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ABSTRACT 

In this paper we outline the Adaptive Resource Allocation 

Protocol (ARAP) as an improved resource synchronization 

algorithm for hierarchically scheduled real-time systems. ARAP 

exploits knowledge about task utilization, using a proportional-

integral-derivative (PID) controller, to estimate required resource 

bandwidth and improve scheduling decisions. Our analysis and 

experiments with RTSIM show that ARAP provides better 

temporal isolation and resource utilization during periods of 

transient overload compared to state-of-the-art resource 

synchronization algorithms.  Implemented as part of VxWorks, the 

results are confirmed using an avionic system, for which ARAP 

substantially reduced the number of hard real-time deadline 

misses.1 

Categories and Subject Descriptors 

C.3 [Special-Purpose and Application-Based Systems]: Real-

Time and embedded systems. 

General Terms 

Algorithms, Performance, Reliability.  

Keywords 

Real-time systems, hierarchical scheduling, resource sharing, 

operating systems. 

1. INTRODUCTION 
Modern embedded and Cyber Physical Systems such as smart 

cities, autonomous automotive systems or the smart electrical grid 

are composed of various subsystems which are often developed 

independently. A common requirement for such systems is 

temporal isolation, meaning that the temporal behavior of one 

subsystem should never adversely affect the temporal behavior of 

another subsystem. 

This requirement for temporal isolation is challenged by two 

major properties we address in this paper. First, the amount of 

data and resulting computation times may vary significantly. Such 

variations are not easy to predict neither in their magnitude nor 

their duration.  The second challenge is that the temporal behavior 

of the subsystems is often influenced by resources which are 

shared among tasks. For instance, if an interface to a sensor 

device is locked by a task in one subsystem the temporal isolation 

of other subsystems requiring access to the sensor could be 

violated. 

To address these challenges a variety of solutions have been 

proposed. The most common approach is “over-engineering.” 

Historically, systems were designed and considered “safe” with a 

utilization factor U of less than 70% [18], while systems with a 

higher utilization were deemed “unsafe”. Traditional resource 

access protocols, such as Priority Inheritance Protocol (PIP) [4], 

the Priority Ceiling Protocol (PCP) [4] or the Stack Resource 
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Policy (SRP) [5] are not a viable solution either because there is 

no system wide visibility across subsystems. To cope with these 

issues, the Hierarchical Scheduling Framework (HSF) has been 

introduced to simplify the development and integration of 

embedded systems and shown to be particularly useful in the area 

of open systems [1]. 

The primary goal of hierarchical scheduling is to bind the 

temporal behavior of those applications whose execution times 

deviate considerably, allowing for the predictable integration of 

the various subsystems. However, in order to provide this 

temporal isolation the basic HSF model assumes the absence of 

shared resources. The problem with this assumption is that most 

embedded systems share global resources and need to be 

synchronized. While traditional resource access protocols can be 

used to synchronize resources locally, within a subsystem, global 

resource access presents added challenges such as the 

unpredictable holding times between globally shared resources. 

In this paper we present the Adaptive Resource Allocation 

Protocol (ARAP) which is a new resource synchronization policy 

for globally shared resources in an HSF, focused in a single 

processor environment. ARAP utilizes knowledge about previous 

task utilization, by applying the concept of control theory using a 

proportional-integral-derivative (PID) controller, to adapt to 

changes in the system. The primary benefit of this new strategy is 

that the system can now adapt to computational changes 

dynamically. The result being that temporal isolation is 

maintained between subsystems even during periods of overload. 

We applied ARAP in an actual embedded system that was 

experiencing overload conditions resulting in missed deadlines 

due to soft and hard real-time tasks sharing the same resource. 

Our experiments demonstrated the benefit of ARAP specifically 

during overload conditions and as a result deadline misses for 

hard real-time tasks were eliminated. Other contributions of this 

paper include: the performance analysis of ARAP as compared to 

other synchronization protocols, the ARAP protocol implemented 

as part of the resource manager class in an open source real-time 

scheduling simulator, a simulation model of transient overload 

conditions for performance analysis and the first time 

implementation (to the best of our knowledge) of an HSF as part 

of the VxWorks real-time operating system.    

The remainder of the paper is structured as follows: In Section 2 

we provide an overview of hierarchical scheduling. Related work 

is reviewed in Section 3 while Section 4 presents the adaptive 

resource access mechanism used in our protocol. Performance 

analysis and results are provided in Section 5. Section 6 describes 

the simulation environment and Section 7 presents the 

implementation in an actual embedded system application. 

2. PRELIMINARIES 
This section presents the overall architecture of a hierarchical 

scheduled system as well as the definition of a system overload 

condition. 



2.1 Hierarchical Scheduling 
The basic framework of a hierarchically scheduled system [2] [3] 

is composed of multiple applications (subsystems) where each 

application could be composed of multiple tasks (see Figure 1). A 

global scheduler controls which application can use the processor 

while the local scheduler determines which application’s task 

should actually execute. Every application is allocated a separate 

service manager, known as the server. Each server is allocated a 

CPU capacity reserve, which is assigned as a pair         where 

   is defined as the time quantum and    is defined as the period. 

 

Figure 1: Hierarchical Scheduling Framework 

Each task gets to execute for its assigned time quantum   , when 

the task’s time quantum    is exhausted the task is blocked until 

its next period. In effect, the server functions as an independent 

processor virtually limiting the bandwidth of each application. 

2.2 Resource Sharing 
Resource sharing in an HSF can be classified as either local or 

global. Tasks that share resources within the same subsystem are 

considered local resource sharing. Tasks that share resource 

across applications are classified as global resource sharing which 

requires the resource be protected at the local as well as global 

level. Therefore a task that locks a global resource will also cause 

its server to lock the resource. This creates an added complication 

of increased resource holding times due to the server budget 

exhaustion.  

Researchers have proposed several solutions [8][6] to the problem 

of this added delay in critical sections due to server budget 

exhaustion. One such approach called budget check checks to see 

if there is sufficient server budget before allowing a task to enter a 

critical section. If the budget is insufficient the task is not granted 

access to the resource until the next budget replenishment. In 

another approach the task is allowed to enter a critical section 

without checking for a sufficient budget. As a result, if the budget 

is exhausted while still inside the critical section the task is just 

allowed to continue and consume extra budget until the end of the 

critical section.  

2.3 Overload Conditions 
The problem of server budget exhaustion while a task is inside a 

critical section can be amplified during periods of overload 

because it could unnecessarily increase the time a critical task 

would have to wait for the resource. As a consequence, task 

overruns can result because tasks execute longer than expected 

which can have an increasingly negative impact on resource 

holding times. Thus, before we proceed any further, we will take 

the time to provide a brief definition of an overload condition. 

Overall system load is defined in [18] as the equivalent to the 

processor utilization factor U: 

       
  

  

 
     (1) 

where    is the computational time and    is the task period. A 

load value of      means the system is overloaded (requested 

computation time exceeds the available processor time). 

Consequently, there are two broad classifications of overload 

conditions also defined by the authors in [18]: 

1. Transient overload is defined for a limited time where the 

average load is        but the maximum load is       . 

2. Permanent overload is defined for an unpredictable duration 

where the average load is       . 

It is important to note that in this paper our approach was to only 

consider transient overload conditions. As a result, the primary 

benchmark of our work is to practically eliminate hard real-time 

task deadline misses and manage  soft real-time task misses so 

that the system can recover gracefully from an occasional 

transient overload condition. 

3. RELATED WORK 
Initially an HSF was proposed by authors in [3][9] as a means to 

perform composability analysis for open systems development. 

The motivation being that it can quickly become intractable to 

accurately verify the timing behavior of the embedded system as 

the complexity increases. The approach was to verify the timing 

behavior of each individual subsystem independently then 

compose each subsystem into the overall system. However, 

typical embedded systems are not entirely independent because 

subsystems may need to share resources which are why previous 

research on HSFs was extended to include schedulability analysis 

of semi-independent real-time components [8] [5].   

The SIRAP [8] protocol was developed for fixed-priority 

preemptive scheduling while the BROE [10] protocol was 

developed for dynamic-priority scheduling. Both protocols use a 

form of budget check to determine if there was enough budget left 

to enter the critical section. If the remaining budget was deficient 

to complete the critical section the task was blocked from locking 

the resource until the next budget replenishment. The limitation 

with the budget check approach is that the critical section 

execution time is based upon worst-case analysis. This could lead 

to resource under utilization due to conservative WCET 

estimations. Additionally, a priori knowledge of the WCET for a 

critical section is required which is often difficult to evaluate in 

applications with variable execution times. 

Hierarchical scheduling with resource sharing HSRP [2] and later 

extended to OPEN-HSRP [10] utilized a budget overrun approach 

to reduce the resource holding times during budget expiration. 

While this approach does provide better flexibility for applications 

with variable execution times there are some disadvantages. One 

such drawback is that even though a task is allowed to overrun its 

budget there still has to be a limit placed upon the maximum 

overrun time. In order to prevent unbounded blocking a task is 

forcefully preempted if it is still holding the resource during the 

next budget replenishment. This leads to limitations being placed 

upon the types of shared resources used to those that can safely be 

aborted to relatively short critical section execution times. 

Another consideration is because a task can overrun its budget the 

strict temporal isolation between subsystems could be violated. It 

is for these reasons that HSRP based systems are typically only 

used for soft real-time systems. 



Other recently published work, known as RRP [11], took a 

different approach to resource locking before budget exhaustion. 

Instead of performing a budget check the task is allowed to enter 

the critical section and unlike HSRP if the budget has expired the 

task is simply preempted and rolled back. The RRP protocol 

improved the average case response times and task schedulability 

compared to SIRAP and the OPEN-HSRP protocols. However, 

the limitation with RRP is that it can only be used with shared 

resources that can be safely rolled back (e.g. databases).  

Our approach does not rely on WCET analysis of critical section 

executions times but instead uses feedback which is more flexible 

since it represents the actual operating environment. Previous 

research has proposed using feedback to manage CPU scheduling 

reservations [12] [13] then extended it to include application 

defined Quality of Service (QoS) parameters. However, ARAP is 

the first to apply a feedback mechanism to resources that are 

shared across subsystems in a hierarchically scheduled system. 

Past research has demonstrated [14][15] that previous task 

behavior is a valid indicator for future task behavior and because 

our method incorporates feedback ARAP is better positioned to 

respond to transient overload conditions. Consequently, SIRAP is 

too conservative by using static WCET analysis while OPEN-

HSRP overrun mechanisms could affect the deadlines of higher 

priority tasks specifically during periods of transient overload. 

4. ADAPTIVE RESOURCE ACCESS 

PROTOCOL (ARAP) 
This section provides an overview of ARAP which is a resource 

access protocol that synchronizes access to shared resources in a 

hierarchically scheduled system. In this paper we only consider 

shared memory as the mutually exclusive resource. However, 

ARAP could also be extended to include other shared resources 

(e.g. memory-mapped areas, device registers, and peripheral 

devices) as well. The access to these resources are performed as 

part of a critical section and protected by a semaphore. 

4.1 Protocol Description 
Similar to the SIRAP and OPEN-HSRP protocols ARAP utilizes a 

two-level hierarchy for resource management. Resources that are 

shared within a subsystem are managed with SRP and resources 

that are shared across subsystems are managed with an extended 

version of HSRP. The overall sequence of actions for ARAP is 
provided by the flowchart depicted in Figure 2. 

 

Figure 2: ARAP architecture flowchart 

4.1.1 Budget Exhaustion 
The primary difference between the various resource access 

protocols in an HSF is how the budget exhaustion of a 

subsystem’s server is handled. As mentioned in Section 3 the 

SIRAP protocol performs a budget check while OPEN-HSRP 

permits budget overflow. Similar to the SIRAP protocol our 

method also performs a form of budget check. However, instead 

of using a static a-priori calculation of the Critical Section 

Execution Time (CSET) ARAP incorporates feedback to estimate 

the next resource holding time      for that critical section 

execution instance.  

The primary benefit of incorporating feedback is that the system 

can dynamically adapt to changes in CSET specifically during 

periods of transient overload. In this situation the SIRAP protocol 

tends to be too conservative because with SIRAP the overload 

condition would have to be factored into the CSET calculation 

resulting in task under utilization. While the OPEN-HSRP 

protocol can better adapt to overload conditions the overrun 

mechanism could adversely affect the response times of higher 

priority tasks. Therefore, our approach leads to a more robust and 

better utilized system with a higher degree of determinism. 

4.1.2 Feedback Mechanism 
Our feedback architecture is implemented as part of the kernel 

(see Figure 3) and consists of a PID which is used to estimate the 

execution time for a task executing inside a critical section. The 

output or observed value of the PID is the estimated error ratio 

(ER) which is defined as the ratio between the actual measured 

critical section execution time and the previous window of past 

error ratios. The semaphore request mechanism is used as the 

actuator of the system determining whether a task is granted 

access to the critical section. The control action is performed by 

either allowing the task to acquire the semaphore or to block the 

task waiting on the semaphore. If a task    requests a semaphore 

(e.g. srp_wait ()) it has to pass the budget check test to acquire the 

semaphore. The budget check test uses information from the PID 

controller as well as information from the scheduler to determine 

if there is enough remaining budget to complete the critical 

section. To apply the feedback control ARAP uses the PID 

controller to compute       which is used to project the next 

critical section execution time based upon the ER. Using the basic 

form a general PID controller [19] defined as: 

         

                            
              

      (2) 

where   ,    and    are the PID control parameters, IW is the 

integration window and DW is the size of the differentiation 

interval. 

 

Figure 3: Structure of feedback architecture 

4.1.3 Implementation Considerations 
The implementation of ARAP is similar to SIRAP but the locking 

operations (srp_wait, and srp_signal) are modified to utilize the 

feedback mechanism. The locking operation is performed by the 

srp_wait function so when a task tries to acquire a resource the 



local scheduler performs a check to determine if there is enough 

budget to complete the critical section. At the semaphore request 

time t let the function calcRHT(), which utilizes the PID 

controller, calculate the projected resource holding time so that  

               . At the same time let the function 

getCurBudget() get the subsystem server’s remaining budget such 

that    
                    . If the task’s projected resource 

holding time         
     then the task is allowed to lock the 

resource and execution continues according to the rules of HSRP. 

On the other hand, if          
  then the task is not permitted to 

lock the resource until the next subsystem budget replenishment, 

this is known as self-blocking. The release operation is performed 

by the srp_signal function which signifies the completion of the 

critical section. The time that is spent in the critical section is used 

as the feedback to the PID controller. At the semaphore release 

time t’ the function recordRHT(          records the actual time 

spent in the critical section. 

5. PERFORMANCE ANALYSIS  
This section provides the background for the performance analysis 

of ARAP as part of a hierarchically scheduled system (equations 

are applied in subsection 5.3). Given that both ARAP and SIRAP 

perform a budget check the analysis performed for SIRAP [8] can 

be applied to ARAP as well. The difference is that ARAP uses a 

projected CSET based upon feedback whereas SIRAP uses static 

a-priori CSET. 

5.1 Local Performance Analysis 
According to the authors in [7] each subsystem      is 

schedulable if  

    
                                  (3) 

where         is the supply bound function used by authors [8] to 

calculate the minimum CPU allocations required during an 

interval of time. Authors in [7] presented a periodic processor 

model to characterize the allocations defined by what they called 

the virtual processor model represented as       . The supply 

bound function (see Figure 4) of the virtual processor model is 

defined as: 

           
                        

                                       
    (4) 

where                      and      is defined as the 

interval                     .  

 

Figure 4: Supply bound function virtual processor model 

T(3,2), k=3 

The request bound function          of a task    is defined as: 

                                     (5) 

where    is the WCET of task   ,       is the maximum self-

blocking for task   ,         is the interference from tasks with a 

higher priority than    and       is the maximum interference by 

tasks with lower priority than    which share a global resource, 

such that: 

            
 
     (6) 
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                                     (8) 

The resource holding time      for    is defined as the maximum 

critical section execution      plus the interference from the tasks 

with a higher preemption level than the ceiling of the resource 

during the CSET of     . Such that      is computed using         

as follows: 

                
 

  
   

 
                (9) 

where            is the ceiling of the resource accessed within the 

critical section      and       are the worst-case  execution time 

and period of the task that has a higher preemption level than 

          . The value u represents the maximum resource     

within a subsystem. 

5.2 Global Performance Analysis 
For global scheduling analysis the virtual processor model can be 

extended to a global model           where multiple subsystems 

   can be verified according to equation (3). Therefore, the 

schedulability test for a fixed priority global scheduler is defined 

as: 

              
  

  
    

         (10) 

where    of subsystem    is the maximum resource holding time 

with a preemption level less than   . 

5.3 Performance Results 
Schedulability analysis for HSRP was performed by authors in [2] 

which is very similar to the SIRAP analysis which excludes self-

blocking but has to consider the overrun mechanisms. Similar to 

SIRAP as well the analysis for OPEN-HSRP is extended from 

equation (3) as follows: 

                                     (11) 

where    is the maximum blocking time when    is blocked by a 

lower priority task. The supply bound function        is defined 

by equation (4) and the request bound function            is 

defined as follows: 

                 
 

  
             (12) 

where       is the set of tasks with priorities higher than   . The 

global schedulability is defined as: 

                          (13) 

where the load bound function         is defined as follows: 

               (14) 

where 

              
 

  
             (15) 

where        is the set of subsystems with a higher priority than 

subsystem    and    is the maximum time that    is blocked by 

lower priority subsystems. The performance of ARAP is 

evaluated as the minimum value of the request bound function 

         that would guarantee schedulability. For the synthetic 

workload we generated random variances of a hierarchical system 

consisting of 3 separate subsystems such that         . Each 

subsystem    consisted of 3 tasks with a global resource being 



shared between each subsystem. Each subsystem has a total 

utilization of 15%. Task periods ranged between 100 and 1000. 

Figure 5 represents the overall task acceptance rate for the 

simulated task sets required for task schedulability as defined by 

equation (3).  Notice that ARAP has an improved acceptance rate 

over SIRAP. The reason for this improvement is that the WCET 

calculation for ARAP adapts to the current workload which 

provides greater flexibility than SIRAP’s static approach. 

Additionally, because ARAP is adaptable it is comparable to 

OPEN-HSRP but without the added complexity of managing the 

overruns of the OPEN-HSRP protocol. 

 

Figure 5: Task acceptance rate for simulated task sets 

6. SIMULATION ENVIRONMENT 
This section describes the simulation environment we used to 

further analyze ARAP which was implemented as a simulation 

component within RTSIM [16]. RTSIM (Real-Time System 

Simulator) is a task scheduler simulation and is used primarily for 

simulating real-time control systems. In order to implement 

ARAP in RTSIM we extended the existing resource manager 

class to include the feedback mechanisms.  

6.1 Modeling and PID Tuning 
A Heaviside step function was used to model the transient 

overload condition. Heaviside functions are used extensively in 

control theory to represent different loads. The discontinuous 

nature of this function maps nicely to an overload situation where 

we can model periods of nominal, ramp-up and ramp-down 

behaviors. The Ziegler-Nichols [17] tuning method was used to 

tune the feedback mechanism.  

6.2 Example Task Set 
The example task set consisted of a total of five periodic tasks, 

two hard real-time and three soft real-time tasks but only two 

tasks T3 and T5 shared a critical region and therefore were 

synchronized by a semaphore. For the two tasks (T3 and T5), that 

shared a semaphore, execution times were modeled to exceed 

their nominal rates. The Tasks T4 and T5 which represent hard 

real-time tasks were allowed to execute up to their predefined 

WCET while Task T3 was modeled to exceed its bandwidth, 

thereby generating a transient overload condition. 

In order to provide a comparison of ARAP we simulated both the 

traditional first-come-first-serve (FCFS) and OPEN-HSRP 

resource allocation protocols in RTSIM. One note; is that due to 

the simulated transient overload conditions of our scenario SIRAP 

was not included in the results because it was repeatedly denied 

access to the shared resource due to conservative nature of the 

protocol.   

We ran simulations using the task set defined above with the 

Heaviside function to simulate task execution times for analysis as 

to how well the ARAP protocol performed against EDF 

scheduling with FCFS resource allocation (no PIP) as well as EDF 

using resource sharing with budget overrun (OPEN-HSRP). We 

executed sample runs modeling transient overload conditions at 

0%, 5%, 10%, 15%, 20% and 25% respectively. The Figures 6 

and 7 separate out the miss rates between the hard and soft real 

time tasks. 

 

Figure 6: Hard Real-Time task miss rate (RTSIM) 

 

Figure 7: Soft Real-Time task miss rate (RTSIM) 

In the figures above EDF-FCFS represents EDF scheduling with 

standard first-come-first-serve resource management (no PIP), 

EDF-HSRP represents EDF scheduling with OPEN-HSRP 

resource management and EDF-ARAP represents EDF scheduling 

with PID feedback control. Depicted in Figure 6 the ARAP 

protocol outperforms the other methods while it sacrifices some 

deadline misses in soft real-time tasks. Notice that in Figure 6 

both scheduling mechanisms EDF-FCFS and EDF-HSRP exhibit 

hard real-time task misses. Even though EDF-HSRP manages the 

soft real-time tasks with a periodic server hard real-time task 

misses are realized because the overrun mechanism allows the 

task to continue, even though its server budget has been 

exhausted. In Figure 7 EDF-HSRP outperforms EDF-ARAP 

because the overrun mechanism allows the task to continue at the 

expense of hard real-time deadline misses. 

7. PRACTICAL EVALUATION 
To demonstrate the practicality of our approach we also 

implemented ARAP as part of a ground-based command and 

control test set used for satellite telemetry processing. A 

hardware-in-the-loop (HWIL) simulator was used to provide the 

workload for our system. This particular use case was chosen 

because telemetry processing times can vary considerably 

depending upon the data rate and how densely the telemetry frame 

is populated. In this way, we can use the HWIL simulator to 

generate transient overload conditions. 

The main software components of the system includes a hard real-

time periodic task that performs the frame processing of a 

telemetry stream. The other primary software component is a soft 

real-time task that provides the health and status monitoring for 

the vehicle. The telemetry processing task and the monitoring task 

both share a global resource which is the decommutated telemetry 

buffer. Similar to the simulation environment we used the HWIL 



simulator to model transient overloads between 0%-25%. Two 

traditional resource synchronization protocols (PIP and FCFS) 
were used in the evaluation for comparison. 

The results for the overall deadline miss rates were separated out 

based upon soft and real-time tasks. Soft real-time tasks were 

scheduled by the local subsystem scheduler which is scheduled by 

the global fixed priority scheduler of VxWorks. Hard real-time 

tasks were scheduled directly by the global VxWorks scheduler. 

Soft real-time tasks were modeled to allow their execution time to 

exceed their budget while the hard real-time tasks were designed 

to not exceed their pre-defined utilization budget. 

Figures 8 and 9 show the miss rates of the hard real-time tasks and 

soft real-time tasks respectively. The feedback mechanism 

represented as FPPS-ARAP in the graph was compared against 

the priority inheritance protocol (FPPS-PIP) and the first-come-

first-server (FPPS-FCFS) protocol. Notice how even when using 

priority inheritance a lower priority task can still cause a higher 

priority task to miss their deadline. The reason is that while PIP 

does solve the priority inversion problem it does not solve the 

problem of unbounded blocking.   

As illustrated in Figure 8 ARAP does provide the mechanism for 

eliminating the extended blocking by a lower priority task 

however, the soft real-time task could be affected causing 

increased missed deadlines for the soft real-time task. Notice that 

in Figure 9 ARAP reports the highest number of deadline misses 

for soft real-time tasks. The reason for this behavior is that during 

a transient overload the task may be denied access to the resource 

and have to wait until the next budget replenishment period. As 

shown in the results using a feedback mechanism can directly 

benefit the determinism of a hard real-time at the possible expense 

of other soft real-time tasks that share the global resource.  

 
Figure 8: Hard Real-Time task miss rate (vxWorks) 

 
Figure 9: Soft Real-Time task miss rate (vxWorks) 

8. CONCLUSION 
In this paper we considered the problem of sharing global 

resources in a hierarchical scheduled system. Traditionally, HSF 

was designed for soft real-time applications, in part due to 

problem of unbounded resource holding times between global 

resources. Our approach which utilized feedback from the actual 

system to estimate future usage provided greater flexibility and 

allowed for the system to adapt to changes better than other state-

of-the-art synchronization protocols. By implementing ARAP as 

part of an actual embedded system application we were able to 

effectively eliminate deadline misses for a critical high priority 

task. Our motivation for this work stems for the aerospace 

industry where systems are routinely over engineered in the 

interest of real-time determinism. It is a common perception that 

an embedded system is considered “unsafe” above 70% total 

utilization. As a result of this work we demonstrated that we can 

build more efficient embedded systems by more effectively 

managing the tasks within that system and in doing so reducing 

the total number of processing elements required. 
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