.41 (for the OMI/B086 480 

comparison again under NILU defined cloud free cases). 481 

For the noon comparisons provided also in Figure 2 (right panel), again the observed correlation 482 

coefficients (R) ranged between 0.94 and 0.96 apart for the comparisons performed for the 483 

OMI/B086 datasets (R=0.93 for all skies and OMI clear skies, R=0.88 for NILU clear skies). In all 484 

cases the normalized standard deviation was higher than the corresponding in the overpass 485 

comparisons, denoting that for the noontime comparisons the ground-based data revealed higher 486 

variability that the one corresponding to OMI noon values. Similarly, the CRMSE values were 487 

higher than the ones for the overpass comparisons (0.21-0.41) further supporting the findings in 488 

Table 3. 489 

 490 

Based on these summary comments, we can conclude that each comparison scheme can be used to 491 

serve specific purposes based on the scope of each study with equally well representation of the 492 
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statistical results. Overpass coincidences were proved to present better statistical results, since OMI 493 

measurements are taken at that particular time, while 1-hour averages of ground-based data around 494 

overpass time provided larger number of paired satellite- and ground-based erythemal data. Cloud-495 

free cases, defined by the NILU PAR algorithm, provide a stricter limitation than OMI defined clear 496 

cases where the upper limit of LER<0.1 might result in clouds present within the OMI pixel. Users 497 

should also take into account the size of the final dataset, since as already discussed, specific 498 

limitations (cloudless skies, UVBQF limitation, limited BREWER datasets) can significantly 499 

reduce the amount of the paired satellite and ground data. 500 

 501 

Since the differences between satellite and ground data are influenced by a set of parameters, like 502 

SZA, cloud optical thickness, ozone and AOD, in the following sections a thorough analysis is 503 

performed hoping to locate the main source of the observed discrepancies. For this evaluation, both 504 

exact and 1-hour averages around the overpass time were utilized, while the UVBQF limitation was 505 

not applied to avoid ending with a low number of coincidences. 506 

 507 

4.1.The SZA dependence 508 

For aerosol and cloud-free scenes and non-snow/ice surfaces the accuracy of the OMI erythemal 509 

dose rates depends mainly on the accuracy of the ozone column (OMI Algorithm Theoretical Basis 510 

Document III). The total root mean square (RMS) error is 3 % for a SZA of 50o, while this RMS 511 

error increases for increasing SZA and for shorter UV-B wavelengths. Thus, OMI erythemal 512 

retrieved values are expected to present a SZA dependence, with increasing uncertainties in higher 513 

SZAs. 514 

In order to investigate the SZA dependence of the OMI dataset, the exact overpass time match was 515 

used to avoid discrepancies due to different SZA ranges within an hour between winter and summer 516 

periods. In Figure 3, the relative percentage differences between OMI and NILU (left panel), and 517 

OMI and UVB-1 (right panel) were plotted against the SZA at the time of the satellite overpass 518 

(upper panels). Median differences of 5o SZA bins were also investigated (lower panels), while the 519 

20/80 percentile range is also given in the form of error bars. 520 

 521 
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Figure 3 SZA dependence of the relative percentage differences between the NILU and OMI erythemal dose rates (left panel) 522 
and the UVB-1 and OMI (right panel) at the exact OMI overpass time under cloud-free instances. Cases where the OMI LER 523 
values are less than 0.1 are characterized as OMI Clear Skies and are depicted in blue, while data identified as cloud-free 524 
based on NILU PAR measurements, are indicated as NILU Clear Skies and are depicted in red. The linear regression 525 
equations are also displayed while the correlation coefficient ® between the original datasets OMI/NILU and OMI/UVB-1 is 526 
also provided (upper panels). Median relative percentage differences of 5o SZA bins are presented along with the 20/80 527 
percentile values depicted as error bars (lower panels). 528 

Based on Figure 3, left panel, there is no significant evidence of a SZA dependence between the 529 

OMI and NILU estimates. When moving to higher SZA values, above 55°, the 20/80 percentile 530 

range becomes wider even for the cloud-free data points, implying that at the higher observed solar 531 

elevations, the two datasets present higher scattering that possibly led to an ascending small trend in 532 

the slopes of the regression lines. On the right panel of the same figure, the exact same comparison 533 

plots are given for the OMI and UVB-1 retrievals. For this later comparison, as seen in the lower 534 

panel, there is a stronger SZA dependence for SZAs above 50o, with higher slopes, almost double 535 

the slopes seen in the OMI/NILU comparisons, and lower y intersect values. This aspect could be 536 

probably attributed to the UVB-1 dataset that was not corrected for its non-ideal angular response. 537 

Still, all datasets present high correlation coefficients (>0.97) in all cases, with the stronger 538 

correlation observed under the satellite clear skies restrictions. 539 

Generally, as seen in the lower panels of Figure 3, OMI erythemal values presented a relatively 540 

small SZA dependence that resulted in higher overestimation of the product for SZAs above 60o for 541 

the greater area of Thessaloniki, Greece; therefore, OMI data should be treated with caution for 542 

SZAs exceeding 60o. 543 

 544 

4.2.The Ozone dependence 545 

The validation study of the OMI total ozone columns (TOC) by Zempila et al. (2017a), proved that 546 
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on average OMI underestimates the TOC levels by ~2%. Since the OMI algorithm utilizes the TOC 547 

information to derive the erythemal dose rates, the differences seen in TOC are expected to 548 

influence the relative percentage differences of the retrieved values between the satellite- and 549 

ground-based instruments. To explore the influence of the TOC, OMI TOMS TOC estimations 550 

were compared against the NILU TOC values retrieved by a NN developed for this specific purpose 551 

(Zempila et al., 2017a). In Figure 4, the relative percentage differences seen in erythemal dose rates 552 

between OMI and NILU are plotted against the relative percentage differences in TOC between 553 

OMI and NILU under cloud-free cases for the 1-hour averages around the OMI overpass time.  554 

 555 

 556 
Figure 4 Erythemal relative percentage differences between OMI and NILU data against TOC relative percentage 557 
differences again between OMI and NILU. The linear least square fits are also presented. The comparisons are performed 558 
only for cloud-free cases for the 1-hour averages around the OMI overpass time using the OMI cloud restriction (LER<0.1) 559 
and the NILU PAR based cloud restriction (Cloud-free 1-minute data>70%). 560 

For the comparisons between OMI and NILU presented in Figure 4, most of the differences seen in 561 

the TOC values lying within ±3% (x-axis range). As expected, when OMI TOMS TOC values are 562 

less than the corresponding retrieved by NILU measurements, OMI is higher than the NILU derived 563 

ones. This fact results to descending slopes for both OMI and NILU defined cloud-free skies that 564 

were proved statistically significant via F-test (stronger significance was seen in the satellite clear 565 

skies cases where the p value was of the order of 10-5) performed on the datasets. In general, a mean 566 

underestimation of 2% in TOC by OMI under cloud-free conditions, as stated by Zempila et al. 567 

(2017a), can lead to an average overestimation in the OMI data of 1% to 5%, for the NILU clear 568 

skies and OMI clear skies respectively. Consequently, users are suggested to bear in mind that a 569 
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part up to 5% of the overestimation in OMI data could be introduced from deviations seen in OMI 570 

TOC retrieved values under clear skies. 571 

 572 

4.3.The Aerosol dependence 573 

Due to the imperfect knowledge of the optical properties of the aerosols, non-absorbing and 574 

absorbing ones, and pollutants in the boundary layer, the retrieval of the OMI UV products is 575 

limited and the comparisons with ground-based data are expected to be influenced by deviations of 576 

AOD from the values that OMI uses to derive its UV products (Arola et al., 2009). 577 

To investigate the effect of aerosols in the observed relative differences between satellite- and 578 

ground-based erythemal data, aerosol optical depths at 340 nm from the CIMEL sunphotometer that 579 

operates in Thessaloniki, were also used (Balis et al., 2010). According to Kazadzis et al. (2007), 580 

aerosol optical depths in UV experience a seasonal variation in Thessaloniki, with higher AOD 581 

values at 340 nm retrieved in August and lower values in December. Furthermore, in Thessaloniki, 582 

the aerosols are a contribution of marine, mineral dust and anthropogenic sources that make the 583 

aerosol scene more complex. In the same study, back trajectories proved that additionally to local 584 

aerosol sources, transport of aerosols takes place, especially during the summertime. It was proven 585 

that air masses coming from the North and North Eastern directions result in high aerosol loads over 586 

Thessaloniki, while minimum AOD is associated with air masses originating from the Atlantic 587 

Ocean. These findings clearly denote that in Thessaloniki the aerosol optical depths are a result of a 588 

rather complex mixture that makes the AOD retrieval by space-born instruments a non-trivial task 589 

(Koukouli et al., 2006). 590 

CIMEL provides measurements of aerosol optical depths since 2011, thus only 4 years of 591 

measurements were available for this evaluation. Again, the datasets were distinguished into two 592 

categories, one comprising for the cases were the OMI detected LER values below 0.1, while the 593 

second set only included measurements during which the NILU cloud detection algorithm resulted 594 

into more than 70% cloud-free moments within the hour around the overpass. In order to increase 595 

the data points, 1-hour averages around the overpass time were taken into account, while the NILU 596 

and B086 data were used to minimize any influence of the SZA dependence seen in the OMI/ UVB-597 

1 comparisons (Figure 3). Although the statistical sample is small, OMI erythemal dose rates 598 

showed a slight dependence on the aerosol load at the site, especially in high AOD values, in both 599 

discriminations of cloudless cases and comparisons; OMI/NILU is shown in Figure 5 (left panels) 600 

and OMI/B086 in Figure 5 (right panels). This behaviour can probably be attributed to the way that 601 
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the correction on OMI UV irradiances is performed based on monthly AOD and SSA climatology 602 

at 315 nm (Arola et al., 2009), that probably cannot interpreter high aerosol loads at the station. 603 

Cases with more than 0.7 AOD cover for the OMI cloud-free skies occupied 3.2% of the total 604 

dataset, while under the NILU cloud-free limitation this percentage augmented to 6%. 605 

 606 

  
Figure 5 Erythemal relative percentage differences between OMI and NILU (left panel), and OMI and B086 (right panel) 607 
data against AOD estimations from a CIMEL sunphotometer at 340 nm. The least square linear fits are also presented, while 608 
the correlation coefficients between the OMI/NILU and OMI/B086 datasets are also depicted (upper panels). The median 609 
relative percentage differences of the relative erythemal dose rate differences within 0.1 bin of AOD are provided in the lower 610 
panels, while the 20/80 percentiles are depicted as error bars. The comparisons are performed only for cloud-free cases for 611 
the 1-hour averages around the OMI overpass time using the OMI cloud restriction (LER<0.1) and the NILU PAR based 612 
cloud restriction (Cloud-free1-minute data>70%). 613 

Based on the findings in Figure 5 (left panel), under the NILU defined cloud-free cases, the average 614 

overestimation of the OMI erythemal dose rates is ~6.3% per AOD at 340 nm unit. Since the 615 

average AOD at 340 nm during the examined period is 0.43±0.25, the expected average percentage 616 

overestimation of OMI values is 2.8%±1.6%. This number was tripled when examining the OMI 617 

cloud-free cases. Similar behaviour was observed for the OMI/B086 comparisons, but smaller 618 

slopes were obtained, verifying that OMI tends to overestimate the erythemal dose rates for cases 619 

where high aerosol loads were measured at Thessaloniki. It should be also highlighted that the 620 

OMI/NILU comparisons presented high correlation coefficients (>0.98) in all cases, while the 621 

OMI/B086 comparisons showed lower correlation coefficients mainly due to the way that the time 622 

match was performed due to the smaller number of B086 spectra measurements. 623 

Nevertheless, the obtained comparisons showed better agreement between OMI and ground-based 624 

measurements than the one revealed by Kazadzis et al. (2009) since the OMI algorithm currently 625 

corrects the UV products for absorbing aerosols based on the study by Arola et al. (2009). Users 626 
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could combine the information provided by OMI regarding the retrieved AOD values in order to 627 

assess the accuracy of OMI erythemal product and/or apply an upper cut-off limit to achieve better 628 

agreement between ground- and satellite-based erythemal values. 629 

 630 

 631 

4.4.The Cloud dependence 632 

Since the OMI algorithm interprets clouds as a uniform cover over the pixel, an analysis on the 633 

effect of clouds should take place in order to evaluate the performance of the satellite algorithm 634 

under various cloudiness conditions. As mentioned before, OMI provides an estimation of the COT 635 

seen within the pixel at the exact overpass time. In addition, the study by Vasaras et al. (2001) uses 636 

8-minute averages of 1-minute measurements of GHI from a CM21 pyranometer that is operating at 637 

LAP/AUTh since 1993, to determine whether the measurement was taken under stable or unstable 638 

cloudy conditions or under unoccluded sun disk. In order to investigate the influence of the clouds 639 

on the relative differences, overpass exact time matching data (coincidence within one minute) 640 

under all skies conditions were used. The sun disk coverage information provided by the CM21 641 

cloud description algorithm introduced by Vasaras et al. (2001), was also included into the 642 

comparisons. Based on the algorithm, cases where the sun disk was completely covered by clouds 643 

were identified as “stable-cloudy” conditions, while “unstable-cloudy” conditions stated the state 644 

where the sun was partially covered by clouds. The cases where clouds were present in the horizon 645 

and were identified by the NILU PAR cloud-screening algorithm, but the CM21 algorithm resulted 646 

to unobstructed sun disk were identified as “unoccluded sun disk” instances. Results of the 647 

comparisons under these three cloud identified circumstances, are shown in Figure 6. 648 

 649 

  
Figure 6 Relative percentage differences of the OMI and NILU (left panel), and OMI and UVB-1 (right panel) derived 650 
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erythemal dose rates are presented at the exact overpass time against the COT values reported by OMI in a logarithmic x-651 
axis (upper panels). Three cases were distinguished based on the CM21 cloud-flagging algorithm: (i) Stable-Cloudy 652 
conditions during which the sun disk is completely obscured, (ii) Unstable-Cloudy conditions during which the sun disk is 653 
partially covered by clouds, and (iii) Unoccluded sun disk during which NILU PAR algorithm detects clouds while the CM21 654 
algorithm reports unobscured sun disk. Median differences along with the 20/80 percentile range are also depicted. 655 

As seen in both panels of Figure 6, the discrepancies between the two sets, ground- and satellite-656 

based, become higher with higher cloud optical thicknesses seen by the satellite sensor that could be 657 

attributed to the fact that at higher COT values, irradiances are too low resulting to higher relative 658 

percentage differences. Since OMI receives backscattered irradiances from an area between 13x24 659 

km2 in the nadir to 24x102 km2 on the edges of the OMI swath, the optical geometry is significantly 660 

different from the single point measurements that NILU and UVB-1 perform. The presence of 661 

scatter clouds over the horizon can lead to complicate radiation scenes that are impossible to 662 

capture by nadir-viewing satellite measurements. For larger COT values, the scene seen in both 663 

OMI/NILU and OMI/UVB-1 comparisons was rather complicated, with cases where OMI 664 

underestimated (negative relative percentage differences) and cases where OMI overestimated 665 

(positive relative percentage differences). For both panels in Figure 6, there was an unequal spread 666 

of the percentage differences, where cases during which OMI overestimated resulted in higher 667 

comparison numbers (>50%), while the cases during which OMI underestimated the erythemal dose 668 

rates resulted in relative differences greater than -50%. This fact, along with the fact that the 669 

number of points with positive relative percentage differences, 1191 for the OMI/NILU comparison 670 

and 1234 for the OMI/UVB-1 respectively, was larger than the one with negative differences, 822 671 

for the OMI/NILU and 755 for the OMI/UVB-1 comparisons respectively, led to an average 672 

overestimation in OMI retrievals. 673 

To further investigate this aspect, histograms of the relative percentage differences were examined 674 

for the 3 cloudiness conditions where the LER values reported by OMI were more than 0.1 675 

(LER>0.1), in order to verify that the OMI was also seeing clouds into the pixel. 676 

 677 
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Figure 7 Histograms of relative percentage differences between OMI and NILU (left panel), and OMI and UVB-1 CIE (right 678 
panel) dose rates for three cloudiness conditions (as described in Figure 6). The results are presented for cases where the 679 
OMI LER values were more than 0.1 (LER>0.1). 680 

The histograms in Figure 7 revealed distinct patterns among the three cloudiness condition groups 681 

that are consistent in both NILU/OMI and UVB-1/OMI comparisons. Under a partially covered sun 682 

disk (unstable cloudy conditions), both distributions in the left and right panel of the figure, are 683 

wide, with low count numbers, while OMI seems to underestimate the NILU erythemal dose rates 684 

since the majority of the points were piled into the negative relative percentage difference area (left 685 

panel). This behaviour could be partially attributed to the fact that OMI treats clouds as 686 

homogenous while it assumes that they cover the whole pixel of interest. Thus, when direct 687 

radiation is present, OMI tends to underestimate the erythemal values. Furthermore, a weak 688 

secondary peak seemed to be present in the OMI/UVB-1 comparisons under unstable cloudy 689 

conditions (right panel of Figure 7) leading to higher number of positive percentages, probably due 690 

to SZA dependencies as discussed to a previous section (Section 4.1) and/or low area of unobscured 691 

sun disk. 692 

When limiting the datasets to instances where the sun was completely covered by clouds (stable 693 

cloudy conditions as they are referred to in Figure 7), the distribution is quite wide and skewed 694 

towards positive relative differences, which declares that OMI overestimates the corresponding 695 

ground-based values for most of these cases. Furthermore, again in OMI/UVB-1 and possibly in 696 

OMI/NILU comparisons, there is a secondary weaker peak implying that under certain conditions 697 

when the sun disk is completely covered, OMI tends to overestimate the erythemal dose rates by 698 

45% or more. In this occasion, the exact position of the station does not interfere with the results, 699 

since the diffuse radiation dominates during these cloudiness conditions, something that is not the 700 

case for the other two classified groups (unstable cloudy and unoccluded sun disk). An 701 
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underestimation of the cloud optical thickness by OMI could lead to higher erythemal retrieved 702 

rates than the corresponding ground-based values. 703 

For the cases under which the sun was uncovered, the distribution of the percentages is narrower 704 

when compared to the other two cloudiness cases, and the peaks were approaching zero percentage 705 

values for both the OMI/NILU and OMI/ UVB-1 comparisons. For these occasions, one would 706 

expect the OMI to retrieve in general lower erythemal values than the real ones, since the retrieval 707 

algorithm assumes that clouds cover the whole pixel, while an unoccluded sun disk would result in 708 

higher direct irradiances and thus higher erythemal values.  709 

Although the major difference between these comparisons results from the fact that OMI 710 

measurements represent the mean surface erythemal dose rates over a wide region rather than at a 711 

point as is the case with ground-based data. In such comparisons, OMI tends to overestimate the 712 

erythemal dose rates under cloudy conditions. However, very large differences revealed for very 713 

high COTs (>10) in figure 6, are linked with GHI attenuation on the order of ~300% compared with 714 

cloudless skies. Therefore, these differences were affecting the statistical evaluation but in practise, 715 

they were differences seen during very low irradiance levels. OMI data users are encouraged to 716 

examine thoroughly the cloudiness information provided by OMI (LER, COT) in order to 717 

concatenate accordingly the dataset based on their study purposes. 718 

 719 

4.5.The UV index comparisons 720 

Although UV index (UVI) and erythemal data are expressions of the same biological parameter - 721 

the erythema of the human skin when exposed to UV solar radiation - in most health related studies, 722 

the UV index is the common parameter describing the effects of exposure to solar UV radiation 723 

(WHO, WMO, UNEP, ICNIRP, 2002; Lucas et al., 2006; Eide & Weinstock, 2005; Gonçalves et 724 

al., 2011; among others).The instant UVI is in fact the erythemal dose rate (in W/m2) multiplied by 725 

40 (Vanicek et al., 1999; WHO, WMO, UNEP, ICNIRP, 2002). This measure was first formulated 726 

in Canada to result to a maximum value of 10 at that region, while it was adopted by the World 727 

Meteorological Organization 2 years later, in 1994 (WHO, WMO, UNEP, ICNIRP; 2002, Fioletov 728 

et al., 2010) as a means of an easier interpretation of the UV exposure risks and rise of public 729 

awareness. 730 

Nowadays, NASA’s Earth data webpage (https://earthdata.nasa.gov/earth-observation-data/near-731 

real-time/download-nrt-data/omi-nrt) provides OMI UVI data in near real-time (average latency: 732 

100-165 minutes which is expected to be reduced in near future), thus supporting the efforts for 733 
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timely distribution of data related to earth observation, environment protection and public 734 

awareness. 735 

Since for health studies the higher values of UVI are of most importance during which the impact of 736 

solar UV exposure is more immense, the study focused on the cases were the OMI UVI was lower 737 

than the NILU detected one. Among the ground-based available measurements, the NILU data were 738 

chosen to depict this aspect due to better statistic results (Section 4). Here only the discrimination 739 

between satellite cloud-free cases (LER<0.1) was imposed onto the datasets since this information 740 

is available to all data users, while the 1-hour mean values around the overpass time were 741 

investigated to maximize the number of coincidences.  742 

To depict this aspect relative percentages (Number of cases where UVIOMI<UVINILU over the total 743 

number of coincidences within the OMI UVI bin) for each OMI UVI bin of 1 unit width were 744 

plotted in Figure 8. The differences between the UVIs, OMI and NILU, were classified in 745 

differences of 0.1 as presented in the colour bar of Figure 8. For the “Low (UVI<3)” UVI levels, 746 

OMI underestimated up to 10% the UVI values, but for these cases the impact on humans and 747 

ecosystems is low due to the low intensity of the UV radiation. For the moderate UVI range 748 

(3≤UVI<6), OMI had a maximum underestimation of 0.9 when compared to the NILU UVI for the 749 

bins of 4-5 and 5-6. This would not affect the set alerts on the UVI levels, since even with this 750 

underestimation the OMI derived UVI would result in the moderate UVI classification. For the high 751 

UVI levels(6≤UVI<8), the differences observed in the 6-7 OMI UVI bin could lead to a false 752 

indication of moderate UVIs, since differences between 0.9 and 1.1 were observed. However, these 753 

cases only occupy 2% of the points in this particular bin. For the adjacent bin of 6-7 OMI UVIs, 754 

although differences can reach up to -0.6 with OMI underestimating, the outcome UVIs would be 755 

still characterized as high, thus the proposed protection measures for this level of UVIs would not 756 

be altered. The same applied to the characterized as high UVIs (8-10), where the maximum 757 

underestimation was -0.6 in the 8-9 bin. Although this underestimation in OMI UVIs is relatively 758 

high, it would not affect the alert on the UVI levels since it would result to a high UVI 759 

classification. 760 

Thus, we can conclude that OMI UVI values are reliable when concerning the characterization of 761 

the ambient UV radiation impact as low, moderate, high and very high in the greater area of 762 

Thessaloniki for the period 2005-2014 under cloud free skies where the impact of exposure to solar 763 

UV radiation is more intense. 764 

 765 
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 766 
Figure 8 Percentages of the number of cases where OMI UVIs were found to be lower than the corresponding NILU UVI for 767 
each bin of 1 OMI UVI under the OMI defined clear skies. Within each OMI UVI bin the difference between the two UVIs, 768 
OMI and NILU, are depicted is different color bars. 769 

 770 

5. CONCLUSIONS  771 

In this study ground-based measurements, model estimates, and satellite retrievals of CIE effective 772 

dose rates have been formed, compiled and associated to thoroughly analyse their accuracy at the 773 

mid-latitude UV and Ozone monitoring station in the Laboratory of Atmospheric Physics of the 774 

Aristotle University of Thessaloniki, Greece. 775 

A NN was trained on NILU-UV multi-filter radiometer irradiance data at 5 different UV 776 

wavelengths together with collocated spectra from a Brewer MKIII spectrophotometer to produce 777 

1-minute time series of erythemal dose rates. Furthermore, the NN erythemal dose rates were 778 

compared with UVB-1 measurements at the same temporal resolution (1 minute) to provide the 779 

level of agreement between the two ground-based datasets. The comparisons between the mean 780 

hourly values between the UVB-1 and NILU CIE dose rates revealed a good agreement of 0.86% 781 

under all skies with 20/80 percentiles within the uncertainty of the original measurements 782 

themselves. 783 

In the context of space born CIE dose rates, estimates from the OMI/Aura instrument were used. 784 

The NASA Aura Data Validation Center provides overpass files including the OMI global attributes 785 

and geolocation along with all instrument data fields. Under the data fields subsection, the 786 
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erythemal dose rates are provided at the exact overpass time and at the solar local-noon along with 787 

the UV algorithm quality flags (UVBQF) and the UVI values. For all the comparisons performed in 788 

this study, satellite collocations within a radius of 50 km from Thessaloniki were taken into 789 

account, while differences of absolute value of 150% and more between satellite and ground 790 

erythemal data were omitted. 791 

The comparisons of the ground products with the satellite retrievals revealed the following major 792 

points:  793 

• For the nominal comparisons at the exact overpass time, OMI erythemal dose rates 794 

overestimated the NILU-UV retrieved values by 2.5%, while this difference was increased to 795 

3.9% when compared to the UVB-1 data. Under cloud-free cases detected by the PAR cloud 796 

binary detection algorithm, the percentage of the OMI overestimation fell to ~2% for both 797 

NILU-UV and UVB-1 comparisons. 798 

• For the local noon exact comparisons, OMI presented higher erythemal dose rates of about 799 

4.1% when compared to NILU, slightly higher at 5.3% for the OMI/UVB-1 comparisons. 800 

When limiting the data set to cloud-free cases, the agreement between the satellite and ground-801 

based estimates was improved, with relative percentage differences between 2-3% for the 802 

NILU-defined cloud-free cases. 803 

In order to compensate for the OMI footprint and for any changes in cloud position and optical 804 

properties, 1-hour averages around the overpass time were also considered. 805 

• The time averaging favors the number of coincidences by a 15% increase. Under all sky cases, 806 

OMI overestimated on average the erythemal dose rates at the overpass time by 3.6% when 807 

compared to NILU and by 6.6% when compared to UVB-1 data. Higher relative percentage 808 

differences were seen when OMI data were related to B086 estimates (~7%). These numbers 809 

were decreased when the under investigation datasets were limited to cloud-free skies: 2.8%, 810 

2.7% and 4.6% for the OMI/ NILU-UV, UVB-1 and B086 comparisons respectively. 811 

• The time averaging of 1-hour around the solar local-noon time under all sky conditions, had not 812 

major impact on the comparisons between OMI and NILU-UV and B086. When limiting the 813 

original datasets based on the PAR cloud-screening algorithm, the relative percentage median 814 

values were found to lie within the range of 3-4.5%. 815 

For the comparisons performed, the limitation of the OMI data based on the UVBQF was also 816 

investigated: 817 
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• The imposed limitation decreased the available dataset by almost 36%, while it did not 818 

significantly improved the comparison statistics of any of the above-mentioned schemes: exact 819 

and 1-hour averages around overpass and solar local noontime, and cloudiness conditions. 820 

 821 

In general, all comparison schemes (different ground-based instruments, averaging practices, 822 

comparison limitations) presented similar, moderate relative percentage differences, with OMI CIE 823 

data being higher than the corresponding ground-based. In more details: 824 

• Overpass comparisons resulted in better comparative statistics than the noon comparisons, 825 

since OMI estimates its noontime UV products based on the measurement performed at the 826 

overpass without taking into account changes in ozone, aerosols and clouds. 827 

• Cloud-free cases defined by the NILU PAR algorithm provided a more strict limitation than the 828 

OMI defined clear cases where the upper limit of LER<0.1 might result in clouds present 829 

within the OMI pixel. 830 

 831 

Seasonal effects in the satellite estimates were also investigated through SZA, ozone, aerosols and 832 

cloud dependences of the relative percentage differences between OMI and ground-based 833 

measurements. 834 

• OMI CIE retrieved values are expected to present a SZA dependence for SZAs above 50o due 835 

to higher uncertainty in the ozone retrievals. The comparisons between OMI and NILU-836 

UV/UVB-1 data, showed a tendency of OMI to overestimate CIE dose rates for SZA above 837 

60o, which was obvious for both all and cloud-free skies. 838 

• A mean underestimation in OMI TOC values by 2% under cloud-free conditions led to an 839 

overestimation of 1% to 6% in the OMI CIE data under clear skies cases. 840 

• Compared to the Kazadzis et al. (2009) study, the results presented here were improved due to 841 

the aerosol correction applied to all UV products based on Arola et al. (2009). On average OMI 842 

overestimated by ~6.5% per aerosol optical depth (AOD) at 340 nm unit when compared to 843 

NILU data. The average AOD at 340 nm during the examined period was 0.43±0.25, therefor 844 

the expected average percentage overestimation of OMI CIE values due to imperfect aerosol 845 

treatment in the algorithm is 2.8±1.6%. 846 

 847 

Since OMI algorithm treats clouds as a uniform layer over the entire pixel, different types of 848 

cloudiness were investigated based on the stable cloudy (fully covered sun disk), unstable cloudy 849 
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(partially covered sun disk) and unoccluded sun disk indications acquired by the CM21 based 850 

algorithm. 851 

• In general under high COT values the discrepancies observed between the satellite- and 852 

ground-based were higher due to low values of absolute irradiances. 853 

• For the cases where stable cloudy conditions were identified (fully covered sun disk), OMI had 854 

the tendency to overestimate the ground-based CIE data. 855 

• For the unstable cloudy conditions (partially covered sun disk), the exact opposite pattern was 856 

observed, with OMI data underestimating in general the ground-based erythemal dose rates. 857 

• When the CM21 algorithm detected unoccluded sun disk under cloudy conditions, OMI CIE 858 

retrievals presented a narrow distribution around zero relative percentage differences, without 859 

any obvious preference towards positive or negative values for both NILU and UVB-1 860 

comparisons. 861 

 862 

As the UVI is a mean of alerting the public on harmful effects when exposed to solar UV radiation, 863 

OMI overpass UVI data were also validated through NILU estimates: 864 

• OMI UVIs provided higher estimates than the ground-based UVIs in most of the classifications 865 

of UVI based alert zones (low, moderate, high, and very high). 866 

• For the cases where OMI UVIs were found to be lower than the NILU retrieved ones, no 867 

significant impact on the above mentioned classifications was observed. 868 

Therefore, the UVI classification under cloud-free conditions based on OMI estimates can be used 869 

to alert public awareness in the greater area of Thessaloniki. 870 

 871 

In conclusion, this comprehensive work elaborated on the accuracy of ground- and satellite-based 872 

estimates of erythemal UV dose rates and UVI values, revealing the merits but also the constraints 873 

of the methods applied to both type of datasets. Since space-borne data provide global coverage, 874 

their UV products can be used to increase awareness of the harmful effects of overexposure to UV 875 

radiation and alert public when necessary. Therefore, we believe that such studies are of high 876 

importance in order to provide insight regarding future missions and facilitate potential 877 

improvements of the future generation of UV measuring space born sensors. 878 

 879 
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Highlights 
 

• Validation of OMI CIE dose rates against several types of ground-based 

measurements 

• Different ground instruments, averaging practices, limitations, cloud conditions 

• The OMI CIE dose rate SZA, Ozone, AOD, and cloudiness dependences were 

examined 

• The OMI UVIs were classified and validated for health related public alerts 


