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Abstract. Over the last decade multi-level modeling (MLM) approaches have 

been addressing the need for relaxing the strict constraints on intra- and inter-

layer type-instance relationships that are imposed by traditional approaches to 

meta-modeling. In this paper we explore MLM approaches in the context of 

Software Product Line Engineering (SPLE), propose a meta-language, and 

show how it can represent three commonly used variability mechanisms - con-

figuration, parameterization, and template instantiation - within the context of 

MLM. By this we contribute to simplifying the representation of complex rela-

tionships in current MLM approaches and to the formal definition of SPLE var-

iability mechanisms utilizing MLM concepts.  

1 Introduction 

Promoting models as the primary artifacts in software development, early approaches 

to Model-Driven Engineering (MDE) refer to four layers of abstraction: data (M0), 

model (M1), meta-model (M2), and meta-meta model (M3) where elements of Mn are 

instances of types defined at level Mn+1. Of those layers, three are practically used by 

MDE practitioners: M2 to build metamodels for general purpose modeling languages 

(e.g., UML) or Domain Specific Modeling Languages (DSML), M1 to instantiate 

those metamodels in the form of models, and M0 to process instances of the models. 

Together these three levels are called a ‘golden-braid’ [11] and traditional approaches 

to modeling have used two occurrences (M0-M2 and M1-M3) whilst maintaining 

strict separation between elements of different levels. Furthermore, most traditional 

approaches follow a similar definition of the type-instance relationship between levels 

whereby, for example, an object at M0 structurally conforms to a class at M1 when all 

the object’s properties have names and values corresponding to the names and types 

defined by the class attributes. 

Recently, multi-level modelling (MLM) approaches aim to extend this architecture 

by enabling modelling at an arbitrary number of levels [12], and propose variations 

and liberalizations of the traditional type-instance relationship between levels. Current 

MLM approaches relax these limitations so that multiple golden-braid occurrences 
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can co-exist within the same model to support an arbitrary number of levels. Type-

instance relationships in these cases can be expressed via concepts, such as clabjects 

[2], power types [1521], and deep meta-modeling [24]. 

Software Product Line Engineering (SPLE) [10, 22] can be considered as dealing 

with multi-levels. SPLE uses families of products and subsequent adaptation of each 

family to produce a single model describing a particular product in the line. Families 

represent multiple variations in a single definition and adaptation involves the selec-

tion of choices amongst the variations and potentially modification and extension of 

these choices. The different levels handled in SPLE can be classified into domain and 

application engineering [19]. The domain engineering layer includes activities and 

tasks to create and handle core assets, i.e., artifacts that are intended to be (re)used by 

more than one product in the family. These assets include both common and variable 

parts. The application engineering layer consists of activities and tasks to adapt and 

tailor core assets in order to satisfy particular requirements of the products at hand. 

The reuse between the layers is done systematically applying mechanisms, commonly 

termed variability or reuse mechanisms [5, 17]. Examples of such mechanisms are 

configuration, parameterization, and template instantiation.  

In this paper, we aim to explore the potential relations between the two worlds – 

SPLE and MLM. Our hypothesis is that the elements in the SPLE families correspond 

to types and the elements in the particular products correspond to instances of types. 

The relationships derived from the variability mechanisms may refine the type-

instance relationship that is variegated and liberalized by current MLM approaches. 

Thus, the contribution of the paper has two aspects. To MLM, SPLE variability 

mechanisms can be used to simplify the representation of complex relationships in 

current MLM approaches, and to SPLE – MLM concepts can be used to more precise-

ly define SPLE variability mechanisms. 

In the sequel, Section 2 reviews variations of and extensions to the type-instance 

relationship in existing MLM approaches. Section 3 discusses commonly used SPLE 

variability mechanisms – configuration, parameterization, and template instantiation – 

demonstrating their use. In Section 4 we discuss the ability to identify the relations 

derived from the variability mechanisms as being special cases of the type-instance 

relationship. Finally, in Section 5 we conclude and set the ground for future research. 

2 Related Work 

Recent modeling language research has addressed the limitations of traditional strict-

modelling approaches that impose boundaries between elements from different levels 

of the golden-braid. Several researchers have begun to explore variations on the type-

instance relation that is intrinsic to most modeling languages and to relax traditional 

strictness with the aim of providing a richer notion of ‘type’ within a model. This 

section reviews the current advances, broadly categorized as ‘multi-level modeling’ 

(MLM), towards this aim. 

MLM approaches have been suggested for a variety of uses, including designing 

models for the use of non-modelers [14] and developing modeling tools [16]. In many 

cases there is a requirement to allow types and their instances to co-exist, for example 



enactment [16] of business processes requires the type of a process and its active in-

stance to be co-represented.  

Traditional approaches to the type-instance relationship often focus on classes and 

their instances. UML, for example, defines that an instance is related to a type by 

‘instance-of’ when the class structurally and behaviorally defines all features of the 

instance. The relationship may hold between a class and an object or a meta-class and 

a class. The semantics of a language is usually defined in terms of the ‘instance-of’ 

relationship both by intrinsic rules that hold and by (at least in UML) constraints that 

are expressed by the modeler and attached to the type. Therefore, researchers address-

ing issues related to model-based language engineering provide mechanisms that 

affect the intra- and inter-level type-instance relationships.  

To address the dual role that a certain element plays in MLM approaches (as an in-

stance of the higher level and a type of the lower level), Atkinson [2] coined the term 

clabjects to simultaneously refer to classes and objects. He further suggested a poten-

cy-based multi-level approach to support deep meta-modeling [3]. Following that 

approach, each element is assigned with a potency number, which indicates the num-

ber of levels in which the element can be instantiated. A special case of potency is the 

intrinsic features, suggested by Frank [13], in which the potency number is one. 

Observing that an element may be an instance of two elements residing in different 

levels, Atkinson and Kuhne [34] suggest the notion of orthogonal classification archi-

tecture (OCA). In OCA, elements can be instantiated along the linguistic dimension 

and orthogonally along the ontological dimension. The linguistic dimension refers to 

instantiation across levels whereas the ontological dimension refers to instantiation 

within levels.  

Another approach to MLM that does not involve mixing elements from different 

type levels is to use a pattern to encode the relationship between a meta-class and the 

class that acts as its instance. Gonzalez-Perez and Henderson-Sellers [15] utilize the 

notion of power types [21] by introducing the concept of a power type pattern which 

exists at a single level but represents elements from different levels. The power type 

pattern is defined as “a pair of classes in which one of them (the power type) parti-

tions the other (the partitioned type) by having the instances of the former be subtypes 

of the latter.” This allows the modeler to capture the semantics of the type-instance 

within a strict-modelling framework. 

To support information integration in heterogeneous information systems, Jordan 

et al. [18] suggested modelling primitives that extend standard specialization and 

instantiation mechanisms. Particularly, they distinguish between specialization by 

extension (that supports adding attributes, associations, or behavior) and specializa-

tion by refinement (that supports adding granularity to the description), as well as 

between standard instantiation (in which all attributes must be assigned a value from 

their domain) and instantiation with extension (which enables adding attributes, be-

havior, and so on). They further introduce the subset by specification relation for rep-

resenting “the existence of a class of specification construct that identifies particular 

subtypes of another type”, the membership relation, and the specification by enumera-

tion relation that describes how the extensions of sets of entities are related. 



In summary, the need for flexible modeling technologies has led a collection of re-

searchers to seek ways to relax traditional strict-modelling and to open up the ‘type-

instance’ semantics to the modelers. Most recent advances have sought to mix types 

and instances and have allowed structural features to be annotated in order to influ-

ence their instantiation semantics. We see that there is a similarity with the aims of 

SPLE variability mechanisms, as they require mixed type-levels and offer control of 

instantiation through variability. 

3 Exploring Alternatives for Relationships in MLM 

As noted, frameworks of SPLE commonly distinguish between domain and applica-

tion engineering (e.g., [19], [23]). In both layers, modeling plays a central role to 

analyze and design artifacts. As an example, consider the model depicted in Fig. 1. 

The left part of the model describes a library management system (LMS) or a family 

of such systems. Respectively, this level can belong to the application or domain en-

gineering layers. The model refers to books (titles) written by authors, as well as to 

the actual book copies that can be checked out and have (physical) location. A book 

may have up to n copies. 
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Fig. 1. The LMS example 

The second level in our example, partially described in the right part of Fig. 1, re-

fers to library management system(s) in universities (LMS4Univ for short). Here 

again, the level can be interpreted as specifying a (narrower) domain or an applica-

tion, and as such it can be considered as an adaptation of the LMS model. Checking-

out book copies is constrained according to the (enumerated) user type, e.g., student 

vs. staff, and a book may have up to 5 copies (for economic reasons). In LMS4Univ 

books have no publication year information. 



Note that the two levels depicted in Fig. 1 could be part of a larger chain of levels 

that includes, for example, a wider domain of Check-In Check-Out applications, or 

sub-classes of LMS4Univ applications.  

For traversing from a higher level to a lower level in SPLE, different variability 

mechanisms are commonly utilized. These are actually techniques applied to adapt 

core assets developed in the domain engineering layer to the context of particular 

products (i.e., artifacts in the application engineering layer). However, they can be 

used for adapting domains or applications as well. Over the years, different variability 

mechanisms have been suggested for different development stages, e.g., [1] for im-

plementation, [5], [17] for architecture design, and [6], [7] for reference modeling. 

We mention here only three common variability mechanisms (see Table 1 for defini-

tions and demonstration of their use through the LMS example):  

 In configuration, elements of the higher level are selected to be included in the 

lower level. Partial selections are possible, as in the case of UnivBook which se-

lects only 2 out of the 3 attributes of Book: ISBN and Title.  

 Parameterization supports assigning values to parameters defined in a higher level. 

The assignment is done in a lower level. In our example, the maximal number of 

copies of a certain book is assigned to 5 in LMS4Univ.  

 Template instantiation, which, in contrast to parameterization that deals with value 

assignment, deals with type adaptation, is exemplified by constraining book copy 

check out with enumeration type (which represents user type, e.g., student vs. 

staff). 

Table 1. Common variability mechanisms, their definitions, and use 

Variability 

Mechanism 

Definition Example 

Configuration 

Choice between alternative functions and imple-

mentations [17]; Modifying selected elements of a 

core asset based on predefined rules that refer to 

specific requirements or situations [6, 7]. 

UnivBook in LMS4Univ (with 
respect to Book in LMS). 

Parameterization 

Variation points for features [17]; Data items 

serving as arguments for distinguished software 

behavior [5]. 

Up to 5 UnivBookCopies in 
LMS4Univ (with respect to up 

to n BookCopy’s in LMS). 

Template 

Instantiation 

Type adaptation or selecting alternative pieces of 

code [17]; Enables filling in product-specific parts 

in a generic body [5]. 

UnivBookCopy in LMS4Univ 

(with respect to BookCopy in 

LMS). 

 

Next, we explore to what extent the aforementioned mechanisms can be represented 

by the type-instance relationship and its variations and by this – contribute to simpli-

fying the representation of complex relationships. 



4 Variability Mechanisms and Type-Instance Relationships 

Our claim is that configuration, parameterization, and template instantiation can be 

viewed as special cases of the type-instance relationships in the context of MLM. To 

expand this claim, we first provide a core meta-language that supports our MLM ap-

proach. 

Consider the simple example shown in Fig. Error! Reference source not found.. 

It uses a MLM approach to model both parametric (as manifested by parameterization 

or template instantiation) and configurable classes. This is done via the relationship 

‘of’ that works consistently in all cases that are shown. A class defines constraints that 

must be satisfied by its instances. The relationship ‘of’ is a declarative statement that 

the object at its source satisfies the constraints of the class at its target. In the case of 

BookCopy, ParametricClass is used to model the type parameter used for the method 

CheckOut. In the case of the UnivBook, the class Book is a family specifying that 

publication year is an optional attribute of book. Therefore, our approach is based on 

a use of the type-instance relationship which is supported through the consistent use 

of constraints, the implication of which is a uniform representation for all model-

elements. To achieve this everything is an object [16]. 
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Fig. 2. Configuration, parameterization, and template instantiation expressed via type-instance 

relationship 

Fig. 2 shows a model that contains a kernel meta-language and its extension to 

support configuration, parametrization, and template instantiation (the last two re-

ferred as parametric). Since the basis of our approach is a self-describing meta-

language in which everything is an object, the root class is Object. Furthermore, alt-



hough only Class is shown as explicitly inheriting from Object, all classes in the lan-

guage inherit from the root. To simplify the representation we consider only classes 

with attributes, hence the use of directed relationships between classes. 

Since everything is an object it is possible to access the internal data of any model 

element through reflection via the attribute named ‘slots’ defined by Object. Inher-

itance is supported though the ‘parents’ attribute defined by Class and the implication 

is that all attributes are inherited. An important feature of the approach is defined 

using constraints on classes. A constraint is a predicate whose ‘check’ operation is 

supplied with a candidate object. 

 
Fig. 2. A Kernel Language 

 

A language definition relies heavily on constraints to specify the ‘of’ relationship 

that holds between a class and its instances. A key meta-circular constraint that is 

defined by Class can be paraphrased: ‘An object c is a valid class if it enforces all of 

its constraints c.constraints when checking o:c for any object o’. Clearly, this con-

straint allows Class to classify itself and, because of the universal object representa-

tion, the object ‘o’ could be a ground instance, a class, or a meta-class. 

A snapshot is a container of objects; it can be used as the basis of a wide range of 

containers where specializations of Snapshot introduce constraints that must hold for 

the contents. A package is a container of classes (with the associated implied con-

straint on Package) and a snapshot links to a package that contains the classes that 

type the contained snapshot-instances. Again, this meta-circularity helps us to ensure 

that models are objects and that MLM principles work over all levels. 



The ‘of’ relationship between a class and an object is defined by the constraints on 

the class. Since a class may be an extension of the base class Class, it is possible that 

the constraints used to define a particular occurrence of the relationship ‘of’ might use 

slot-value information other than those slots defined by Class. Therefore, the ‘of’ 

relationship can be overloaded by the language designer as described below. 

Configuration can be expressed via a configurable class that specifies options such 

that an instance of the class has chosen consistently amongst the available options. 

Therefore an ‘of’ relationship can hold between a configurable class and its instances 

if the constraints on the class require the features of each instance to be consistent 

with the options of the class. Recall that ‘of’ may hold between a ground instance and 

a class, or a class and a meta-class. Therefore, we may define configuration at any 

level.  

Fig. 2 also shows that configuration is supported via Family – an extension of 

Package with the implied constraint that a Family is a container of configurable clas-

ses. A configurable class defines feature-specifications that are Boolean combinations 

of attributes. The constraints on a configurable class require that any candidate in-

stance be a class and that the features of the class be consistent with the specification. 

Therefore, configuration is modeled as a form of type-instance, where the constraints 

match attributes in the class against feature-specifications in the meta-class.  

Parametric model elements define formal parameters or templates that range over 

element-definitions. When supplied with model elements as actual parameter values 

or types the formals are consistently replaced within the body of the definitions in 

order to produce new model elements. Note the term ‘consistently’: the new model 

elements view the parametric version as a type whose constraints must be satisfied.  

  

Table 2. A MLM Representation for Variability Mechanisms 
Variability 

Mechanism 

MLM Instantiation Constraints and Examples 

Configuration 

Checks that the structure of the instance is consistent with the variability specified by 

the type. Fig. 1 shows LMS as a family with Book as an instance of ConfigurableClass 

with PublicationYear as an optional attribute. The class UnivBook is a type-consistent 

instance, and therefore a configuration of Book. 

Parameterization 

Assigns a value to a type to create an instance of that type. Fig. 1 shows that  

LMS4Univ assigns the value 5 to the parameter n, appearing in LMS and specifying 

the maximal number of BookCopy associated to a single Book. 

Template 

Instantiation 

 

Assigns a value to a type to create another type. The class BookCopy is parametric 

with respect to the parameter Constraints and the binding of Constraints to Enumera-

tion is shown to produce the instantiated class UnivBookCopy (details of the definition 

are omitted). 

 

Fig. 2 shows an extension of Kernel with features for parameterization and tem-

plate instantiation. A parametric class has a collection of typed parameters and a defi-

nition. The definition ranges over all model elements and supports an operation 

‘subst’ that is supplied with some bindings for the parameters and produces a collec-

tion of model elements via consistent substitution. An instantiated class is a normal 

class that is associated with some parameter bindings. A new constraint on an instan-



tiated class requires that the attributes of the class are consistent with the definition of 

its class after the bindings have been substituted. Therefore, parameterization and 

template instantiation are modeled as a form of type-instance, where the constraints 

match bindings against formal parameters and substitution into a body. 

In Table 2 we demonstrate the use of the Kernel Language for applying the varia-

bility mechanisms. 

5 Conclusions and Future Work 

MLM approaches have been proposed in order to relax the traditional strictness re-

quirements on inter- and intra-level type-instance relationships. However, while these 

proposals are formal, they address the representation of complex relationships to a 

limited extent. SPLE, on the other hand, distinguishes between different relationships, 

introducing a variety of variability mechanisms that are more intuitive to the modelers 

but are less formal in their definitions. The current paper addresses this tradeoff by 

expressing three key mechanisms to SPLE reuse – configuration, parameterization, 

and template instantiation – within a type-instance framework. We defined a simple 

MLM-based kernel-language to show that those mechanisms can be implemented 

within that framework and can co-exist with other meta-modeling techniques includ-

ing potency, deep modeling, and power-types (see [8] for an example). This provides 

a feature-rich, integrated and consistent approach to model-based language engineer-

ing. The language used is a much-simplified version of the kernel for the XModeler 

toolkit [9]. The language is based on a uniform representation for model elements and 

can support a wide variety of languages that are both general-purpose and domain-

specific. We plan to further develop the kernel language and test it in the context of 

SPLE and to use it as the basis of mixing different MLM approaches with SPLE vari-

ability mechanisms. 
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