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Abstract. The necessity of manipulating very large amounts of data
and the wide availability of computational resources on the Cloud is
boosting the popularity of distributed computing in industry. The appli-
cability of model-driven engineering in such scenarios is hampered today
by the lack of an efficient model-persistence framework for distributed
computing. In this paper we present NeoEMF/HBase, a persistence
backend for the Eclipse Modeling Framework (EMF) built on top of the
Apache HBase data store. Model distribution is hidden from client ap-
plications, that are transparently provided with the model elements they
navigate. Access to remote model elements is decentralized, avoiding the
bottleneck of a single access point. The persistence model is based on
key-value stores that allow for efficient on-demand model persistence.
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1 Introduction

The availability of large data processing and storage in the Cloud is becoming a
key resource for part of today’s industry, within and outside IT. It offers a tempt-
ing alternative for companies to process, analyze, and discover new data insights,
yet in a cost-efficient manner. Thanks to existing Cloud computing companies,
this facility is extensively available for rent [11]. This ready-to-use IT infrastruc-
ture is equipped with a wide range of distributed processing frameworks, for
companies that have to occasionally process large amounts of data.

One of the principal ingredients behind the success of distributed process-
ing are distributed storage systems. They are designed to answer to data pro-
cessing requirements of distributed and computationally extensive applications,
i.e., wide applicability, scalability, and high performance. Appearing along with
MapReduce [10], BigTable [9] strongly stood in for these qualifications. One of
the most compliant open-source implementations of MapReduce and BigTable
are Apache’s Hadoop [17] and HBase [18], respectively.

Another success factor for widespread distributed processing is the appear-
ance of high-level languages for simplifying distribution by a user-friendly syntax
(mostly SQL-like). They transparently convert high-level queries into a series of



parallelizable jobs that can run in distributed frameworks, such as MapReduce,
therefore making distributed application development convenient.

We believe that Model-Driven Engineering (MDE), especially the query/-
transformation languages and engines, would be suitable for developing dis-
tributed applications on top of structured data (models). Unfortunately, MDE
misses some fundamental bricks towards building fully distributed transforma-
tion/query engines. In this paper we address one of those components, i.e.
a model-persistence framework for distributed computing. Several distributed
model-persistence frameworks exist today [3,16]: for the Eclipse Modeling Frame-
work (EMF) [6] two examples are Connected Data Objects (CDO) [3] that is
based on object relational mapping1, and EMF fragments [15], that maps large
chunks of model to separate URIs. We argue that these solutions are not well-
suited for distributed computing, exhibiting one or more of the following faults:

– Model distribution is not transparent: so queries and transformations need
to explicitly take into account that they are running on a part of the model
and not the whole model (e.g. EMF fragments)

– Even when model elements are stored in different nodes, access to model
elements is centralized, since elements are requested from and provided by a
central server (e.g. CDO over a distributed database). This constitutes a bot-
tleneck and does not exploit a possible alignment between data distribution
and computation distribution.

– The persistence backend is not optimized for atomic operations of model han-
dling APIs. In particular files (e.g. XMI over HDFS [7]), relational databases
or graph databases are widely used while we have shown in previous work [12]
that key-value stores are very efficient in typical queries over very large mod-
els. Moreover key-value stores are more easily distributed with respect to
other formats, such as graphs.

– The backend assumes to split the model in balanced chunks (e.g. EMF Frag-
ments). This may not be suited to distributed processing, where the opti-
mization of computation distribution may require uneven data distribution.

In this paper we present NeoEMF/HBase, a persistence backend for EMF
built on top of the Apache HBase data store. NeoEMF/HBase is transpar-
ent w.r.t. model manipulation operations, decentralized, and based on key-value
stores. The tool is open-source and publicly available at the paper’s website2.
This paper is organized as follows: Section 2 presents HBase concepts and archi-
tecture, Section 3 presents the NeoEMF/HBase architecture, data model and
properties; and finally, Section 4 concludes the paper and outlines future work.

1 CDO servers (usually called repositories) are built on top of different data storage
solutions (ranging from relational databases to document-oriented databases). How-
ever, in practice, only relational databases are commonly used, and indeed, only
DB Store [1], which uses a proprietary Object/Relational mapper, supports all the
features of CDO and is regularly released in the Eclipse Simultaneous Release [2,4,5].

2 http://www.emn.fr/z-info/atlanmod/index.php/NeoEMF/HBase

http://www.emn.fr/z-info/atlanmod/index.php/NeoEMF/HBase


2 Background: Apache HBase

Apache HBase [18] is the Hadoop [17] database, a distributed, scalable, ver-
sioned and non-relational big data store. It can be considered an open-source
implementation of Google’s Bigtable proposal [9].

2.1 HBase data model

In HBase, data is stored in tables, which are sparse, distributed, persistent multi-
dimensional sorted maps. A map is indexed by a row key, acolumn key, and a
timestamp. Each value in the map is an uninterpreted array of bytes.

HBase is built on top of the following concepts [14]:

Table — Tables have a name, and are the top-level organization unit for data
in HBase.

Row — Within a table, data is stored in rows. Rows are uniquely identified by
their row key.

Column Family — Data within a row is grouped by column family. Column
families are defined at table creation and are not easily modified. Every row
in a table has the same column families, although a row does not need to
store data in all its families.

Column Qualifier — Data within a column family is addressed via its column
qualifier. Column qualifiers do not need to be specified in advance and do
not need to be consistent between rows.

Cell — A combination of row key, column family, and column qualifier uniquely
identifies a cell. The data stored in a cell is referred to as that cell’s value.
Values do not have a data type and are always treated as a byte[].

Timestamp — Values within a cell are versioned. Versions are identified by
their version number, which by default is the timestamp of when the cell
was written. If the timestamp is not specified for a read, the latest one is
returned. The number of cell value versions retained by HBase is configured
for each column family (the default number of cell versions is three).

Figure 1 (extracted from [9]) shows an excerpt of an example table that
stores Web pages. The row name is a reversed URL. The contents column
family contains the page contents, and the anchor column family contains the

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Fig. 1: Example of a table in HBase/BigTable (extracted from [9])



text of any anchors that reference the page. CNN’s home page is referenced by
both the Sports Illustrated and the MY-look home pages, so the row contains
columns named anchor:cnnsi.com and anchor:my.look.ca. Each anchor cell
has one version; the contents column has three versions, at timestamps t3, t5,
and t6.

2.2 HBase architecture

Fig. 2 shows how HBase is combined with other Apache technologies to store
and lookup data. Whilst HBase leans on HDFS to store different kind of config-
urable size files, ZooKeeper [19] is used for coordination. Two kinds of nodes can
be found in an HBase setup, the so-called HMaster and the HRegionServer. The
HMaster is the responsible for assigning the regions (HRegions) to each HRe-
gionServer when HBase is starting. Each HRegion stores a set of rows separated
in multiple column families, and each column family is hosted in an HStore. In
HBase, row modifications are tracked by two different kinds of resources, the
HLog and the Stores. The HLog is a store for the write-ahead log (WAL), and is
persisted into the distributed file system. The WAL records all changes to data
in HBase, and in the case of a HRegionServer crash ensures that the changes to
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Fig. 2: HBase architecture



the data can be replayed. Stores in a region contain an in-memory data store
(MemStore) and a persistent data stores (HFiles, that are persisted into the
distributed file system) HFiles are local to each region, and used for actual data
storage. The ZooKeeper cluster is responsible of providing the client with the
information about both the HRegionServer and the HRegion hosting the row the
client is looking up for. This information is cached at the client side, so that a
direct communication could be directly setup for the next times without query-
ing the HMaster. When an HRegionServer receives a write request, it sends the
request to a specific HRegion. Once the request is processed, data is first writ-
ten into the MemStore and when certain threshold is met, the MemStore gets
flushed into an HFile.

2.3 HBase vs. HDFS

HDFS is the primary distributed storage used by Hadoop applications as it is
designed to optimize distributed processing of multi-structured data. It is well
suited for distributed storage and distributed processing using commodity hard-
ware. It is fault tolerant, scalable, and extremely simple to expand. HDFS is
optimized for delivering a high throughput of data, and this may be at the ex-
pense of latency, which makes it neither suitable nor optimized for atomic model
operations. HBase is, on the other hand, a better choice for low-latency access.
Moreover, HDFS resources cannot be written concurrently by multiple writers
without locking and this results in locking delays. Also writes are always made
at the end of the file. Thus, writing in the middle of a file (e.g. changing a value
of a feature) involves rewriting the whole file, leading to more significant delays.
On the contrary, HBase allows fast random reads and writes. HBase is row-level
atomic, i.e. inter-row operations are not atomic, which might lead to a dirty read
depending on the data model used. Additionally, HBase only provides five basic
data operations (namely, Get, Put, Delete, Scan, and Increment), meaning that
complex operations are delegated to the client appliaction (which, in turn, must
implement them as a combination of these simple operations).

3 NeoEMF/HBase

Figure 3 shows the high-level architecture of our proposal for the EMF frame-
work. It consists in a transparent persistence manager behind the model-manage-
ment interface, so that tools built over the modeling framework would be unaware
of it. The persistence manager communicates with the underlying database by
a driver, and supports a pluggable caching strategy. In particular we implement
the NeoEMF/HBase tool as a persistence manager for EMF on top of HBase
and ZooKeeper. NeoEMF also supports other technologies, such as an embedded
graph backend [8] and an embedded key-value store [12].

This architecture guarantees that the solution integrates well with the mod-
eling ecosystem, by strictly complying with the EMF API. Additionally, the
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Fig. 3: Overview of the model-persistence framework

APIs are consistent between the model-management framework and the per-
sistence driver, keeping the low-level data structures and code accessing the
database engine completely decoupled from the modeling framework high level
code. Maintaining these uniform APIs between the different levels allows in-
cluding additional functionality on top of the persistence driver by using the
decorator pattern, such as different cache levels.

NeoEMF/HBase offers lightweight on-demand loading and efficient garbage
collection. Model changes are automatically reflected in the underlying storage,
making changes visible to all the clients. To do so, first we decouple dependencies
among objects by assigning a unique identifier to all model objects, and then:

– To implement lightweight on-demand loading and saving, for each live model
object, we create a lightweight delegate object that is in charge of on-demand
loading the element data and keeping track of the element’s state. Delegates
load and save data from the persistence backend by using the object’s unique
identifier.

– For efficient garbage collection in the Java Runtime Environment, we avoid
to maintain hard Java references among model objects, so that the garbage
collector can deallocate any model object that is not directly referenced by
the application.

3.1 Map-based data model

We have designed the underlying data model of NeoEMF/HBase to minimize
the data interactions of each method of the EMF model access API. The design
takes advantage of the unique identifier defined in the previous section to flatten
the graph structure into a set of key-value mappings.

Fig. 4a shows a small excerpt of a possible Java metamodel that we will
use to exemplify the data model. This metamodel describes Java programs in
terms of Packages, ClassDeclarations, BodyDeclarations, and Modifiers. A Pack-
age is a named container that groups a set of ClassDeclarations through the
ownedElements composition. A ClassDeclaration contains a name and a set of
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Fig. 4: Excerpt of the Java metamodel (4a) and sample instance (4b)

BodyDeclarations. Finally, a BodyDeclaration contains a name, and its visibility
is described by a single Modifier.

Fig. 4b shows a sample instance of the Java metamodel, i.e., a graph of
objects conforming with the metamodel structure. The model contains a single
Package (package1), containing only one ClassDeclaration (class1). The Class
contains the bodyDecl1 and bodyDecl2 BodyDeclarations. Both of them are
public.

NeoEMF/HBase uses a single table with three column families to store
models’ information: (i) a property column family, that keeps all objects’ data
stored together; (ii) a type column family, that tracks how objects interact with
the meta-level (such as the instance of relationships); and (iii) a containment
column family, that defines the models’ structure in terms of containment ref-
erences. Table 13 shows how the sample instance in Fig. 4b is represented using
this structure.

As Table 1 shows, row keys are the object unique identifier. The property
column family stores the objects’ actual data. As it can be seen, not all rows have
a value for a given column. How data is stored depends on the property type and
cardinality (i.e., upper bound). For example, values for single-valued attributes
(like the name, which stored in the name column) are directly saved as a single
literal value; while values for many-valued attributes are saved as an array of
single literal values (Fig. 4b does not contain an example of this). Values for
single-valued references, such as the modifier containment reference from Body-
Declaration to Modifier, are stored as a single value (corresponding to the iden-
tifier of the referenced object). Examples of this are the cells for 〈b1, modifier〉
and 〈b2, modifier〉 which contain the values ’m1’ and ’m2’ respectively. Finally,
multi-valued references are stored as an array containing the literal identifiers of
the referenced objects. An example of this is the bodyDeclarations containment
reference, from ClassDeclaration to BodyDeclaration, that for the case of the c1
object is stored as { ’b1’, ’b2’ } in the 〈c1, bodyDeclarations〉 cell.

Structurally, EMF models are trees (a characteristic inherited from its XML-
based representation). That implies that every non-volatile object (except the

3 Actual rows have been split for improved readability



Table 1: Example instance stored as a sparse table in HBase
property

Key eContents name ownedElements bodyDeclarations modifier visibility
’ROOT’ ’p1’
’p1’ ’package1’ { ’c1’ }
’c1’ ’class1’ { ’b1’, ’b2’ }
’b1’ ’bodyDecl1’ ’m1’
’b2’ ’bodyDecl’ ’m2’
’m1’ ’public’
’m2’ ’public’

containment type
Key container feature nsURI EClass

’ROOT’ ’http://java’ ’RootEObject’
’p1’ ’ROOT’ ’eContents’ ’http://java’ ’Package’
’c1’ ’p1’ ’ownedElements’ ’http://java’ ’ClassDeclaration’
’b1’ ’c1’ ’bodyDeclarations’ ’http://java’ ’BodyDeclaration’
’b2’ ’c1’ ’bodyDeclarations’ ’http://java’ ’BodyDeclaration’
’m1’ ’b1’ ’modifiers’ ’http://java’ ’Modifier’
’m2’ ’b2’ ’modifiers’ ’http://java’ ’Modifier’

root object) must be contained within another object (i.e., referenced from an-
other object via a containment reference). The containment column family
maintains a record of which is the container for every persisted object. The
container column records the identifier of the container object, while the fea-
ture column records the name of the property that relates the container object
with the child object (i.e., the object to which the row corresponds). Table 1
shows that, for example, the container of the Package p1 is ROOT through the
eContents property (i.e., it is a root object and is not contained by any other
object). In the next row we find the entry that describes that the Class c1 is
contained in the Package p1 through the ownedElements property.

The type column family groups the type information by means of the nsURI
and EClass columns. For example, the table specifies the element p1 is an in-
stance of the Package class of the Java metamodel (that is identified by the
http://java nsURI ).

3.2 ACID properties

NeoEMF/HBase is designed as a simple persistence layer that maintains the
same semantics as the standard EMF. Modifications in models stored using
NeoEMF/HBase are directly propagated to the underlying storage, making
changes visible to all possible readers immediatly. As in standard EMF, no
transactional support is explicitly provided, and as such, ACID properties [13]
(Atomicity, Consistency, Isolation, Durability) are only supported at the object
level:

Atomicity — Modifications on object’s properties are atomic. Modifications
involving changes in more than one object (e.g. bi-directional references),
are not atomic.



Consistency — Modifications on object’s properties are always consistent us-
ing a compare-and-swap mechanism. In the case of modifications involving
changes in more than one object, consistency is only guaranteed when the
model is modified to grow monotonically (i.e., only new information is added,
and no already existing data is deleted nor modified).

Isolation — Reads on a given object always succeeds and always give a view
of the object’s latest valid state.

Durability — Modifications on a given object are always reflected in the un-
derlying storage, even in the case of a Data Node failure, thanks to the
replication capabilities provided by HBase.

These properties allow the use of NeoEMF/HBase as the persistence back-
end for distributed and concurrent model transformations, since reads in the
source model are consistent and always success; and the creation of the target
model is a building process that creates a model that grows monotonically.

4 Conclusion and Future Work

In this paper we have outlined NeoEMF/HBase, an on-demand, memory-
friendly persistence layer for distributed and decentralized model persistence.
Decentralized model persistence is useful in scenarios where multiple clients
may access models when performing distributed computing. NeoEMF/HBase
is built on top of HBase, a distributed, scalable, versioned and non-relationals
big data store, specially designed to run together with Apache Hadoop.

NeoEMF/HBase takes advantage of the HBase properties by using a sim-
ple data model that minimizes data dependencies among stored objects. More
specifically, NeoEMF/HBase exploits the row-locking mechanisms of HBase
to provide limited ACID properties without requiring the use of transactions,
which may increase latency in model operations. NeoEMF/HBase provides
ACID properties at the object level, and guarantees that: (i) object queries al-
ways return the last valid state of an object; (ii) attribute modifications always
succeed and produce a consistent model; and (iii) modifications of references
which make the model grow monotonically always succeed and produce a con-
sistent model.

Previous work [12] shows that key-value stores present clear benefits for stor-
ing big models, since model operations cost remains constant when models size
grows. However, NeoEMF/HBase still lacks of a thorough performance eval-
uation. Hence, immediate future work is focused in the development of an eval-
uation benchmark. In this sense, we pursue to determine how the latency intro-
duced by HBase – specially on write operations – affects the overall performance.

Additionally, a more advanced locking mechanism allowing arbitrary object
locks will be implemented. Such a mechanism will provide multi-object ACID
properties to the framework, allowing client applications to implement the syn-
chronization logic to perform arbitrary, distributed and concurrent modifica-
tions.
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