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Abstract. We introduce the stable model semantics for fuzzy propositional for-
mulas, which generalizes both fuzzy propositional logic and the stable model
semantics of classical propositional formulas. Combining the advantages of both
formalisms, the introduced language allows highly configurable default reasoning
involving fuzzy truth values. We show that several properties of Boolean stable
models are naturally extended to this formalism, and discuss how it is related to
other approaches to combining fuzzy logic and the stable model semantics.

1 Introduction

Answer set programming (ASP) [1] is a widely applied declarative programming paradigm
for the design and implementation of knowledge intensive applications. One of the at-
tractive features of ASP is its capability to model the nonmonotonic aspect of knowl-
edge. However, as its mathematical basis, the stable model semantics, is restricted to
Boolean values, it is too rigid to represent imprecise and vague information. Fuzzy
logic [2], as a form of many-valued logic, can handle vague information by interpreting
propositions with a truth degree in the interval of real numbers [0, 1]. The availability
of various fuzzy operators gives the user great flexibility in combining truth degrees.
However, the semantics of fuzzy logic is monotonic, and is not flexible enough to han-
dle default reasoning allowed in answer set programming.

Both the stable model semantics and fuzzy logic are generalizations of classical
propositional logic in different ways. While they do not subsume each other, it is clear
that many real-world problems require both their strengths. This led to the body of work
on combining fuzzy logic and the stable model semantics, known as fuzzy answer set
programming (e.g., [3, 4]). However, their syntax is restricted to rules, and does not
allow connectives nested arbitrarily as in fuzzy logic.

Unlike existing work on fuzzy answer set semantics, in this paper, we extend the
general stable model semantics from [5] to many-valued propositional formulas. The
syntax of this language is the same as the syntax of fuzzy propositional logic. The
semantics, on the other hand, defines stable models instead of models. The language is
a proper generalization of both fuzzy propositional logic and the stable model semantics
for Boolean propositional formulas. This generalization is not simply a pure theoretical
pursuit, but has practical use in conveniently modeling defaults involving fuzzy truth
values in dynamic domains. For example, consider modeling dynamics of trust in social
network. People trust each other in different degrees under some normal assumptions.
If person A trusts another person B, then A tends to trust person C whom B trusts
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to a degree which is positively correlated to the degree to which A trusts B and the
degree to which B trusts C. If nothing happens, the trust degrees would not change.
But there may be less trust between two people when a conflict arises between them.
Modeling such a domain requires expressing defaults involving fuzzy truth values. We
demonstrate that such examples can be conveniently modelled in our proposed language
by taking advantage of its generality over the existing approaches to fuzzy ASP.

The paper is organized as follows. Section 2 reviews the syntax and the semantics of
fuzzy propositional logic we discuss in the paper, as well as the stable model semantics
of classical propositional formulas. Section 3 presents the stable model semantics of
fuzzy propositional formulas along with examples, followed by Section 4 that formal-
izes the trust example above in the proposed language. Section 5 shows how the fuzzy
stable model semantics is related to the Boolean stable model semantics, and Section 6
shows how our fuzzy stable model semantics is related to other approaches to fuzzy
ASP. Section 7 shows that several well-known properties of the Boolean stable model
semantics can be easily extended to our fuzzy stable model semantics.

2 Preliminaries

2.1 Review: Stable Models of Classical Propositional Formulas

We review the definition of a stable model from [5] by limiting attention to the syntax of
propositional formulas. Instead of defining stable models in terms of second-order logic
as in [5] , we express the same concept using auxiliary atoms that do not belong to the
original signature. This slight reformulation will simplify our efforts in extending the
stable model semantics to fuzzy propositional formulas without resorting to “second-
order fuzzy logic.”

Let σ be a classical propositional signature, p = (p1, . . . , pn) be a list of distinct
atoms belonging to σ, and let q = (q1, . . . , qn) be a list of new propositional atoms not
in σ.

For two interpretations I and J of σ, I ∪ Jp
q denotes the interpretation of σ ∪q that

agrees with I and J on all atoms not in p ∪ q, and

– for each p ∈ p, (I ∪ Jp
q )(p) = I(p);

– for each q ∈ q, (I ∪ Jp
q )(q) = J(p).1

For any classical propositional formula F of signature σ, F ∗(q) is a classical propo-
sitional formula of signature σ ∪ q that is defined recursively as follows:

– p∗i = qi for each pi ∈ p;
– F ∗ = F for any atom F 6∈ p;
– ⊥∗ = ⊥; >∗ = >;
– (¬F )∗ = ¬F ;
– (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G).

1 I(p) denotes the truth value of p under I . We identify a list with a set if there is no confusion.
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Let I and J be two interpretations of σ, and let p be a subset of σ. We say J ≤p I
if

– J and I agree on all atoms not in p, and
– for all p ∈ p, if J |= p, then I |= p.

We say J <p I if J ≤p I and J 6= I .

Definition 1. An interpretation I is a stable model of F relative to p (denoted I |=
SM[F ;p])

– if I |= F , and
– there is no interpretation J such that J <p I and I ∪ Jp

q |= F ∗(q).

Example 1. Consider a logic program

p← not q, q ← not p

which is understood as an alternative notation for propositional formula

F1 = (¬q → p) ∧ (¬p→ q).

F ∗1 (u, v) is
(¬q → u) ∧ (¬q → p) ∧ (¬p→ v) ∧ (¬p→ q).

We check that I1 = {p} (that is, p is TRUE and q is FALSE) 2 is a stable model of F1

(relative to {p, q}): I1 satisfies F1, and ∅ is the only interpretation J such that J <pq I1.
However, I1 ∪ Jpquv = {p} does not satisfy F ∗1 (u, v) because it does not satisfy the first
conjunctive term of F ∗1 (u, v).

Similarly, we can check that {q} is another stable model of F1.

2.2 Review: Fuzzy Logic

Let σ be a fuzzy propositional signature, which is a set of symbols called fuzzy atoms.
In addition, we assume the presence of a set C of fuzzy conjunction symbols, a set D
of fuzzy disjunction symbols, a set N of fuzzy negation symbols, and a set I of fuzzy
implication symbols.

A fuzzy (propositional) formula of σ is defined recursively as follows.

– every fuzzy atom p ∈ σ is a fuzzy formula;
– every numeric constant c where c is a real number in [0, 1] is a formula;
– if F is a formula, then ¬F is a formula, where ¬ ∈ N;
– if F and G are formulas, then F ⊗ G, F ⊕ G and F → G are formulas, where
⊗ ∈ C, ⊕ ∈ D, and→∈ I.

2 We identify a propositional interpretation with the set of atoms that are true in it.
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The models of a fuzzy formula are defined as follows [2]. The fuzzy truth values are
the real numbers in the range [0, 1]. A fuzzy interpretation I of σ is a mapping from σ
into [0, 1].

The fuzzy operators are functions mapping one or two truth values into a truth value.
Among the operators, ¬ denotes a function from [0, 1] into [0, 1]; ⊗, ⊕, and→ denote
functions from [0, 1]× [0, 1] into [0, 1]. The actual mapping performed by each operator
can be defined in many different ways, but all of them satisfy the following conditions,
which imply that they are generalizations of the corresponding classical propositional
connectives:3

– a fuzzy negation ¬ is decreasing, and satisfies ¬(0) = 1 and ¬(1) = 0;
– a fuzzy conjunction⊗ is increasing, commutative, associative, and⊗(1, x) = x for

all x ∈ [0, 1];
– a fuzzy disjunction ⊕ is increasing, commutative, associative, and ⊕(0, x) = x for

all x ∈ [0, 1];
– a fuzzy implication→ is decreasing in its first argument and increasing in its second

argument; and→ (1, x) = x and→ (0, 0) = 1 for all x ∈ [0, 1].

Figure 1 lists some specific fuzzy operators that we use in this paper.

Symbol Name Definition
⊗l Łukasiewicz t-norm ⊗l(x, y) = max (x+ y − 1, 0)
⊕l Łukasiewicz t-conorm ⊕l(x, y) = min (x+ y, 1)

⊗m minimum t-norm ⊗m(x, y) = min (x, y)
⊕m maximum t-conorm ⊕m(x, y) = max (x, y)

⊗p product t-norm ⊗p(x, y) = x · y
⊕p product t-conorm ⊕p(x, y) = x+ y − x · y
¬s standard negator ¬s(x) = 1− x

→r the residual implicator of ⊕m →r (x, y) =

{
1 if x ≤ y

y otherwise
→s the S-implicator induced by ¬s and ⊕m →s (x, y) = max (1− x, y)

Fig. 1. Some t-norms, t-conorms, negator, and implicators

The truth value of a formula F under I , denoted F I , is defined recursively as fol-
lows:

– for any atom p ∈ σ, pI = I(p);
– for any numeric constant c, cI = c;
– (¬F )I = ¬(F I);
– (F ⊗G)I = ⊗(F I , GI); (F ⊕G)I = ⊕(F I , GI); (F → G)I =→(F I , GI).

3 We say that a function f of arity n is increasing in its i-th argument (1 ≤ i ≤ n) if
f(arg1, . . . , argi, . . . , argn) ≤ f(arg1, . . . , arg

′
i, . . . , argn) for all arguments such that

argi ≤ arg′i; f is said to be increasing if it is increasing in all its arguments. The definition of
decreasing is similar.
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(For simplicity, we identify the symbols for the fuzzy operators with the truth value
functions represented by them.)

Definition 2. We say that a fuzzy interpretation I satisfies a fuzzy formula F w.r.t. a
threshold y ∈ [0, 1] if F I ≥ y, and denote it by I |=y F . We call I a fuzzy y-model
of F .

We often omit the threshold y when it is 1.

3 Definition and Examples

We extend the notion of J <p I in Section 2.1 as follows. For any two fuzzy inter-
pretations J and I of the same signature σ and any subset p of σ, we say J ≤p I
if

– J and I agree on all fuzzy atoms not in p, and
– for all p ∈ p, pJ ≤ pI .

We say J <p I if J ≤p I and J 6= I .
As before, we assume a list q of new, distinct fuzzy atoms, and define I ∪ Jp

q in the
same way. That is, I ∪ Jp

q denotes the interpretation of σ ∪ q that agrees with I and J
on all atoms not in p ∪ q, and

– for each p ∈ p, (I ∪ Jp
q )(p) = I(p);

– for each q ∈ q, (I ∪ Jp
q )(q) = J(p).

The definition of F ∗ is also extended in a straightforward way: For any fuzzy for-
mula F of signature σ, F ∗(q) is defined as follows.

– p∗i = qi for each pi ∈ p;
– F ∗ = F for any atom F 6∈ p;
– c∗ = c for any numeric constant c;
– (¬F )∗ = ¬F ;
– (F ⊗G)∗ = F ∗ ⊗G∗; (F ⊕G)∗ = F ∗ ⊕G∗;
– (F → G)∗ = (F ∗ → G∗)⊗m (F → G).

Definition 3. An interpretation I is a y-stable model of F relative to p (denoted I |=y
SM[F ;p]) if

– I |=y F , and
– there is no interpretation J such that J <p I and I ∪ Jp

q |=y F ∗(q).

We often omit the threshold y when it is 1, and omit p if it contains all atoms in σ.
Clearly, when p is empty, Definition 3 reduces to the definition of a fuzzy model in

Definition 2 because there is no J such that J <∅ I .
Also, Definition 3 is very similar to the definition of a stable model for classical

propositional formulas in Definition 1. The main difference is that simply in the latter,
atoms may have various degrees of truth, and accordingly the notion of J <p I is more
general. The precise relationship between the definitions is discussed in Section 5.
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Example 2. Consider the formulaF = ¬sp→r q and the interpretation I = {(p, 0), (q, 0.6)}.
F ∗(u, v) is

((¬sp)∗ →r q
∗)⊗m (¬s p→r q) = (¬sp→r v)⊗m (¬sp→r q).

I |=0.6 SM[F ; p, q]. First, it is easy to see that I |=0.6 F , as

F I =→r ((¬sp)I , qI) =→r (1− pI , qI) =→r (1, 0.6) = 0.6.

Suppose there exists J <pq I such that I ∪ Jpquv |=0.6 F , i.e.,

F ∗(u, v)I∪J
pq
uv = min

(
→r (¬s(pI), vJ

pq
uv ),→r (¬s(pI), qI)

)
= min

(
→r (1, v

Jpq
uv ), 0.6

)
= min

(
vJ

pq
uv , 0.6

)
≥ 0.6.

So vJ
pq
uv ≥ 0.6. Since vJ

pq
uv ≤ qI = 0.6, we conclude that vJ

pq
uv = 0.6. However, this

contradicts the assumption that J <pq I . Therefore, such J does not exist, and I is a
0.6-stable model of F .

Example 3. p and ¬s¬sp have the same fuzzy models, but their stable models are dif-
ferent. This is similar to the fact that p and ¬¬p have different stable models according
to the semantics from [5].

Clearly, any interpretation I = {(p, y)}, where y is any positive real number in
[0, 1], is a y-stable model of p relative to {p}. On the other hand, I = {(p, y)} is not a
y-stable model of F = ¬s¬sp relative to {p}. Formula F ∗(q) is ¬s¬sF , and although
I |=y F , we have I ∪ Jpq |=y F ∗(q) regardless of any J .

Example 4. Let F1 = p→s p and F2 = ¬sp⊕mp. Their fuzzy models are the same, but
their stable models are not. This is similar to the relation between p→ p and ¬p ∨ p in
the Boolean stable model semantics. Indeed, observe thatF ∗1 (q) = (p→s p)⊗m (q →s q)
and F ∗2 (q) = ¬sp⊕m q.

The interpretation I = {(p, 1)} is not a 1-stable model of F1 relative to p, as wit-
nessed by J = {(p, 0)}. However, I is a 1-stable model of F2 relative to p: for any Jpq ,

F ∗2 (q)
I∪Jp

q = max
(
1− pI , qJ

p
q

)
= max

(
0, qJ

p
q

)
= qJ

p
q .

So, for I ∪ Jpq to satisfy F ∗2 (q) to degree 1, qJ
p
q should be 1, or equivalently, pJ should

be 1. Consequently, it is not possible to have J <p I .

The following example illustrates how the commonsense law of inertia involving
fuzzy truth values can be represented.

Example 5. Let σ be {p,∼p, q,∼q} 4 and let F be F1⊗m F2, where F1 represents that
p and ∼p are complementary, i.e., the sum of their truth values is 1:

F1 = ¬s(p⊗l ∼p)⊗m ¬s¬s(p⊕l ∼p).
4 Note that ∼ is not a connective; it is just a part of the symbol representing an atom.
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F2 represents that by default p has the truth value of q, and∼p has the truth value of∼q:

F2 = ((q ⊗m ¬s¬sp)→r p)⊗m ((∼q ⊗m ¬s¬s ∼p)→r∼p).

Let p = {p,∼p} and u = {u,∼u}. F ∗(u) is

¬s(p⊗l ∼p)⊗m ¬s¬s(p⊕l ∼p)
⊗m((q ⊗m ¬s¬sp)→r u)⊗m ((q ⊗m ¬s¬sp)→r p)
⊗m((∼q ⊗m ¬s¬s ∼p)→r∼u)⊗m ((∼q ⊗m ¬s¬s ∼p)→r∼p).

One can check that the interpretation I1 = {(p, x), (∼p, 1− x), (q, x), (∼q, 1− x)}
(x is any value in [0, 1]) is a 1-stable model of F relative to (p,∼p); The interpretation
I2 = {(p, y), (∼p, 1− y), (q, x), (∼q, 1− x)}, where y > x, is not. Similarly, if y < x,
I2 is not a 1-stable model of F relative to (p,∼p).

On the other hand, if we conjoin F with y →r p to yield F ⊗m (y →r p), then the
default behavior is overridden, and I2 is a 1-stable model of F ⊗m (y →r p) relative to
(p,∼p).

This behavior is useful in expressing the commonsense law of inertia involving
fuzzy values. Suppose q represents some fluent at time t, and p represents the fluent at
time t+1. Then F states that, “by default, the fluent retains the previous value.” The
default value is overridden if there is an action that sets p to a different value.

4 Further Examples

The trust example in the introduction can be formalized in the fuzzy stable model se-
mantics as follows. Below x, y, z are schematic variables ranging over people, and t is
a schematic variable ranging over time steps. Trust(x, y, t) is a fuzzy atom representing
that “x trusts y at time t.” Similarly, Distrust(x, y, t) is a fuzzy atom representing that
“x distrusts y at time t.”

The trust relation is reflexive:

F1 = Trust(x, x, t).

The trust and distrust degrees are complementary, i.e., their sum is 1 (similar to
Example 5):

F2 = ¬s(Trust(x, y, t)⊗l Distrust(x, y, t)),
F3 = ¬s¬s(Trust(x, y, t)⊕l Distrust(x, y, t)).

Initially, if x trusts y to degree d1 and y trusts z to degree d2, then x trusts z to
degree d1 × d2; further the initial distrust degree is 1 minus the initial trust degree.

F4 = Trust(x, y, 0)⊗p Trust(y, z, 0)→r Trust(x, z, 0),
F5 = ¬sTrust(x, y, 0)→r Distrust(x, y, 0).

The inertia assumption (similar to Example 5):

F6 = Trust(x, y, t)⊗m ¬s¬sTrust(x, y, t+1)→r Trust(x, y, t+1),
F7 = Distrust(x, y, t)⊗m ¬s¬sDistrust(x, y, t+1)→r Distrust(x, y, t+1).
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A conflict increases the distrust degree by the conflict degree:

F8 = Conflict(x, y, t)⊕l Distrust(x, y, t)→r Distrust(x, y, t+1),
F9 = ¬s(Conflict(x, y, t)⊕l Distrust(x, y, t))→r Trust(x, y, t+1).

Let FTW be F1 ⊗m F2 ⊗m · · · ⊗m F9. Suppose we have the formula FFact =
Fact1 ⊗m Fact2 that gives the initial trust degree.

Fact1 = 0.8→r Trust(Alice,Bob, 0),
Fact2 = 0.7→r Trust(Bob,Carol, 0).

Although there is no fact about how much Alice trusts Carol, any 1-stable model of
FTW ⊗m FFact assigns value 0.56 to the atom Trust(Alice,Carol, 0). On the other
hand, the 1-stable model assigns value 0 to Trust(Alice,David, 0) due to the closed
world assumption under the stable model semantics.

When we conjoin FTW ⊗ FFact with 0.2 → Conflict(Alice,Carol, 0), the 1-stable
model of FTW ⊗m FFact ⊗m (0.2 → Conflict(Alice,Carol, 0)), manifests that the
trust degree between Alice and Carol decreases to 0.36 at time 1. More generally, if we
have more actions that change the trust degree in various ways, by specifying the entire
history of actions, we can determine the evolution of the trust distribution among all
the participants. Useful decisions can be made based on this information. For example,
Alice may decide not to share her personal pictures to those whom she trusts less than
degree 0.48.

Note that this example, like Example 5, uses nested connectives, such as ¬s¬s, that
are not available in previous fuzzy ASP semantics, such as [3, 4].

5 Relation to Boolean-Valued Stable Models

The Boolean stable model semantics in Section 2.1 can be embedded into the fuzzy
stable model semantics as follows:

For any classical propositional formula F , define F fuzzy to be the fuzzy proposi-
tional formula obtained from F by replacing⊥with 0,>with 1, ¬with ¬s, ∧with⊗m,
∨ with ⊕m, and → with →s. We identify the signature of F fuzzy with the signature
of F . Also, for any interpretation I , we define the corresponding fuzzy interpretation
Ifuzzy as

– I fuzzy(p) = 1 if I(p) = TRUE;
– I fuzzy(p) = 0 otherwise.

The following theorem tells us that the Boolean-valued stable model semantics can
be viewed as a special case of the fuzzy stable model semantics.

Theorem 1 For any classical propositional formula F and any classical propositional
interpretation I , I is a stable model of F relative to p iff I fuzzy is a 1-stable model of
F fuzzy relative to p.

Example 6. Let F be the classical propositional formula ¬p → q. F has only one
stable model I = {q}. Clearly I fuzzy = {(p, 0), (q, 1)} is a 1-stable model of F fuzzy =
¬sp→s q.
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Theorem 1 does not hold for an arbitrary choice of operators, as illustrated by the
following example.

Example 7. Let F be the classical propositional formula p ∨ p. Classical interpretation
I = {p} is a stable model of F . However, I fuzzy = {(p, 1)} is not a stable model of
F ′ = p⊕l p because there is J = {(p, 0.5)} such that I ∪ Jpq |=1 q ⊕l q.

However, one direction of Theorem 1 holds for arbitrary choice of fuzzy operators.

Theorem 2 For any classical propositional formula F , let F fuzzy
1 be the formula ob-

tained from F by replacing ⊥ with 0, > with 1, ¬ with any fuzzy negation symbol, ∧
with any fuzzy conjunction symbol, ∨ with any fuzzy disjunction symbol, and → with
any fuzzy implication symbol. For any classical propositional interpretation I , if I fuzzy

is a 1-stable model of F fuzzy1 relative to p, then I is a stable model of F relative to p.

6 Relation to Other Approaches to Fuzzy ASP

6.1 Relation to Stable Models of Normal FASP Programs

A normal FASP program is a finite set of rules of the form

a ← b1 ⊗ . . .⊗ bm ⊗ ¬bm+1 ⊗ . . .⊗ ¬bn,

where n ≥ m ≥ 0, a, b1, . . . , bn are fuzzy atoms or numeric constants in [0, 1], and ⊗
is any fuzzy conjunction. We identify the rule with the fuzzy implication

b1 ⊗ . . .⊗ bm ⊗ ¬sbm+1 ⊗ . . .⊗ ¬sbn →r a.

We say that a fuzzy interpretation I of signature σ satisfies a rule R if RI = 1. I
satisfies an FASP program Π if I |= R for every rule R in Π . According to [3], an
interpretation I is a fuzzy answer set of a normal FASP program Π if I satisfies Π ,
and no interpretation J such that J <σ I satisfies the reduct of Π w.r.t. I , which is
the program obtained from Π by replacing each negative literal ¬b with the constant
for 1− bI .

Theorem 3 For any normal FASP program Π = {r1, . . . , rn}, let F be the formula
r1 ⊗m . . . ⊗m rn. An interpretation I is a fuzzy answer set of Π in the sense of [3] if
and only if I is a 1-stable model of F .

Example 8. Let Π be the following program

p← ¬q, q ← ¬p.

The answer sets of Π according to [3] are {(p, x), (q, 1− x)}, where x is any value in
[0, 1]: the corresponding fuzzy formula F is (¬sq →r p)⊗m (¬sp→r q); F ∗(u, v) is

F ⊗m ((¬sq →r u)⊗m (¬sp→r v)).

One can check that the 1-stable models of F are also {(p, x), (q, 1 − x)}, where x ∈
[0, 1].
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6.2 Relation to Fuzzy Equilibrium Logic

Like our fuzzy stable model semantics, fuzzy equilibrium logic [6] generalizes fuzzy
ASP programs to arbitrary propositional formulas, but its definition is highly complex.
Nonetheless we show that if we disregard strong negation considered there, fuzzy equi-
librium logic is essentially equivalent to the fuzzy stable model semantics where the
threshold is set to 1 and all atoms are subject to minimization.5

We review the definition of fuzzy equilibrium logic in the absence of strong nega-
tion. For any fuzzy propositional signature σ, a (fuzzy N5) valuation is a mapping from
{h, t}×σ to subintervals of [0, 1] such that V (t, a) ⊆ V (h, a) for each atom a ∈ σ. For
V (w, a) = [u, v], where w ∈ {h, t}, we write V −(w, a) to denote the lower bound u
and V +(w, a) to denote the upper bound v. The truth value of a formula under V is
defined as follows.

– V (w, c) = [c, c] for any numeric constant c;
– V (w,F ⊗G) = [V −(w,F )⊗ V −(w,G), V +(w,F )⊗ V +(w,G)]; 6

– V (w,F ⊕G) = [V −(w,F )⊕ V −(w,G), V +(w,F )⊕ V +(w,G)];
– V (h,¬F ) = [1− V −(t, F ), 1− V −(h, F )];
– V (t,¬F ) = [1− V −(t, F ), 1− V −(t, F )];
– V (h, F → G) = [min(V −(h, F )→ V −(h,G), V −(t, F )→ V −(t, G)),

V −(h, F )→ V +(h,G)];
– V (t, F → G) = [V −(t, F )→ V −(t, G), V −(t, F )→ V +(t, G)].

A valuation V is a (fuzzy N5) model of a formula F if V −(h, F ) = 1, which
implies V +(h, F ) = V −(t, F ) = V +(t, F ) = 1. For two valuations V and V ′, we say
V ′ � V if V ′(t, a) = V (t, a) and V (h, a) ⊆ V ′(h, a) for all atoms a. We say V ′ ≺ V
if V ′ � V and V ′ 6= V . We say that a model V of F is h-minimal if there is no model
V ′ of F such that V ′ ≺ V . An h-minimal fuzzy N5 model V of F is a fuzzy equilibrium
model of F if V (h, a) = V (t, a) for all atoms a.

For two fuzzy interpretations I , J of signature σ such that J ≤σ I , define the N5
fuzzy valuation VJ,I as VJ,I(h, a) =

[
aJ , 1

]
, VJ,I(t, a) =

[
aI , 1

]
for all atoms a in σ.

Since J ≤σ I , we have aJ ≤ aI , and VJ,I(t, a) ⊆ VJ,I(h, a) for all atoms a.
As in [6], we assume that the fuzzy negation ¬ is ¬s.
The following proposition relates the notions used in the fuzzy equilibrium models

and the fuzzy stable models.

Proposition 1 (a) I |=1 F if and only if VI,I is a model of F .
(b) For p = σ, I ∪ Jp

q |=1 F
∗(q) if and only if VJ,I is a model of F .

(c) For two interpretations I and J , we have VJ,I ≺ VI,I if and only if J < I .

The theorem below shows that the fuzzy stable model semantics can be reduced to
fuzzy equilibrium logic semantics.

Theorem 4 For any fuzzy formula F (that contains no strong negation) and any fuzzy
interpretation I , I is a 1-stable model of F if and only if VI,I is a fuzzy equilibrium
model of F .

5 Strong negation can be simulated in our semantics using new atoms as illustrated in Example 5.
6 For readability, we write the infix notation (x� y) in place of �(x, y).
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Next we show the other direction, i.e., reducing fuzzy equilibrium logic to the fuzzy
stable model semantics. For any valuation V , define the fuzzy interpretation IV as
aIV = V −(h, a) for all atoms a.

Theorem 5 For any fuzzy formula F (that contains no strong negation) and any valu-
ation V , we have that V is an equilibrium model of F if and only if

(i) V +(h, a) = V +(t, a) = 1 for all atoms a, and
(ii) IV is a 1-stable model of F relative to σ.

Theorem 5 tells us that in the absence of strong negation, the upper bounds of both
worlds in any equilibrium model are always 1.

7 Properties of Fuzzy Stable Models

In this section, we show that several well-known properties of the Boolean stable model
semantics can be naturally extended to the fuzzy stable model semantics.

7.1 Alternative Definition of F ∗

Proposition 2 For any fuzzy formula F and any fuzzy interpretations I , J with J ≤p I ,

– I ∪ Jp
q |=y ¬F ∗(q)⊗m ¬F iff I ∪ Jp

q |=y ¬F .
– I ∪ Jp

q |=y (F ∗ ⊗G∗)(q)⊗m (F ⊗G) iff I ∪ Jp
q |=y (F ∗ ⊗G∗)(q).

– I ∪ Jp
q |=y (F ∗ ⊕G∗)(q)⊗m (F ⊕G) iff I ∪ Jp

q |=y (F ∗ ⊕G∗)(q).

This proposition tells us that F ∗ in Section 3 can be equivalently defined by treating
the fuzzy operators in the uniform way:

– (¬F )∗ = ¬F ∗ ⊗m ¬F ;
– (F �G)∗ = (F ∗ �G∗)⊗m (F �G) for any binary operator �.

7.2 Theorem on Constraints

In answer set programming, constraints—rules with ⊥ in the head—play an important
role in view of the fact that adding a constraint eliminates the stable models that “vi-
olate” the constraint. The following theorem is the counterpart of Theorem 3 from [5]
for fuzzy propositional formulas.

Theorem 6 For any fuzzy formulas F andG, I is a 1-stable model of F ⊗ ¬G (relative
to p) if and only if I is a 1-stable model of F (relative to p) and I |=1 ¬G.

Example 9. Consider F = (¬sp →r q) ⊗m (¬sq →r p) ⊗m ¬sp. Formula F has
only one 1-stable model I = {(p, 0), (q, 1)}, which is the only 1-stable model of
(¬sp→r q)⊗m (¬sq →r p) that satisfies ¬sp to degree 1.

If we consider a more general y-stable model, then only one direction holds.
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Theorem 7 For any fuzzy formulas F and G, if I is a y-stable model of F ⊗ ¬G
(relative to p), then I is a y-stable model of F (relative to p) and I |=y ¬G.

Example 10. The other direction, that is, “if I is a y-stable model of F and I |=y ¬G,
then I is a y-stable model of F ⊗¬G,” does not hold in general. For example, consider
F = G = p and ⊗ to be ⊗l, and interpretation I = {(p, 0.4)}. Clearly I is a 0.4-stable
model of p and I |=0.4 ¬p, but I is not a 0.4-stable model of p ⊗l ¬p. In fact, I is not
even a 0.4-model of the formula.

7.3 Theorem on Choice Formulas

In the Boolean stable model semantics, formulas of the form p ∨ ¬p are called choice
formulas, and adding them to the program makes atoms p exempt from minimiza-
tion. Choice formulas have been shown to be useful in composing a program in the
“Generate-and-Test” method. This section shows their counterpart in the fuzzy stable
model semantics.

For any fuzzy atom p, Choice(p) stands for p ⊕l ¬sp. For any list p = (p1, . . . pn)
of fuzzy atoms, Choice(p) stands for

Choice(p1)⊗ . . .⊗ Choice(pn),

where ⊗ is any fuzzy conjunction.
The following proposition tells that choice formulas are tautological.

Proposition 3 For any fuzzy interpretation I and any list p of fuzzy atoms, I |=1 Choice(p).

Theorem 8 is an extension of Theorem 2 from [5].

Theorem 8 (a) If I is a y-stable model of F relative to p ∪ q, then I is a y-stable
model of F relative to p.

(b) I is a 1-stable model of F relative to p iff I is a 1-stable model of F ⊗ Choice(q)
relative to p ∪ q.

Theorem 8 (b) does not hold for arbitrary threshold y (i.e., if “1−” is replaced with
“y−”). For example, consider F = ¬s¬sq and I = {(q, 0.5)}. Clearly I is a 0.5-model
of F , and thus I is a 0.5-stable model of F relative to ∅. However, I is not a 0.5-stable
model of F ⊗m Choice(q) = ¬s¬sq ⊗m (q ⊕l ¬sq) relative to ∅ ∪ {q}, as witnessed
by J = {(q, 0)}.

Since the 1-stable models of F relative to ∅ are the models of F , it follows from
Theorem 8 (b) that the 1-stable models of F ⊗ Choice(σ) relative to σ are exactly the
1-models of F .

Corollary 1 Let F be a formula of a finite signature σ. I is a 1-model of F relative
to σ iff I is a 1-stable model of F ⊗ Choice(σ).

Example 11. Consider the formula F = ¬sp →r q. Although any interpretation I that
satisfies 1 − pI ≤ qI is a 1-model of F , among them only {(p, 0), (q, 1)} is a 1-stable
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model of F . However, we check that all 1-models of F are exactly the 1-stable models
of G = F ⊗m Choice(p)⊗m Choice(q): G∗(u, v) is

(¬sp→r q)⊗m (¬sp→r v)⊗m (u⊕l ¬sp)⊗m (v ⊕l ¬sq)
and for K = I ∪ Jpquv ,

G∗(u, v)K = 1⊗m ((1− pK)→r v
K)⊗m (uK ⊕l (1− pK))⊗m (vK ⊕l (1− qK)).

So, for K to satisfy G∗(u, v) to degree 1, uK should be at least pK and vK should be at
least qK . So there does not exist J <pq I such that I ∪ Jpquv |=1 G

∗(u, v), from which
it follows that I is a 1-stable model of G.

8 Conclusion

We introduced a general stable model semantics for fuzzy propositional formulas, which
generalizes both the Boolean stable model semantics and fuzzy propositional logic. The
syntax is the same as the syntax of fuzzy propositional logic, but the semantics defines
stable models instead of models. The formalism allows highly configurable default rea-
soning involving fuzzy truth values. Our semantics, when we restrict threshold to be 1
and assume all atoms to be subject to minimization, is equivalent to fuzzy equilibrium
logic in the absence of strong negation, but is much more simpler. To the best of our
knowledge, our representation of commonsense law of inertia involving fuzzy values is
new. The representation uses nested fuzzy operators, which are not available in earlier
fuzzy ASP semantics for a restricted syntax.

We showed that several traditional results in answer set programming can be natu-
rally extended to this formalism, and expect that more results can be carried over. Future
work includes implementing this language using mixed integer programming solvers or
bilevel programming solvers [7].
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