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Abstract

Gigerenzer and colleagues have proposed the ‘adaptive tool-
box of heuristics’ as an account of resource-bounded human
decision-making. According to these authors, evolution has
endowed such toolboxes with ‘ecological rationality’, defined
as the ability to make good quality decisions in their specific
environments. Here we explore to what extent the mechanisms
of evolution alone can produce ecologically rational toolboxes.
We present a formal argument for why evolution is unlikely to
produce ecologically rational toolboxes given the astronomi-
cally large space of possible toolboxes. The probability of find-
ing one or more ecologically rational toolboxes in this space
is negligibly small, even granting an evolutionary time scale
of searching for it. We furthermore present artificial evolu-
tion simulations results that show that evolution can produce
toolboxes of heuristics that are ‘good enough’ to survive, but
that those toolboxes are not ecologically rational (in agree-
ment with our formal argument). Our results do not rule out
that ontogenetic adaptation processes (development and learn-
ing) may yield ecologically rational toolboxes, but it does put
into question the idea that phylogenetic processes (evolution)
could. We discuss the implications of our findings for future
theoretical research on heuristic decision-making.

Keywords: resource-bounded decision making; heuristics;
ecological rationality; adaptive toolbox; evolution; computer
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Introduction

We make decisions every day, ranging from selecting an out-

fit or choosing groceries to deciding whom to marry. Even

though our decisions aren’t always optimal, they seem to

be more often right than wrong in everyday contexts. One

prominent account of how we are able to make good qual-

ity decisions, despite our bounded resources, is the adap-

tive toolbox of heuristics account proposed by Gigerenzer

and colleagues (Gigerenzer, 2002, 2004, Gigerenzer & Todd,

1999). According to this account, an adaptive toolbox is a

collection of specialized cognitive mechanisms—called fast

and frugal heuristics—that evolution has built into the human

mind for purposes of decision making (Gigerenzer, 2001,

Gigerenzer & Sturm, 2012, Gigerenzer & Todd, 1999, p. 30).

The heuristics are called ‘fast’ because they can reach deci-

sions with only a few computation steps, and ‘frugal’ because

they use little information. Furthermore, the heuristics in

the adaptive toolbox are believed to be ‘ecologically rational’

(Gigerenzer, 2002, Gigerenzer & Todd, 1999), i.e. tailored to

the contexts in which they are used.

The adaptive toolbox account has had many em-

pirical and explanatory successes in cognitive sci-

ence (Bergert & Nosofsky, 2007, Bröder, 2000,

Dieckmann & Rieskamp, 2007, Goldstein & Gigerenzer,

1999, Pohl, 2006). Yet, the plausibility of the claim that

humans would have evolved adaptive toolboxes of heuristics

seems to be so far unexplored. Instead, proponents of the

account seem to take the evolutionary plausibility of their

cognitive explanation for granted. In this paper we show that

the account’s evolutionary plausibility is not self-evident,

and even questionable. To see why this is so, we start by

considering the notion of ecological rationality as Gigerenzer

and colleagues conceptualise it. Next, we explain why

evolution is unlikely to produce adaptive toolboxes with the

feature of ecological rationality so construed.

Unlike classical notions of rationality that are based on

optimality and internal coherence of beliefs and inferences,

the adaptive toolbox account defines ecological rationality

in terms of the fit between actions and the world. For in-

stance, Gigerenzer & Todd (1999, p. 13) state it as follows:

“A heuristic is ecologically rational to the degree that it is

adapted to the structure of an environment.” Here, ‘adapted’

refers both to the property of being able to produce actions

that fit the environment (i.e., being adapted), and to the pro-

cess by which the toolbox comes to have that property (i.e., an

adaptation process that leads to the property of being adapted

to the structure of the environment).

With respect to the fit between heuristics and the environ-

ment, Gigerenzer and colleagues claim consistently that this

fit (adapted in the property sense) is so good that the quality

of decisions is high, and even can outperform optimisation

methods (Todd, 2002, Todd & Gigerenzer, 1999, p. 361),

at least in those environments to which the heuristics have

been adapted (in the process sense). It is because of this

good quality that adapted heuristics can be genuinely said to

have ecological rationality. With respect to the nature of the

process of adaptation, two general variants need to be distin-

guished: phylogenetic adaptation processes (evolution) and

ontogenetic adaptation processes (development or learning).

Although both types of processes have been claimed to be

able to produce adaptive toolboxes that are ecologically ra-

tional, here we focus specifically on the (im)plausibility of

the idea that a phylogenetic adaptation process would do so.

Clearly, evolution can produce organisms with ecological

rationality. By a combination of random variation and selec-

tion, organisms can come into existence that have decision

tendencies that are particularly tuned to particular environ-

ments. However, it is highly implausible, that organisms (es-

pecially humans) would come to have such high degrees of

‘fitness’ if their decisions were based on toolboxes of heuris-

tics and evolution was to set the parameters of these tool-

boxes directly. The reason is that toolboxes of heuristics have
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an enormous amount of degrees of freedom: A toolbox can

vary in terms of the number of heuristics it contains, and each

heuristic can vary in terms of both the possible environmental

cues to which it responds and the different possible actions it

can perform. Given that the number of possible cue-heuristic-

action mappings grows exponentially in these parameters, the

number of distinct possible toolboxes does as well.

Given these considerations, what are the odds of evolution

producing toolboxes that are ecologically rational? This de-

pends on how many toolboxes in the vast space of possible

toolboxes are ecologically rational. As we will show, the

vast majority of possible toolboxes aren’t ecologically ratio-

nal. Even though the mechanisms of natural selection are

not random, the only evolutionary mechanisms that can pro-

duce different toolboxes—such as mutation and crossover—

are random. This means that the chance of creating, and

subsequently selecting, ecologically rational toolboxes is so

nanoscopically small that even on an evolutionary time scale

it is extremely improbable that evolution would yield ecolog-

ically rational toolboxes. In this paper, we elaborate on this

argument both formally and using computer simulations.

The remainder of this paper is organized as follows. We

present a formalization of the notion of an adaptive toolbox,

to be used both in our formal argument and our computer

simulations. Next, we put forth a formal argument for the im-

plausibility of the idea that evolution could produce ecolog-

ically rational toolboxes based on illustrative numerical esti-

mates for even small toolboxes. We then describe the setup of

an artificial evolution environment that we use to empirically

validate our argument. We present results of simulations for

three different setups, each demonstrating that even though

evolution can produce toolboxes that are ‘good enough’ to

survive, these toolboxes do not display any notable ecological

rationality. We close by discussing the broader implications

of our findings for research into resource-bounded decision

making.

Formalizing the Adaptive Toolbox

In this section we will present a formalization of the adaptive

toolbox account, which involves formalizing components of

the adaptive toolbox (heuristics with a selector) as well as its

environment. We represent each of the components as a fast

and frugal tree (see Figure 1). Each internal node in such a

tree stands for a boolean function; a tree evaluates only a lim-

ited set of statements (cues; which can be either true or false)

and a particular action is triggered by a particular sequence of

cues progressing from the root-node to the leaf representing

that action.

Environment

The environment consists of a set of events (environmental

cues) E = {e1,e2, . . . ,en}, every event can be either true or

false. A truth assignment for each event is called a situation

s. That is, a function s assigns truth values to each event in E ,

s : E →{T,F}. We denote the set of all possible situations by

S = {T,F}n, where S is the set of all possible n-length vectors

of truth-values. For every situation there is a certain favored

action a to perform, where a is an element of the set of all

possible actions A = {a1,a2, . . . ,am}. A function D : S → A

maps each situation s ∈ S to an action a ∈ A.

Heuristics

Each heuristic in the toolbox is represented as a fast and fru-

gal tree (Gigerenzer & Gaissmaier, 2011, Martignon et al.,

2003), a chain of cues with associated actions. Each cue is

a boolean function, evaluating whether an event e ∈ E is true

in a given situation, c(e,s). When executing a heuristic, the

tree is traversed starting at the top. Step by step the cue func-

tions are passed, checking whether the cue holds. If the cue

c(e,s) evaluates to true for event e is in situation s, then the

action a associated to that cue c is executed. If the cue is false

the next cue is evaluated until the bottom cue is reached. If

this last cue is false, the last action in the tree is performed.

c1

a1 c2

a2 a3

c 1
=

T

c
1
=

F

c 2
=

T

c
2
=

F

Figure 1: A single heuristic represented as a fast and frugal

tree. The tree contains cues C = {c1,c2} and associated ac-

tions {a1, a2, a3}. Each cue c ∈ C is a simple boolean func-

tion which evaluates whether an event e j ∈ E is true or false,

depending on the situation c(e j,sk). If the cue function re-

turns ’true’, the tree traversal stops and the action associated

with the cue is executed; otherwise the next cue function is

executed. For example, if c1 is false, but c2 is true, then the

action a2 will be executed.

Selector

A selector determines which heuristic to use in a given situ-

ation. We represent the selector as a fast and frugal tree as

well1; the internal nodes are cues associated with heuristics

(see Figure 2). A heuristic is executed in the case a cue is

evaluated to be true.

Mathematical analysis

In this section we present a formal argument for the implau-

sibility of generating the ecologically rational adaptive tool-

boxes by means of evolutionary processes alone. The ar-

gument is composed of three parts: search space argument,

probability argument and time argument.

1Hypotheses about the exact nature of the selector mechanism
haven’t been developed to the same extent as hypotheses about the
structure of individual heuristics. Nevertheless, the common idea
seems to be that the selector, like the heuristics, is fast and frugal.
For our purposes, and without loss of generality, we assume that the
selector can be modelled by a fast and frugal tree as well.
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Figure 2: The adaptive toolbox selector and heuristics as

fast and frugal trees. The selector is represented by the or-

ange nodes. The tree is traversed from left to right (select-

ing a heuristic) and from top to bottom (executing a heuris-

tic). For instance, let’s assume a situation such that c4(“it

is sunny outside”) = F , ¬c2(“I have not read any book in a

while”) = T , and c5(‘my favorite book is on the shelf”) = T ;

in such a case the action a2 = “read the book” will be exe-

cuted. Note that when the last cue of the selector (c3) returns

false, the first heuristic is executed by default.

Part 1: Search space and location-sensitivity

Let’s assume a simple environment (10 events, 50 actions).2

For the purpose of the analysis we use the simplification that

environments are structured such that at least one adaptive

toolbox would be able to act perfectly in it. Then there

are 210 = 1024 situations an individual may encounter dur-

ing its lifetime (see section Environment). Further, let’s as-

sume a simple toolbox of a size 12 = 3 (number of selector

cues) + (3 (number of heuristics) × 3 (number of cue/action

pairs in each heuristic)). The number of all possible differ-

ent toolboxes is 1012(cues)×509(actions) = 1027. Let’s con-

sider a toolbox to be ecologically rational if it performs ac-

tions which are more often right than wrong. Given that we

define the fitness score as the proportion of the number of sit-

uations in which a toolbox executes a correct action to the

total number of all possible situations, the fitness is in a range

0 to 1 inclusive, and a score of ≥ 0.5 indicates ecological ra-

tionality.

Table 1a represents a toolbox of size 12. We set the prob-

ability of a given cue being true or false to 0.5. That means

that for the first cue of the selector (S1 in the Table 1a) there

is a 50% chance that it will be true (and the first heuristic will

be executed) and 50% chance that it will be false (and the

next selector (S2) cue will be evaluated). We can now esti-

mate the degree to which cues and actions contribute to the

toolbox’s fitness as a function of their location in the toolbox.

2Here, 50 actions may seem like a lot, but taking into account
the number of different things one can do e.g. with any given object
(grasp it, throw it, squeeze, cut it, etc.) it is actually a moderate
estimate.

(a)

S1 S2 S3

H1:C1 H1:A1 H2:C1 H2:A1 H3:C1 H3:A1

H1:C2 H1:A2 H2:C2 H2:A2 H3:C2 H3:A2

H1:C3 H1:A3 H2:C3 H2:A3 H3:C3 H3:A3

(b)

50% 25% 12.5%

25% 25% 12.5% 12.5% 6.25% 6.25%

12.5% 12.5% 6.25% 6.25% 3.125% 3.125%

6.25% 6.25% 3.125% 3.125% 1.6% 1.6%

Table 1: (a) A schematic representation of a toolbox of size

12. In this toolbox, S1 is the first selector cue, H1:X is the

first heuristic, H1:C1 is the first heuristic cue and H1:A1 is

the first action in the first heuristic. (b) A representation of

contribution of cues and actions to fitness depending on the

their locations in a toolbox. The blue color indicates the min-

imal requirement for an ecologically rational toolbox.

If the first selector cue (S1 in Table 1a), the first heuristic cue

(H1:C1) and the first action of the first heuristic (H1:A1) are

correct,3 that already ensures performing a correct action in

256 situations (25% of a total number of 1024 situations) and

it is worth 25% of the overall fitness score (see Table 1b).

Given these dependencies, it is enough for a toolbox to

have three actions and five cues correct in order to reach

the 0.5 score of fitness (see Table 1b). The search space

for mapping three actions to five cues is of size 503 × 105 =
1010. This number holds given the assumption of equally dis-

tributed chances for a cue being true or false. In case one

takes, say, a 1:10 ratio instead, the first action (H1:A1) is no

longer worth 25% of fitness, but only 1%, which makes the

search space grow drastically.

Part 2: Probabilities

Given the size of the search space for adaptive toolboxes,

what is the probability that a random process–à la mutation

and crossover–generates a toolbox of a certain level of fit-

ness? To estimate these probabilities, we considered the fit-

ness scores of any toolbox with cues and actions at each po-

sition of the toolbox being either correct or incorrect. Only a

correct action can positively contribute to the overall fitness

score of the toolbox. If all cues leading to this action are also

correct, it increases the fitness by the relative probability of

this action being executed. For example, if H1:A2 is correct

and all of the cues S1, H1:C1 and H1:C2 are as well, the fit-

ness of the toolbox is increased by the corresponding 12.5%

points (see Table 1). However, if one of the cues leading to

this action is incorrect, it will be executed in half of the cases.

If two cues are incorrect, only in a quarter of the the cases

will the action be executed, and so on. Given the total number

of actions and cues, the correct actions only occur in 2%, and

correct cues in 10% of all possible toolboxes. That means that

3Note that, if for instance, the first heuristic cue (H1:C1, Table
1a) is incorrect (e.g., instead of C1, there is C3; and they are both
either true or false), then it can still lead to execution of the first, and
say, correct action (H1:A1). However, in half of the cases, where
those cues are either true and false or false and true, that will not
lead to execution of correct (H1:A1) action.
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fitness ≥0.1 ≥0.2 ≥0.3 ≥0.4 ≥0.5 ≥0.6 ≥0.7

probability of a toolbox with a given fitness score 0.09 0.008 0.0002 1.2× 10−6 1.9× 10−9 2.4× 10−13 2.6× 10−18

number of toolboxes with a given fitness score 1.8× 1026 1.6× 1025 4.9× 1023 2.3× 1021 3.8× 1018 4× 1014 5× 109

total number of possible toolboxes 1953125000000000000000000000 (1027)

Table 2: Probabilities of randomly generating a toolbox with a certain fitness score.

toolboxes with a larger number of incorrect actions and cues

are much more likely to happen. Using these probabilities, we

computed the probabilities of randomly generating a toolbox

with a certain level of fitness. For example, the probability of

generating an ecologically rational toolbox (fitness ≥ 0.5) is

1.9× 10−9 and the probabilities decline super-exponentially

for higher fitness scores (see Table 2).

Part 3: Time

Evolution operates on a time scale of billions of years. To

estimate how long it would take to generate a toolbox with

a certain level of fitness, we assume that the environment is

constant and the average size of the population is 500. Fur-

thermore, the duration of one generation is assumed to be 15

years, and mutations happen for almost all individuals in ev-

ery generation. With these values, the expected time to evolve

a toolbox with a 0.5 level of fitness is:

time0.5 =
generation length

prob× population size
=

15y

1.9× 10−9× 500
≈ 107y

Here, prob is the probability of generating a toolbox with a

certain level of fitness in one generation. Time grows super-

exponentially for higher scores of fitness (see Figure 3). This

means that given the odds of randomly generating an ecolog-

ically rational toolbox, a random process is expected to take

on the order of 10 million years to, by accident, produce a

single ecologically rational individual.

0
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Figure 3: Time (in years) required to generate toolboxes with

a certain level of fitness.

With this numerical examples we wish to illustrate the im-

plausibility that evolution would generate ecologically ratio-

nal toolboxes. Even though adaptive toolboxes have appar-

ently simple structures, they are still characterized by ex-

tremely many degrees of freedom. As we have shown, this

makes it highly improbable that an evolutionary adaption pro-

cess would endow them with ecological rationality.

Simulations

To support our theoretical point using computer simulations

we designed an evolutionary algorithm. In our setup, we ran-

domly generate environments. As in our formal argument, we

use the simplification that environments are structured such

that at least one adaptive toolbox would be able to act per-

fectly in it. We achieve this by generating the environment

with a toolbox. The size of that toolbox is always constant.

The number of selector cues (5), the number of heuristics (5)

and the number of cue/action pairs in each heuristic (5) gives

the total size of the environment 5+5×5= 30. Each individ-

ual in a population is represented as a toolbox as well (the size

of an individual may vary from generation to generation and

it is not restricted to ≤ 30). The first generation of individu-

als are randomly generated simple toolboxes. More detailed

description of our setup is available in online supplementary

materials.4

Results

We designed three different conditions and ran 20 simulations

for each one. In the first, baseline condition we set the param-

eter ‘death rate’ based on evolution science literature (normal

death rate condition). In the second condition (higher death

rate), the death rate was increased relative to the normal death

rate condition. Finally, for the third condition (higher chances

of offspring), the death rate was normal, but the growth rate

was increased. Other parameters (e.g., size of the world gen-

erating toolbox, mutation rate) are always constant.

Condition 1: normal death rate

The initial size of a population was 500 and the death rate

was 0.0004. The chances of dying was a function of both

death rate and fitness. For instance, individuals with a fitness

score 0 (no correct decisions) had 65% chance of survival and

reproduction, individuals with a fitness score 0.2 had 73%

chance of survival, and individuals with a fitness score 0.5

had 81% chance of survival (for details, see supplementary

materials4). Each of the parents always generates at least one

child, and the probability of getting a second child is 33.3%

per individual. This number creates the minimal conditions

for a population to be able to grow.

Under this condition 0% of the populations survived. Ta-

ble 3 represents an overview of all results, and Figure 4 shows

the variation in fitness of populations of toolboxes throughout

the different generations. As the Table 3 shows, fitness of the

populations is overall remarkably poor. The average fitness

4
http://www.dcc.ru.nl/˜irisvr/papers/suppl15.pdf
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was 0.028, which is considerably lower than the 0.5 thresh-

old that we defined for ecologically rational toolboxes. The

fitness of the ‘best toolbox (from each generation) oscillates

in the range [0.1,0.4].
All simulations ended far before one thousand generations,

often even before a hundred. All of the above indicate, that

toolboxes perform poorly and do not improve with time. We

explored two parameters which potentially could have influ-

ence the results. First, we reasoned that this effect might be

due to a relatively low death rate. Such a low death rate (i)

may ensure the survival and possibility of reproduction of in-

dividuals with lower fitness and (ii) imposes a lower pressure

to select better toolboxes. Second, we explored the possibility

of giving toolboxes more offspring. This change may lead to

more populations surviving but we would not expect it to im-

prove the overall individuals fitness. To test these predictions

we ran two simulation studies, Conditions 2 and 3.

Condition 2: higher death rate

In this condition the death rate was increased (p = 0.00045;

we opted for this relatively small increase in death rate, be-

cause a higher death rate would not afford successful runs,

because none of individuals would survive the first survival-

selection phase). In total, 20% of the simulations ended with

a surviving population (Figure 4). The average performance

of the surviving populations is 0.071, and the average perfor-

mance for the dying out populations is 0.031. In order to cal-

culate the average performance scores, we considered results

from all the runs of simulations for surviving populations and

all for the dying out populations separately (for a given con-

dition), taking into account all the possible individual scores

per every generation. Comparing the fitness in this Condi-

tion 2 with the fitness from Condition 1, it becomes clear that

even if the higher pressure does improve performance of the

toolboxes, as we had expected, the improvement is of a very

small magnitude and does not bring the toolboxes anywhere

closer to the 0.5 fitness.

Condition 3: higher chances of offspring

In this condition, the probability of generating a second child

was increased to 47.4% per an individual. In total, 80% of

the populations survived. As expected this survival rate was

higher than in Condition 1 and 2. The average performance

of the surviving populations is 0.044, and the average perfor-

mance for the dying out populations is 0.027. In sum, the sim-

ulations in Condition 3 show that a larger growth rate leads to

larger populations, but it does not make the individuals more

ecologically rational.

Discussion

Using both formal argument and computer simulation, we

have demonstrated the implausibility that phylogenetic pro-

cesses (i.e., evolution) alone would ever produce ecologi-

cally rational adaptive toolboxes. Our simulations showed

that populations of toolboxes that are ‘good enough’ to sur-

vive can evolve without these toolboxes showing any signs of

Condition 1 Condition 2 Condition 3

% of Survival: 0% 20% 80%

Average FitS: – 0.071 0.044

Average FitD: 0.028 0.031 0.027

Total average: 0.028 0.041 0.041

Table 3: Results from the simulations for the three differ-

ent conditions (1: normal death rate; 2: higher death rate; 3:

higher chances of offspring). Starting from the top, the rows

show: percentage of surviving populations for every condi-

tion; the average fitness score (FitS) for a set of surviving

populations per condition; the average fitness score (FitD) for

a set of dying out populations per condition; the total average

of a fitness score per condition.

‘ecological rationality’ (defined as the ability to make choices

that are more often right than wrong; i.e. ≥50% correct).

In our simulation maximum fitness of populations hovered

around 0.2 (20% correct decisions) and never got anywhere

close to 0.5, let alone anything higher than that. The simu-

lation results align well with our formal derivations: the ex-

pected number of generations needed to produce a toolbox

grows exponentially. That means that even for only 10 pos-

sible cues and 50 possible actions the expected number of

generations needed to produce at least one toolbox in the en-

tire population with a fitness of at least 0.5 is 2,000,000 gen-

erations. For more possible cues or actions, the number of

expected generations needed to produce at least one ecologi-

cally rational toolbox is even vastly larger.

Crucially, we refer here to the expected number of genera-

tions for producing a single toolbox with the feature of ‘eco-

logical rationality’. Even if evolution would beat all odds

and such an individual would be generated, the changes of

its existence leading to a population with that feature are

nanoscopically small. The reason is that toolboxes can sur-

vive with much lower fitness, and the chances of mutation

and crossover leading to fitness below 0.2 is very high. With

every new generation mutation and crossover occur, leading

to a high probability that even if there is one ecologically ra-

tional individual in the pool that its offspring will be non-

ecologically rational individuals that can again survive and

procreate.

Does this mean that the adaptive toolbox account is im-

plausible as an account of resource-bounded (human) deci-

sion making? Certainly not. Our findings do not rule out

that adaptive toolboxes could be produced by ontogenic pro-

cesses (learning and development), or even ontogenetic and

phylogenetic processes combined (i.e., evolution could have

produced those learning mechanisms that can produce adap-

tive toolboxes on a developmental time scale). After all, on-

togenetic processes–unlike phylogenetic processes–are able

to more actively search the space of possible parameters set-

tings, e.g. by building a model of the environment and using

that model to guide the search in a way that ensures ecologi-

cally rationality. However, in such a case it seems that one has
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(b) Example of dying out population:
higher death rate condition
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(c) Example of dying out population:
higher chances of offspring condition
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(d) Example of a surviving population:
higher death rate condition

3
0
0

6
0
0

9
0
0

0

0.2

0.4

Generation

F
it

n
es

s

(e) Example of a surviving population:
higher chances of offspring condition

Figure 4: Examples of the simulations of dying out populations (a-c) and surviving populations (d-e). The plots show the

changes of fitness over the time of many generations, including scores from the best ( ), worst ( ) and average ( )

fitness per generation. For the normal death rate condition there is no surviving population.

to use a non-frugal learning mechanism to explain the emer-

gences of adaptive toolboxes of fast and frugal heuristics. Re-

solving this tension seems an important target for future re-

search in the area of resource-bounded decision making.
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