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Abstract. The new W3C standard R2RML3 defines a language for ex-
pressing mappings from relational databases to RDF, allowing applica-
tions built on top of the W3C Semantic Technology stack to seamlessly
integrate relational data. A major obstacle in using R2RML, though, is
the creation and maintenance of mappings. In this demo, we present a
novel R2RML mapping editor which provides a user interface to create
and edit mappings interactively even for non-experts.

1 Introduction

The RDB to RDF mapping language (R2RML) has recently become a W3C
standard for creating mappings from relational databases to RDF. This enables
many semantic web applications to integrate easily with relational databases.
Although very useful, we observe certain problems with the adoption of the new
standard: (1) creating R2RML rules manually is a time consuming process, (2)
even simple rules could be syntactically heavy in terms of usage of the R2RML
vocabulary, and (3) a steep learning curve is involved in gaining expertise of this
new language. With these issues in mind, we have developed an R2RML mapping
editor that provides an intuitive interface to the users to create, edit and manage
R2RML mappings. The editor is fully integrated into the Information Workbench
[1], an Open Source platform for Linked Data application development.

2 R2RML by Example

A mapping rule in this language is referred to as a TriplesMap. Example 1
illustrates an R2RML mapping rule in Turtle4 syntax. The R2RML mapping in
this example has three components: The predicate rr:logicalTable points to
a structure selecting a table, view, or SQL query from the relational database
that is mapped into RDF; in this example, a custom SQL query is used to
retrieve the columns id, gid and length from the table recording. The predicate
rr:subjectMap points to a structure defining how rows from the logical table
query results are transformed into possibly typed, subjects; in the example, we
create subjects by instantiating the specified rr:template with the values from

? Work performed while at fluid Operations.
3 See: http://www.w3.org/TR/r2rml/
4 See http://www.w3.org/TR/turtle/.
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the {gid} column, and specify mo:recording as the type of these subjects.
The predicate rr:predicateObjectMap points to a structure defining property-
value pairs for the subjects defined by the rr:subjectMap; in the example, for
every subject we create a property mo:duration, pointing to a literal created by
column length of the source database.

Example 1.

rr:logicalTable
[rr:sqlQuery

"""SELECT id, gid, length FROM musicbrainz.recording
WHERE musicbrainz.recording.length IS NOT NULL"""]

rr:subjectMap
[rr:class mo:recording ;
rr:template "http://musicbrainz.org/artist/{gid}\#\_"]

rr:predicateObjectMap
[rr:objectMap

[ rr:column "length" ;
rr:datatype <http://www.w3.org/2001/XMLSchema\#float> ] ;

rr:predicate mo:duration].

As can be seen from the example, the syntax to denote the mapping is rather
convoluted and requires deep technical knowledge of R2RML, its language con-
structs, syntactic details (such as quotation), and the R2RML vocabulary itself.

3 The Mapping Editor

The editor that we have developed in order to overcome these technicalities fea-
tures an intuitive user interface which hides the R2RML vocabulary details from
the user, provides access to relational metadata of the relational database for
which the mappings are to be created, provides instant feedback where, at each
step, the user has the option to preview the triples that would result from the
mapping that is being created, and supports most of R2RML vocabulary except
rr:graph, which we plan to include as we continuously evolve the editor. In the
following we briefly describe the various steps of the editor’s wizard workflow.
Step 1 Datasource, Base URI Selection. The first step in the wizard lets the

user choose the datasource for which mappings shall be defined, i.e. by
design the editor supports the maintenance of mappings over multiple
relational data sources. As part of the datasource selection, the user may
also choose a base URI for URI construction templates specified in the
upcoming steps.

Step 2 R2RML Rule Selection. After datasource selection, the editor loads
and displays previously saved mappings for the datasource. At this point
the user may choose to edit an existing rule or add a new one. The editor
also provides a filter using which the mappings could be looked up based
on involved table names, concept names and property names.

Step 3 Logical Table Selection. In this step, the editor provides various op-
tions to choose a logical table. The logical table could be a database
table, view or a custom SQL query written by the user. If the option to
add a database table is selected, all the tables from the database schema



are displayed. Options to preview the table’s data and metadata are also
available. On the other hand, if the option of SQL query is chosen then
an SQL editor is shown where the user can type SQL queries and preview
the results.

Step 4 Subject Map Creation. Once a logical table has been selected, the
editor guides the user to a subject template creation step. By the click
of a button, the user can carry over columns that should be used to
generate the template. Additionally, classes (i.e., types) can be added to
the subject by using the auto-complete field rdf:type, which displays all
the classes that are present in the system. The editor is flexible enough
such that multiple classes can be added. At this stage a preview of the
generated triples can be accessed as well. This provides feedback to the
user such that they can adjust the values in order to obtain the intended
results.

Step 5 Predicate-Object Maps Creation. After the subject map creation,
predicate-object maps can be added to the mapping. Again, the editor
provides flexibility for adding as many predicate-object pairs as needed.
Additionally, for object maps all types of terms defined in R2RML are
supported, namely constant terms, column values, templates, and ob-
ject references. The object reference option lets the user choose from the
previously defined mappings. Furthermore, on choosing the appropriate
rule the child and parent columns are prepopulated from the correspond-
ing logical tables. Again, multiple join conditions can be added through
the interface. The preview triples option is also available at this stage,
again providing the user with valuable feedback. Fig. 1 depicts the screen
corresponding to this step.

Step 6 Textual Representation. Finally, an intuitive textual representation
of the mapping rule is displayed. At this point the user could go back to
any previous step to modify the mapping or otherwise save the mapping.

The demo video: https://www.youtube.com/watch?v=PfP2wmWw9-o is avail-
able online, the video includes a very brief introduction to R2RML and moti-
vation for an editor to create R2RML mappings. The remainder of the demon-
stration shows a use case of mapping MusicBrainz5 database tables to the Music
ontology.6 In particular, we demonstrate two example mappings, where each step
of the mapping creation process is explained and special features of the editor
are highlighted.

Although tools like Karma [2], Ontop [3], Topbraid Composer7, and Neon
Toolkit8 can be used for mapping relational and other datasources to RDF,
the editor presented here provides the following advantages (1) It is the first
editor to fully support R2RML mappings, (2) The preview feature is unique
as the users get instant feedback and can modify the mappings iteratively, (3)

5 MusicBrainz: https://wiki.musicbrainz.org/Next Generation Schema
6 Music ontology: http://musicontology.com
7 See http://www.topquadrant.com/products/TB_Composer.html
8 See http://neon-toolkit.org/wiki/Main_Page
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Fig. 1. Screen for adding predicate-object maps

It provides easy management of R2RML mappings, (4) It provides a search
utility, where users can find mappings based on table names, concept names and
property names. Apart from these advantages, we are going to further improve
the editor by adding features like automatic mapping suggestions and on click
default mapping [4] generation.
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