
Interacting with the User in Calendar Management

Liliana Ardissono, Giovanna Petrone, Marino Segnan, and Gianluca Torta

Dipartimento di Informatica, Università di Torino, Italy
{liliana.ardissono, giovanna.petrone, marino.segnan,

gianluca.torta}@unito.it

Abstract. The management of personal and shared schedules is limited by the
lack of flexibility of time management services. Online calendar managers fail
to support reasoning about time and multi-user activities. Task schedulers fully
control the temporal allocation of events without involving their users in deci-
sion making. As an attempt to address such issues, this paper presents a mixed-
initiative scheduling model supporting interactive calendar management. Our model
is applied in MARA (Mixed-initiAtive calendaR mAnager), which enables users
to solve scheduling problems by incrementally exploring the solution space.

Keywords: mixed-initiative scheduling, temporal reasoning.

1 Introduction

Current on-line calendar managers allow calendar sharing. However, they provide lim-
ited support in the organization of non trivial schedules because they lack the capability
to reason about temporal constraints. Indeed, calendar management becomes challeng-
ing when schedules are overconstrained or include items having multiple participants
because a possibly large number of constraints has to be analyzed to find any feasible
solutions. Therefore, an automatic support is desirable for this type of work.

In the past, fully or semiautomated scheduling systems were proposed to handle
calendars. However, such systems “fail to account for the personal nature of schedul-
ing, or they demand too much control of an important aspect of an individual’s working
world” [1]. Calendar managers should interact with the user enabling her/him to sched-
ule activities in a personal way in order to play the role of user-friendly support tools.

We propose to address this issue by exploiting Intelligent User Interfaces to mediate
the dialog between user and scheduler, enabling the user steer the calendar management.
Thanks to the adoption of a mixed-initiative interaction model, the user can incremen-
tally explore the available scheduling options while being aware, at each stage, of their
pros and cons. Thus, (s)he can follow the preferred path, guiding the scheduling process
and benefiting from the help of the system in possibly complex time reasoning tasks.

The work described in this paper proposes a new, mixed-initiative scheduling model
that enables the user to temporally allocate multi-user events and tasks in cooperation
with the system. The paper also proposes a novel, conservative scheduling policy to
suggest calendar revisions by modifying small portions of the schedules, leaving the
rest as originally planned or with minor temporal shifts. The idea is that of keeping the
changes to the user’s plans as local as possible in order to maintain stable daily plans.

Fig. 1. User interface of our mixed-initiative scheduler (working days view).

Our scheduling model is applied in the MARA Mixed-initiAtive calendaR mAn-
ager, which supports the management of online shared calendars including multi-user
activities. MARA exploits Temporal Constraint Satisfaction Problem techniques for
reasoning about time. A preliminary test with users provided encouraging results on
the efficacy of MARA’s features. Section 2 overviews MARA and describes a use case.
Section 3 presents the temporal reasoning underlying the system. Sections 4 and 5 de-
scribe the evaluation results and the related work. Section 6 concludes the paper.

2 Overview of MARA

MARA supports cross-calendar scheduling by reasoning on the temporal constraints
associated to calendar items. Figure 1 shows a user’s calendar in a week of October
2012. The table in the upper right portion of the page shows the list of shared calendars
and enables the user to select those to be jointly visualized. In order to let the user
identify the participants of the events, each item has associated a number of vertical
bars whose colors correspond to those of the respective calendars; e.g., the participants
of event CDD, scheduled on Friday afternoon, are Gianluca and Prof. Rossi.

The lower portion of the page supports the creation/deletion/revision of calendar
items (see the form at the left side and the Add/Change/Remove Task buttons below it).

Moreover it enables the user to revise the calendar by selecting the scheduling policy to
be applied (“Schedule early tasks first”, “Schedule urgent tasks first”); see [2].

2.1 Example

Gianluca, a University staff member, collaborates with some colleagues (Liliana, Gio-
vanna, Marino) and with the Head of Department, Prof. Rossi. Gianluca’s calendar
includes teaching hours (e.g., Progr I, SW), Department meetings (CDD, CCS), student
support (Tutoring, Thesist Ugo / Ida), project meetings (e.g., Skype call PRIN, Meet
Dr. Neri) and personal commitments (e.g., Baseball, Plumber, Attorney). Some activ-
ities have strict schedules; e.g., teaching hours and Department meetings. Others are
flexible; e.g., Gianluca could meet students on Wednesday, Thursday and Friday.

Suppose that Gianluca has to schedule a 2-hours Staff meeting with Prof. Rossi
on Thursday. The event can start at 8.00 and must finish by 16.00 (deadline). In order
to accommodate this meeting, the current calendar has to be revised. Prof. Rossi is
available starting from 10.00 until 13.00. However, Gianluca is busy at that time because
he teaches SW from 9.00 to 11.00 and then he meets two students (Thesist Ugo / Ida).
The SW lesson cannot be moved. Thus, the only solution is to move Thesist Ugo and
Thesist Ida to suitable, alternative times. As calendar revision is a frequent daily activity,
an automatic support to this type of activity is crucial to save time.

2.2 Representation of Calendars and Calendar Items

In MARA a calendar is modeled as the collection of items belonging to its owner plus
its calendar sharing information. An item belongs to the calendars of all of its partici-
pants and cross-calendar scheduling is based on the analysis of the temporal constraints
associated to the pool of items having such actors as participants. Calendar items are
represented as objects having the following features:

– name and internal identifier;
– duration - number of hours devoted to the item;
– earliest start time - earliest time point for scheduling the item;
– schedule - current temporal allocation of the item within its feasible allocation in-

terval (depending on temporal constraints);
– deadline for its completion/end (if any);
– list of participants - this identifies the calendars to which the item belongs;
– priority (low, medium, high) - criticity of the commitment;
– description - description of the topic of the item.

Moreover, temporal order relations can be imposed on calendar items to specify that
they cannot overlap (e.g., the user cannot attend two meetings at the same time) or
have to be scheduled one after the other. Notice that we selected a single representation
format for all types of items (tasks, meetings, to-dos, etc.), leaving most fields of the
descriptor as optional. However, simple items can be described as trivial tasks lacking
the specification of the actions to be performed, deadlines, and so forth.

Fig. 2. Pop-up window suggesting the time slots where the new task could be placed.

2.3 Mixed-Initiative Scheduling Support

MARA automatizes the temporal reasoning steps behind calendar management by an-
alyzing the commitments of actors and searching for safe schedules which answer the
user’s needs and satisfy the temporal constraints of all calendar items. Moreover, it en-
ables the user to steer the scheduling activity by making her/him aware of the available
options and of their consequences on the schedules of the involved people.

While the user adds new items or revises the existing ones, the system checks
whether the temporal constraints of the involved calendar items are satisfied. If any
conflicts occur, it helps the user incrementally explore the solution space in order to
quickly evaluate the available options. Specifically:

– If the user’s action causes any conflicts the system suggests to click the “Where
can I place the task?” (WPT) button in order to ask for help. Notice that this but-
ton is available to enable the user to receive the system’s suggestions at any time,
regardless of the occurrence of conflicts.

– Each time the user clicks the WPT button, MARA generates a pop-up window
which presents the scheduling options; see Figure 2. The window shows the fea-
sible time intervals (white rectangles) where the item could be placed, possibly
after having moved other items in order to solve the existing temporal conflicts. In
order to help the user to assess the situation, each feasible interval has a colored
frame which summarizes the criticity of the changes to the involved calendars. A
green frame means that all participants are available in the time slot; a violet one
denotes that somebody has a low/medium-priority commitment at that time. A red
one denotes the presence of high-priority commitments. Figure 2 shows the pop-up
window generated in our example and suggests to place Staff meeting on Thursday

between 11.00 and 13.00 by displaying the interval in a violet frame because, at
that time, Gianluca and/or Prof. Rossi have low or medium-priority commitments.

– By moving the mouse over an interval the user can view the names of the actors
whose previous commitments should be moved to accommodate the item.

– If the user selects a suggestion, the system presents a few possible calendar revi-
sions. The user can accept a suggestion (OK button) or go back to the available
options (Cancel). In our example the user chooses to place Staff meeting at 12.00.
Then, the system proposes two options: (a) leave Thesist Ugo at 11.00 and move
Thesist Ida at 14.00; (b) move Thesist Ugo and Thesist Ida after the Staff meeting,
respectively at 14.00 and 15.00, and postpone the Plumber at 16.00.

– Given the user’s decision, the system informs the affected actors and applies the
changes only if all of the actors accept them.1

2.4 Software Components

MARA stores the information about calendars, items and actors as lists of objects and
exploits two modules for time reasoning purposes:

1. The scheduling module (see [2]) checks the consistency of the temporal constraints
associated to calendar items to verify whether there is at least one safe schedule.
Moreover, it implements the scheduling policies offered by the system. Currently,
two policies are offered in order to schedule early, or urgent tasks first; however,
other ones could be added.

2. The Interval-based TEmporal Reasoner (ITER) (see Sections 3.2 and 3.3) supports
the revision of calendars to add or move items by identifying the feasible intervals
where they could be allocated and the impact on the schedules of the involved
actors. Moreover it generates the conservative schedules for each feasible interval.

The core of the smart calendar manager manages the mixed-initiative scheduling model
as follows: while the user revises a calendar, the core invokes the scheduling module to
check whether the user’s actions violate any temporal constraints and, in case they do,
it notifies the user. Each time a conflict occurs, the core invokes ITER specifying the
current schedule and the problematic item in order to retrieve the feasible time intervals
for safely allocating the item. For each interval selected by the user, it invokes ITER to
retrieve the conservative calendar revisions to choose from.

MARA is implemented as a Java Web application. The user interface is based on the
Google Web Toolkit [3]. The scheduling module exploits the JaCoP Constraint Solver
[4] and ITER is developed in Perl using the Graph.pm extension module [5] for repre-
senting and manipulating STNs. The minimization of the STNs is performed by using
the Floyd-Warshall algorithm included in Graph.pm. The Java Web application invokes
ITER as a local REST service via HTTP.

1 The investigation of a suitable negotiation protocol is part of our future work.

3 Temporal Reasoning

3.1 Constraint-based Representation of Calendar Items

The scheduling module and ITER exploit reasoning techniques based on Temporal Con-
straint Satisfaction Problems (TCSP) [6]. TCSPs are a class of Constraint Satisfaction
Problems (CSPs) tailored to the representation of temporal constraints. A TCSP in-
volves a set of variablesX1, . . . , Xn with continuous domains representing time points.

Specifically, ITER employs a subclass of TCSPs, the Simple Temporal Problems
(STPs) [6], where all of the constraints are binary and they do not contain any disjunc-
tions, i.e., they have the following format: (a ≤ X j −Xi ≤ b). This class of problems
can be represented as a graph named Simple Temporal Network (STN), whose consis-
tency can be checked in polynomial time [7]. The minimization of an STN (computing
for each pair of variables Xi, Xj an interval [amin, bmin] which guarantees the exis-
tence of a global solution for the STN) can be done in polynomial time, as well.

In MARA, a calendar is a collection of calendar items, possibly having multiple
participants, and the scheduling of a set of calendars is done by reasoning on the joint
set of constraints associated to their items. Each item M is represented by means of:

– Two numeric variables Ms and Me, representing the start and end time of M in a
given schedule (Ms corresponds to the “schedule” feature of the item). For simplic-
ity, we assume that the value of a variable Ms (resp. Me) is the number of one-hour
slots between Monday 8.00 and the start (respectively the end) of M .

– The temporal constraints on Ms and Me needed to schedule M consistently with
its earliest start time, duration and deadline.

– The temporal constraints on Ms and Me needed to impose precedence relations
and non-overlap temporal constraints with respect to other calendar items.

For instance, let’s consider Staff meeting (SM) in Figure 1:

– The earliest start time, Thursday at 8.00, is expressed as SMs ≥ 36 because in the
calendar there are 36 one-hour slots between Monday 8.00 and Thursday 8.00.

– The deadline, Thursday 16.00, is expressed as SM e ≤ 44.
– The duration, 2 hours, is SMe − SMs = 2 as the item takes 2 time slots.
– A precedence relation among calendar items, e.g., the fact that Staff meeting must

take place after Skype call PRIN (SC), is expressed as SMs − SCe ≥ 0.
– The fact that, e.g., Staff meeting cannot overlap SW/3 (S3) is expressed as S3 s −
SMe ≥ 0 ∨ SMs − S3e ≥ 0; i.e., either SM ends before S3 starts or vice versa.2

3.2 ITER: Computing the Feasible Intervals for an Item M

Given the temporal constraints of the calendar and an item M to be added, ITER:

– Searches for feasible intervals for allocating M . For each interval, it computes the
criticity on the basis of the priorities of the items which should be moved to allocate
M in the corresponding time window.

2 Non-overlap constraints can be expressed only in general TCSPs. Therefore, they are handled
by the scheduling module.

ALGORITHM 1: Feasible intervals for starting a new calendar item M for a specific user Ui.

input:
new item M
other Ui items in current schedule order (Ti,1, . . . , Ti,ki)
STNNi (deadlines, durations, precedences for M,Ti,1, . . . , Ti,ki)
Si current schedule for Ti,1, . . . , Ti,ki

1 (I⊥
i , ILi , IMi , IHi)← Intervals(M , (Ti,1, . . . , Ti,ki),Ni, Si);

2 Ii ← DComp(I⊥
i , ILi , IMi , IHi);

3 return Ii

– Generates the conservative schedules for each feasible interval selected by the user.
Intuitively, the conservative calendar revisions are enforced by adding temporal
constraints which impose to maintain the relative order of existing items in the
schedules.

For simplicity, the system currently only considers feasible intervals which do not re-
quire to move any already scheduled items involving multiple users. However, it can be
extended to deal with a more general case with limited effort.

We introduce a notation in order to tag feasible intervals with information about
their criticity. Each computed interval IM,i has an associated label:

l(IM,i) = {UC1
1 , . . . , UCm

m }

where U1, . . . , Um are the involved users and the Ci superscripts denote the criticity of
the interval for each actor Ui; i.e., the impact of allocating M in the interval on U i’s
calendar, in terms of revisions. Specifically, Ci ∈ (⊥, L, M, H), where:

– ⊥ means that the schedule of Ui is not affected by M ;
– L: only low-importance commitments of U i have to be shifted to allocate M ;
– M: only medium- and low-importance commitments of U i have to be shifted;
– H: at least one high-importance commitment of U i has to be shifted;

The computation of the feasible intervals IM for M is split in two steps:

1. Computing the feasible intervals Ii = (Ii,1, . . . , Ii,ni) for each user Ui. Each inter-
val Ii,j is assigned a label l(Ii,j) = UCj

i with Cj ∈ (⊥, L, M, H); the label specifies
how critical is to allocate M in that interval, given the temporal constraints of U i’s
commitments.

2. Computing the joint feasible intervals IM and their labels from user intervals Ii in
order to propose a small set of options to be considered for scheduling decisions.

Computing the User Intervals Algorithm 1 (see the corresponding figure) concerns a
single user Ui and implements the first step. It takes as inputs: (i) the new item M to be
allocated; (ii) Ui’s other items (Ti,1, . . . , Ti,ki) in the order in which they appear in the
current schedule; (iii) an STN Ni encoding the deadline, duration and precedence con-
straints for Ti,1, . . ., Ti,ki and M ; (iv) the current scheduled times Si for Ti,1, . . . , Ti,ki.

In line 1, the algorithm computes four sequences of intervals I ⊥
i , IL

i , IM
i , IH

i by
invoking procedure Intervals, described below. Each sequence I C

i contains (ki + 1)
intervals, one for each position where M can be placed in the order of the existing
items Ti,1, . . . , Ti,ki. For each position j, interval IC

i,j represents the set of time points
t such that starting M at time t requires to modify U i’s schedule by shifting items of
importance C or lower.

The intervals in sequences I⊥
i , IL

i , IM
i , IH

i can overlap both within the same se-
quence and among different sequences. Thus, in line 2 the algorithm invokes procedure
DComp to merge I⊥

i , IL
i , IM

i , IH
i into a single sequence Ii of labeled and ordered dis-

joint intervals. Each overlapping portion is labeled with the lowest (i.e., best) criticality
class to which it belongs.

Procedure Intervals considers each possible positioning of M in the sequence of
existing items Ti,1, . . . , Ti,ki involving Ui. In this way a total order Π is determined
among all the items, includingM , and can be asserted as a set of precedence constraints
into the STN. Then, Intervals considers each class of items C ∈ (H, M, L, ⊥) imposing
again the associated constraints into the STN. Each resulting STN is then minimized,
yielding a feasible interval IC

i,j = [min,max] for the start ofM . As said above, for each
position j of M , such an interval represents the set of time points t such that starting M
at time t requires to shift items having importanceC or lower in U i’s schedule. Intervals
ICi,j are added to their corresponding sequences I C

i and, after all the positions have been
considered, such sequences are returned.

Procedure DComp receives sequences I⊥
i , IL

i , IM
i , IH

i and composes them into a
single sequence Ii of ordered, labeled, disjoint intervals. Intuitively, DComp orders the
start and end time points of each of the input intervals storing them in a list T . Then, it
scans the list generating output intervals Ii,j = [ts, te] where:

– ts and te are time points in list T , such that
– starting the new meeting M at each point in [ts, te] has on Ui’s current schedule a

minimum impact C (e.g., M for medium)

The label of such an output interval Ii,j will then be l(Ii,j) = UC
i .

Computing the Joint Intervals For each user Ui involved in M , Algorithm 1 com-
putes a sequence of ordered, disjoint intervals I i such that each interval Ii,j has a label
l(Ii,j) which takes values in UC

i , C ∈ (⊥, L, M, H).
Given that the involved users are {U1, . . . , Um}, ITER computes a single sequence

of ordered, disjoint intervals IM = (IM,1, . . . , IM,n) such that each element IM,j of
IM represents a jointly feasible interval for startingM . Interval IM,j is labeled based on
the labels of the user intervals from which it is derived. Given I1, . . . , Im, the sequence
of jointly feasible intervals IM satisfies the following conditions:

– Two time points t, t′ belong to an interval IM,j iff for each involved user Ui they
belong to the same user interval Ii,ji ∈ Ii.

– The label l(IM,j) associated with interval IM,j is given by
⋃

i l(Ii,ji).

For example, if U1 has a feasible interval I1 = [39, 42] with label UM
1 and U2 has

a feasible interval I2 = [38, 40] with label UL
2 , the joint interval [39, 40] has label

{UM
1 , UL

2 }.

The computation of IM is performed by a procedure JComp (joint composition)
analogous to DComp. The procedure receives the sequences of intervals I i for all users
Ui and produces the single sequence IM of jointly feasible intervals.

3.3 ITER: Computing Revisions to a Calendar

We briefly describe the computation of revisions to shared calendars, because it only
requires to run again the Intervals procedure used for computing the feasible intervals.

Let us suppose that one of the feasible intervals returned to the user was I = [t s, te]
with label l(I), and that the user decided to place the new meeting M at time t ∈ I . In
order to compute the calendar revision, Intervals has to be invoked with the additional
constraint that M starts at time point t and that this allocation has impacts given by l(I)
on the users calendars.

For each user, Intervals could find more than one position of the new meeting M
in the task ordering that satisfies both the start time of M and the impacts l(I). ITER
places M in the first available position. For stability purposes, each existing task that
must be moved as a consequence of adding M is started at a time as close as possible
as its previously scheduled start time.

4 Tests with Users

We conducted a preliminary test to evaluate the impact on users’ performance and expe-
rience of the conservative, mixed-initiative scheduling support offered by MARA. We
had two research questions:

1. Does the mixed-initiative scheduling support offered by MARA improve people’s
performance during the allocation of items in a shared calendar with respect to the
kind of support offered by a standard calendar manager?

2. How is this conservative, mixed-initiative scheduling support perceived by users?

18 volunteers were involved as participants in this experiment (10 men and 8 women).
They had a median age of 40 (average = 44, minimum 17, maximum 81) and repre-
sented different categories of students and working people. They had heterogeneous
backgrounds (e.g., computer science, mathematics, medicine, humanities). All partici-
pants but two were acquainted with on-line calendars (mostly Google Calendar). Par-
ticipants performed the test for free, without any reward.

4.1 The Experiment

The experiment had a single-factor, within-subjects design. Two treatments were ap-
plied: in the experimental one participants used MARA and they could click the “Where
can I place the task?” (WPT) button to receive suggestions for allocating items; more-
over, they could preview the suggested calendar revisions by visualizing the schedules
proposed by the system. In the base-case treatment, people used the same system but the
WPT button and the system’s suggestions (pop-up windows displaying feasible alloca-
tion intervals and possible schedules) were disabled; therefore the user had to identify

possible calendar revisions and to manually apply them. Each treatment condition was
considered as an independent variable. Participants’ performance was considered as a
dependent variable and was calculated considering the time needed to complete the
task. Each participant received both treatments but their order was counterbalanced to
minimize the effects of practice and fatigue.

In the experimental task each participant could access a one-week calendar shared
with four people and including items involving multiple actors. Figure 1 shows the
events scheduled in the calendar. The participant was asked to add a new meeting in-
volving her/himself and another actor. The change raised temporal conflicts with ex-
isting commitments. Before starting the experimental task, participants were briefed
about the scenario and they could use the system for a few minutes to get acquainted
with it. Then they read the description of the scenario and the instructions describing
the operations to be performed, which were available as a reference during the whole
experiment. Sessions were clocked by the experimenter, who annotated all interesting
actions and comments by participants while sitting at some distance from them. At the
end, they were asked to answer a questionnaire for evaluating their experience in the
two treatment conditions. In that questionnaire they rated the system’s (i) efficacy, (ii)
efficiency and (iii) usage simplicity on a 7-point Likert scale. Moreover, they rated in
the same scale the usefulness of the mixed-initiative support regarding (iv) the visu-
alization of synthetic information about the feasible intervals for allocating calendar
items, (v) the preview of the revision suggestions and (vi) the conservative nature of
such suggestions.

Table 1. Participants’ evaluation of our smart calendar manager: mean and standard deviation
values for treatment (TREAT) and base-case (BASE) conditions. Significance of results.

TREAT TREAT BASE BASE TREAT-BASE TREAT-BASE
mean values std. dev. mean values std.dev. t p

Efficacy 5,421 1,387 4,526 1,172 2,623 0,017
Efficiency 5,315 1,416 4,315 1,293 2,243 0,038
Simplicity 4,789 1,397 4,210 1,315 1,568 0,134

Intervals 5,736 1,484 - - - 0,000
Preview 5,421 1,773 - - - 0,000
Conserv. 5,526 1,218 - - - 0,000

4.2 Results

The mean execution times for the base-case and experimental treatments are 238,05 and
118,55 seconds, respectively. This shows that people take much less time to find a good
revision of their calendar when supported by the system. A Paired-Samples T-test with
significance level α = 0.05 showed a significant effect on execution times.

In the final questionnaire participants rated the system’s (i) efficacy, (ii) efficiency
and (iii) usage simplicity on a 7-point Likert scale (from 1, the worst value, to 7, the

best one). Moreover, they rated in the same scale the usefulness of the mixed-initiative
support regarding (iv) the visualization of synthetic information about the feasible in-
tervals for allocating items, (v) the preview of the revision suggestions and (vi) the
conservative nature of such suggestions.

The higher portion of Table 1 reports mean and standard deviation values for the
efficacy, efficiency and simplicity parameters with significance values. It can be seen
that participants positively evaluated the efficacy and efficiency of the system support
while there is no significant data about usage simplicity.

The lower portion of the table reports the mean values, standard deviations and
significance values (obtained by means of a one-sided T-test with α = 0.05) concerning
parameters (iv), (v) and (vi).

The comments provided by participants show that they strongly appreciated the
awareness support provided by the visualization of the feasible intervals because it
helped them to quickly understand the pros and cons of the available options. Over-
all, these results suggest a positive impact of the mixed-initiative scheduling support
offered by MARA on user performance and experience.

5 Related Work

The idea of developing mixed-initiative approaches for calendar management was first
developed in the 90’s (e.g., see [?]). However, since then, little work has been carried
out on that topic.

Most calendar managers (e.g., Google Calendar) only support the joint visualization
of a set of shared calendars. Some recent ones (e.g., Google Calendar Smart Resched-
uler [9]) analyze the estimated duration and temporal constraints of the items to be
scheduled in order to identify the available time slots where they could be allocated.
However, they cannot suggest any schedule revisions for addressing temporal conflicts.

Many task managers such as Things [10] and Standss Smart Schedules for Out-
look [11] manage tasks, deadlines and task dependencies but they have no scheduling
capabilities either. Other ones are much more powerful but they are too complex for
everyday activity management. For instance, the scheduler described in [12], based on
a constraint optimization model, supports some flexible task scheduling policies but
requires the specification of a fairly large amount of information for each task to be
handled. Moreover, it only deals with single-user tasks.

Opportunistic schedulers, typically based on planning technology, synchronously
guide the user in the execution of activities according to the pending goals to be achieved.
However, they do not present an overview of long-term schedules. Moreover, they do
not deal with shared activities and they are not mixed-initiative; they basically suggest
opportunities of action, which the user may accept or ignore. For instance, see [13].

To the best of our knowledge, the only calendar manager which supports mixed-
initiative scheduling is PTIME [1], which learns the user’s preference and generates
personalized scheduling options to choose from. Our mixed-initiative interaction model
differs from the PTIME one because it puts the user in more control during the schedul-
ing activity: our model enables the user to incrementally explore different scheduling
hypotheses, starting from the possible intervals during which calendar items could be

placed, and selecting the particular spots to be used on the basis of their impact on the
calendars of the involved people.

6 Conclusions

We described the MARA (Mixed-initiative cAlendaR mAnager), a prototype system
supporting the management of online shared calendars including multi-user activities.
The main features of MARA are (i) a mixed-initiative scheduling support during calen-
dar management, and (ii) the suggestion of conservative schedule revisions maintain-
ing stable calendars. Such features are based on the adoption of Temporal Constraint
Satisfaction techniques. A preliminary test with users provided encouraging results on
the efficacy and usefulness of MARA’s conservative, mixed-initiative calendar man-
agement support. Our future work concerns the development of MARA’s mobile user
interface, the improvement of the negotiation protocol to agree on calendar revisions
and a further enhancement of the user awareness support.

References

1. Berry, P., Gervasio, M., Peintner, B., Yorke-Smith, N.: PTIME: Personalized assistance for
calendaring. ACM Transactions on Intelligent Systems 2(4) (2011) 40:1–22

2. Ardissono, L., Segnan, G.P.M., Torta, G.: Mixed-initiative management of online calendars.
In: LNBIP, Web Information Systems and Technologies, Springer (2013) 167–182

3. Google: Google Web Toolkit, http://code.google.com/intl/it-IT/webtoolkit/ (2010)
4. JaCoP: JaCoP - Java Constraint Programming solver, http://www.jacop.eu/ (2011)
5. Hietaniemi, J.: Graph-0.94, http://search.cpan.org/ jhi/Graph-0.94/ (2010)
6. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Art. Intell. 49 (1991) 61–95
7. Planken, L., de Weerdt, M., van der Krogt, R.: Computing all-pairs shortest paths by lever-

aging low treewidth. In: In Proceedings of the 21st Int. Conf. on Automated Planning and
Scheduling (ICAPS-11). (2011)

8. Cesta, A., D’aloisi, D., Brancaleonii, R.: Considering the user in mixed-initiative meeting
management. In: Proc. 2nd ERCIM Workshop on User Interfaces for All, Prague (1996)

9. Marmaros, D.: Smart rescheduler in google calendar labs,
http://gmailblog.blogspot.it/2010/03/smart-rescheduler-in-google-calendar-labs.html (2010)

10. Cultured Code: Things Mac, http://culturedcode.com/things/ (2011)
11. Standss: Standss smart schedules for outlook, http://www.standss.com/smartschedules/default.asp

(2012)
12. Refanidis, I., Yorke-Smith, N.: A constraint-based approach to scheduling an individual’s

activities. ACM Transactions on Intelligent Systems 1(2) (2010) 12:1–32
13. Horvitz, E., Subramani, M.: Mobile opportunistic planning: methods and models. In: LNAI

n. 4511: Proc. 11th Int. Conf. on User Modeling, Corfu, Greece (2007) 228–237

