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Bayesian optimization (see, e.g., [2]) is a framework for the op-
timization of expensive blackbox functions that combines prior as-
sumptions about the shape of a function with evidence gathered by
evaluating the function at various points. In this talk, I will briefly de-
scribe the basics of Bayesian optimization and how to scale it up to
handle structured high-dimensional optimization problems in the se-
quential model-based algorithm configuration framework SMAC [6].

Then, I will discuss applications of SMAC to two structured high-
dimensional optimization problems from the growing field of auto-
matic machine learning:

• Feature selection, learning algorithm selection, and optimization
of its hyperparameters are crucial for achieving good performance
in practical applications of machine learning. We demonstrate that
a combined optimization over all of these choices can be carried
out effectively by formulating the problem of finding a good in-
stantiation of the popular WEKA framework as a 768-dimensional
optimization problem. The resulting Auto-WEKA framework [7]
allows non-experts with some available compute time to achieve
state-of-the-art learning performance on the push of a button.

• Deep learning has celebrated many recent successes, but its per-
formance is known to be very sensitive to architectural choices and
hyperparameter settings. Therefore, so far its potential could only
be unleashed by deep learning experts. We formulated the com-
bined problem of selecting the right neural network architecture
and its associated hyperparameters as a 81-dimensional optimiza-
tion problem and showed that an automated procedure could find
a network whose performance exceeded the previous state-of-the-
art achieved by human domain experts using the same building
blocks [3]. Computational time remains a challenge, but this re-
sult is a step towards deep learning for non-experts.

To stimulate discussion, I will finish by highlighting several fur-
ther opportunities for combining meta-learning and Bayesian opti-
mization:

• Prediction of learning curves [3],
• Learning the importance of hyperparameters (and of meta-

features) [4, 5], and
• Using meta-features to generalize hyperparameter performance

across datasets [1, 8], providing a prior for Bayesian optimization.

Based on joint work with Tobias Domhan, Holger Hoos, Kevin
Leyton-Brown, Jost Tobias Springenberg, and Chris Thornton.
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