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Abstract. The ability to generate explanations of perceived events and
of one’s own actions is of central importance to how we make sense of the
world. When modeling explanation generation, one common tactic used
by cognitive systems is to construct a linkage of previously created cause-
effect pairs. But where do such cause-effect pairs come from in the first
place, and how can they be created automatically by cognitive systems?
In this paper, we discuss the development of causal representations in
children, by analyzing the literature surrounding a Piagetian experiment,
and show how the conditions making cause-effect pair creation possi-
ble can start to be modeled using a combination of feature-extraction
techniques and the structured knowledge representation in the hybrid
cognitive architecture CLARION. We create a task in PAGI World for
learning causality, and make this task available for download.
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1 Introduction

Faced with some unfamiliar event, an agent1 will attempt to make sense of it
by constructing an explanation, even if the explanation that ultimately gets
accepted is not entirely coherent. Generating explanations is also important to
artificial cognitive systems, particularly those that need to communicate with
other humans, for example, to present rationales for its own actions.

1 In this paper, ‘agent’ will refer to any actor (artificial or natural) capable of cognitive
thought, ‘cognitive system’ will refer to any system that attempts to model cognitive
phenomena, and ‘cognitive architecture’ will refer to full cognitive systems (such as
CLARION) satisfying the definition of cognitive systems in [20].



Previous work (e.g., [6, 9, 14]) modeled the generation of explanations by
using structured representations of cause-effect pairs. In an extremely simple
case, explaining some explanandum e involves finding a cause-effect pair (c, e),
where c is either believed to be true by the reasoner or plausible to the reasoner
in some sense. More complicated explanations can be generated by collecting
a sequence of cause-effect pairs and lining them up to produce a causal chain
[14], by drawing from multiple source analogs simultaneously [8, 9], or a number
of other possible approaches. But these approaches all seem to presuppose the
existence of cause-effect pairs, and little is done in the way of actually modeling
how the initial cause-effect pairings are initially created.

In this paper, we attempt to understand how the sort of cause-effect pairs that
are used in explanation generation can be created in an autonomous agent, in a
psychologically plausible way. Section 2 reviews some literature on the emergence
of causality in children, focusing on a classical Piagetian experiment we will call
the floating task. We then describe a task, implemented in the simulation envi-
ronment PAGI World, for testing abilities that underly the autonomous creation
of cause-effect pairs, along with an algorithm to perform this task, implemented
in the cognitive architecture CLARION (Section 3). Section 4 discusses future
work and concludes.

2 The Development of Causality

If we are to understand how cause-effect pairs can be created automatically by
a cognitive system, it would be very helpful to understand how the ability to
reason causally develops in humans. We will start with a particularly relevant
Piagetian experiment.

2.1 The Piagetian Floating Task

In one of Jean Piaget’s early works, The Child’s Conception of Physical Causal-
ity, Piaget introduced a task to elicit clues from children as to how they generate
explanations. In what we will refer to here as the floating task, Piaget presents
a series of objects to a child (e.g., a wooden boat, a pin, a pebble, and so on)
and asks the child to predict whether or not the object (the candidate floating
object) would float. The child makes his prediction, explaining his or her reason-
ing when possible, and then the object is placed in the water. The child watches
whether or not his prediction was correct, and then is asked to explain why the
object did or did not float.

Piaget found that the responses given by children seemed to be roughly cat-
egorizable into four stages. These stages are to be seen as continuously changing
behavioral phenomena, meant to describe general trends noticed in subjects’ ex-
planations. In the first stage, explanations are characterized by “animistic and
moral reasons,” e.g. a boat will float “because they must always lie on the wa-
ter,” or a piece of glass will sink “because it’s not allowed to put glass on the
water” [17, p.136]. Piaget described stage-1 explanations as moral because they



seemed to him to imply a sense of social obligation on the part of the inanimate
objects, as opposed to adherence to some natural law.

In the second stage, starting at about 5 years of age, we see the appearance
of dynamism, or the invocation of an abstract force in explanations. Children
explain that boats float because they’re heavy, big, or because the “water is
strong.” However, they apply their explanations in inconsistent or contradictory
ways. Compare this to the third stage (starting at about 5 or 6 years), where
children instead tend to use the explanation that boats are light, rather than
heavy. The difference here, according to Piaget, is subtle but important: floating
is no longer explained by an appeal to a simple property of the candidate floating
object. Rather, the lake “produces an upward-flowing current which sustains the
lighter [floating] body.” In other words, floating is understood to be a property
that emerges out of an interaction necessitated by both properties of the lake
and properties of the candidate floating object.

Finally, in the fourth stage (starting at about age 9, but parts of which are
seen as early as ages 6–8), we start to see reasoning taking into account multiple
properties of an object simultaneously. By referring to the hollow-ness of the
boat, for example, children relate the boat’s volume to its weight. Furthermore,
whereas in stage 3 properties of the candidate floating object like light-ness or
heavy-ness are no longer regarded by the child to be absolute, internal properties.
Instead, they are seen as properties that only hold relative to something else (in
this case a corresponding volume of water).

2.2 Why Piaget?

Piaget’s work is extremely voluminous, spanning almost 60 years, and careful
scholars have noted evolutions in Piaget’s thought that at times puts the younger
Piaget against the older [3]. In part because Piaget’s writings are so spread out
over so many books, many of his concepts, which he refined in his later years,
are subject to misinterpretations of the highest order. For some corrections of
misunderstandings of Piagetian concepts, see [4, 15, 12].

For example, the description of stages that we reiterated in Section 2.1 is
exemplary of the type of stage-based development that critics are quick to claim
is virtually useless, since the scientific consensus is that “cognitive changes are
gradual and cumulative” [1]. Contrary to such claims, however, Piaget was very
aware of the limitations of using stages in describing children’s behavior:

“[S]tages must of course be taken only for what they are worth. It is
convenient for the purposes of exposition to divide the children up in age-
classes or stages, but the facts present themselves as a continuum which
cannot be cut up into sections. This continuum, moreover, is not linear in
character, and its general direction can only be observed by schematizing
the material and ignoring the minor oscillations which render it infinitely
complicated in detail” [18, p.17].

That being said, it is not the goal of this paper to mount a full-scale defense
of the Piagetian body of literature. Although it cannot be denied that some of



Piaget’s theories are incompatible with, and need to be refined by, more recent
work in developmental psychology, let it suffice to point out that the critics of
Piaget are overzealous in indiscriminately discarding the entirety of his work,
especially the almost 60 years of qualitative observations of children’s behavior.
Even if one were to ignore all of Piaget’s proposed explanations for developmental
mechanisms, his observations remain a fertile ground for cognitive modelers, as
they provide at the very least a set of expected behaviors of children of different
ages when faced with very specific tasks. We described some of these behaviors
in Section 2.1, and the current paper intends to model them.

3 Modeling the Development of Cause-Effect
Representation in CLARION

The CLARION cognitive architecture [19] is divided into four subsystems: the
action-centered, non-action-centered, meta-cognitive, and motivational subystems.
Each of these is split into explicit and implicit components, thus enabling the
deliberative processes associated with localist representations to work in par-
allel with the automatic processes associated with distributed representations.
This dual-process approach to modeling cognition has been shown to be capa-
ble of modeling a variety of behavioral phenomena in psychologically plausible
ways. For example, [22] implemented similarity-based and rule-based reasoning
in the non-action-centered subsystem (NACS for short). Building on these pro-
cesses, [13] showed that structured knowledge, and thus primitive deductive and
analogical reasoning, can also be modeled in the NACS. And building on the
structures of [13], the authors demonstrated a high-level approach to generating
explanations of varying quality in [14].

The present paper can be considered another in that sequence. As men-
tioned earlier, the previous model of explanation [14] used cause-effect pairs,
implemented as template structures (a particular type of organization of localist
chunks in the explicit level of the NACS). But where do these cause-effect pairs
come from? One way, suggested by the performance of the younger children in
Piaget’s floating task, is known as feature selection. Given a set of features of the
object under consideration, the child will somehow select some subset of these
features (in the case of stage-1 children, a subset consisting of a single feature)
and hypothesize that the presence of this particular feature is the cause of the
phenomena under observation (floating or sinking). In CLARION, feature selec-
tion comes naturally out of the operations of a backpropagation network built
into CLARION [21].

In CLARION’s NACS, localist chunks corresponding to outputs can be placed
on the top level, and microfeatures corresponding to inputs and hidden nodes
can be placed on the bottom level. In Section 3.2, we set up the NACS in this
way, and apply a feature selection algorithm to the floating task. First, we turn
to a description of our computational simulation of the floating task.



Fig. 1. The Floating Task

3.1 A Task in PAGI World

PAGI World [2, 16, 12] is a simulation environment for the evaluation and devel-
opment of AGI and cognitive systems. PAGI World is built in Unity, allowing
for execution on all major operating systems. It is built on Unity’s 2D physics
engine, so that mass, volume, velocity, texture, temperature, etc., can be expe-
rienced by the AI actor in a realistic way. The AI actor (a ball-shaped creature
with two hands, who we sometimes refer to as ‘PAGI guy’) is controlled by a
script that can be written by researchers in any programming language that
supports TCP/IP. The information sent between the controller script and PAGI
World is mostly low-level: PAGI World sends information from its visual, tac-
tile, and other sensors (including some medium-level data such as object names),
while the controller script can send commands to apply a force vector to PAGI
guy’s body and hands to control it.

PAGI World is easy to learn and use, thanks to design choices that we hope
will encourage researchers to make use of PAGI World. Because it can be run on
almost any operating system and controlled using almost any programming lan-
guage, PAGI World provides a platform for cognitive architectures of all types
(particularly those which claim to be general-purpose) to compare their perfor-
mance on the exact same tasks.



Piagetian experiments are somewhat difficult to model computationally for
two important reasons: First, they often rely on objects that need to move in a
physically realistic way, and it is nontrivial for researchers to program sufficiently
realistic simulations for every model they create; second, assessing agents in
Piagetian experiments makes heavy use of explanatory dialogue, that is, the
experimenter must be able to ask questions about the task and the subject must
be able to answer them. Although this second difficulty is one that is still beyond
the reach of AI researchers, the first difficulty is handled quite nicely by PAGI
World, since PAGI World has the ability to simulate water and create objects
that float or do not float in it.

Thus, for all of the reasons discussed above, PAGI World is an ideal choice
for hosting the Piagetian floating task. In our implementation, PAGI guy is
positioned below a tank of water. An object with a randomly generated volume
and weight is created, and appears in the middle of the tank, where it then either
floats to the top, sinks to the bottom, or stays relatively motionless (Figure 1).
After a few seconds, this object disappears and the process repeats. This allows
PAGI guy to collect data about what it observes, so that we can later ask
questions.

Algorithm 1 The Feature Selection Algorithm Used in Each Experiment of
Section 3.2
Require: Set of features F = {fi}
Require: Set of training examples EX = {ex1, ..., exn}
Require: Number of epochs e
Require: Number of iterations it

for i iterations do
for all fi ∈ F do

Build neural network ni, using only fi as sole input
for doe epochs

for doexi ∈ EX
Execute network ni with exi

Update weights of ni w/backpropagation
end for

end for
for doexi ∈ EX

Execute ni with exi; compare prediction to actual result
end for
Determine final error rate by averaging over all exi ∈ EX

end for
Select the feature that had the highest accuracy rate

end for
Return the number of times each feature was selected as having the highest accuracy
rate



Fig. 2. A plot of the number of training examples n (x-axis) vs. the amount of times
each feature was chosen for having the lowest error rate (y-axis). Note that only mass
and area are shown here, since the other color-related features showed less than once
per thousand iterations.

3.2 Bottom-Up Feature Selection in CLARION

In this section we demonstrate that a simple feature selection algorithm can be
implemented in CLARION, by using a network that takes in low-level micro-
features and outputs a prediction as to whether an object will float, sink, or
remain stationary. Feature selection is an inherent property of backpropagation,
in the sense that as backpropagation updates weights, certain nodes (which can
correspond to features) will have higher weights connected to them than others.

CLARION is designed to work with low-level distributed networks that can
be trained with backpropagation. We started by creating a network consisting
of five inputs, all microfeatures in the bottom level of CLARION’s NACS: mass,
volume, and three microfeatures for color (red, green, blue). Each input can
be activated by a value between 1 and 255. Three outputs are created, each of
them implemented as a chunk in the top level of the NACS: float, sink, and
stationary. We also create five additional microfeatures h1, ..., h5, to serve as the
hidden layer of the network.

Feature selection proceeds as follows. We collected sensory data from in-
stances of the floating task in PAGI World, where an object of randomized color,
mass, and weight appears in the middle of the tank and floats, sinks, or remains
stationary. Each instance of an object appearing in the floating task is recorded



and called an example. The input features are then individually isolated; that
is, we only activate one feature at a time, allow the activation to propagate up
to the hidden microfeatures (h1, ..., h5), and further up to the output chunks,
and the output chunk with the highest activation is taken to be the ‘prediction’
of this particular instance. We repeat this for n examples; weights are updated
using backpropagation after every example. One successful run-through of all n
examples is called an epoch. We then execute another epoch, runing through the
same n examples again.

After e epochs, we evaluate the average error on the same n examples that the
network was trained on. Note that this differs greatly from standard machine-
learning practice: generally a test data set is used that is non-overlapping with
the training data set. However, we are not necessarily interested in getting the
correct prediction; we are interested in modeling the reasoning of the child in a
way that is psychologically plausible. It is psychologically plausible that a child
would use a limited set of examples from his memory to validate hypotheses or
features, and it is less plausible that a child would run through a set of thousands
of training examples first.

In any case, the evaluation of error on the n examples gives us an error rate
for the feature that was isolated. We can then repeat this entire process with
the other features, obtaining an error rate for each feature. The feature that
had the lowest error rate is taken to be the winner of this iteration. (Originally,
we also recorded the feature that had the second-lowest error rate, but because
the results were so overwhelmingly in favor of mass and volume (a color-related
feature was selected less than once per 1000 iterations), we only present the data
here for the lowest error rate.) The feature-selection algorithm is laid out in a
more convenient form in Algorithm 1.

The iterations were repeated 1000 times per experiment. We carried out this
experiment six times, for three different values of n (n ∈ {5, 10, 20}) and two
different values of e (e ∈ {2, 20}). Figure 2 shows the value of n on the x-axis,
and the number of times (out of 1000 iterations) some particular feature was
chosen as having the lowest error rate on the y-axis.

The values of n we chose for each experiment were intentionally very small.
It seems implausible that children carrying out the floating experiment would
actually be trained using hundreds of instances before they output their predic-
tions. Therefore, we kept n very low in order to see what results emerged. As it
turns out, the results match our intuitions: using our feature-selection algorithm
settles extremely quickly on either the mass or volume features, and the only
growth we see as n and e are increased is a slowly growing gap between the
amount of times mass is chosen and the amount of times volume is chosen (a
gap which was larger for 20 epochs than it was for 2 epochs).

The fact that even tiny values of n and e identify mass and volume as the most
relevant features is consistent with the idea that, in line with Piaget’s suspicions,
the growth allowing the more complex explanations of stage-2 and later reasoning
is a growth in the complexity of the representations themselves—that is, new
nodes (corresponding to new concepts) might be created to represent abstract



ideas such as density, water-current, and higher-level features constructed out of
the lower-level ones used in our experiments.

4 Future Work and Conclusion

This paper presents a task designed to closely model the Piagetian floating task,
and then shows how the behaviors of stage-1 children can be explained as feature
selection over simple representations in the CLARION cognitive architecture.
Future work will attempt to explain the sequence of behaviors shown by Piaget
in the floating task. For example, the ability to consider multiple properties at
once (which appears in stage-3 children) may be explained using a template
structure designed to group properties together. Likewise, the shift from single-
place predicates to relations seen in stage 4 might be explained by a stabilization
of the property groupings and the emergence of two-place predicates (a similar
strategy is used in the DORA model [5]).

Another series of tasks, highly relevant to the study of the development of
causality in children, may be interesting to examine using the model developed in
this paper. These are the series of “collision” tasks [10, 11], in which infants can
identify when some basic notions of physical causality are violated. When shown
two objects that are about to collide, but one of them unexpectedly changes
direction or stops before the collision is supposed to have taken place, infants
will stare at the anomalously behaving object longer than they would at objects
colliding normally. We have already started creating this task in PAGI World
and hope to show that the present model can match the performance of human
children closely.

The backpropagation used in this paper for feature selection is one of many
ways CLARION can select features. In the future, as we tackle more complex
tasks, we can make use of, e.g., principal component analysis (PCA) or sparse
autoencoders [7].

Causality, of course, is an immensely complex and well-studied topic, and
early steps such as those taken in this paper can only hope to scratch the sur-
face. Future work will expand the philosophical, psychological, and historical
perspectives on the notion of causality and how it relates to explanation gener-
ation.2
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on this and other tasks, and report their results.



References

1. Anderson, J.R., Simon, H.A., Reder, L.M.: Radical Constructivism and Cognitive
Psychology. In: Ravitch, D. (ed.) Brookings Papers on Education Policy. Brookings
Institute Press, Washington, DC (1998)

2. Atkin, K., Licato, J., Bringsjord, S.: Modeling Interoperability Between a Reflex
and Reasoning System in a Physical Simulation Environment. In: Proceedings of
the 2015 Spring Simulation Multi-Conference (2015)

3. Beilin, H.: Piaget’s Enduring Contribution to Developmental Psychology. Devel-
opmental Psychology 28(2), 191–204 (1992)

4. Chapman, M.: Constructive Evolution: Origins and Development of Piaget’s
Thought. Cambridge Univ Press (1988)

5. Doumas, L.A., Hummel, J.E., Sandhofer, C.: A Theory of the Discovery and Pred-
ication of Relational Concepts. Psychological Review 115(1), 1–43 (2008)

6. Friedman, S.E., Forbus, K.: An Integrated Systems Approach to Explanation-
Based Conceptual Change. In: Proceedings of the 24th AAAI Conference on Arti-
ficial Intelligence. Atlanta, GA (2010)

7. Gregor, K., LeCun, Y.: Learning Fast Approximations of Sparse Coding. In: Pro-
ceedings of the 27th International Conference on Machine Learning. pp. 399–406
(2010)

8. Hummel, J.E., Landy, D.H.: From Analogy to Explanation: Relaxing the 1:1 Map-
ping Constraint...Very Carefully. In: Kokinov, B., Holyoak, K.J., Gentner, D. (eds.)
New Frontiers in Analogy Research: Proceedings of the Second International Con-
ference on Analogy. Sofia, Bulgaria (2009)

9. Hummel, J.E., Licato, J., Bringsjord, S.: Analogy, Explanation, and Proof. Fron-
tiers in Human Neuroscience 8(867) (2014)

10. Leslie, A.M.: Spatiotemporal Continuity and the Perception of Causality in Infants.
Perception 13, 287–305 (1984)

11. Leslie, A.M., Keeble, S.: Do Six-Month-Old Infants Perceive Causality? Cognition
25, 265–288 (1987)

12. Licato, J.: Analogical Constructivism: The Emergence of Reasoning Through Anal-
ogy and Action Schemas. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY
(May 2015)

13. Licato, J., Sun, R., Bringsjord, S.: Structural Representation and Reasoning in
a Hybrid Cognitive Architecture. In: Proceedings of the 2014 International Joint
Conference on Neural Networks (IJCNN) (2014)

14. Licato, J., Sun, R., Bringsjord, S.: Using Meta-Cognition for Regulating Explana-
tory Quality Through a Cognitive Architecture. In: Proceedings of the 2nd Inter-
national Workshop on Artificial Intelligence and Cognition. Turin, Italy (2014)

15. Lourenço, O., Machado, A.: In Defense of Piaget’s Theory: A Reply to 10 Common
Criticisms. Psychological Review 103(1), 143–164 (1996)

16. Marton, N., Licato, J., Bringsjord, S.: Creating and Reasoning Over Scene De-
scriptions in a Physically Realistic Simulation. In: Proceedings of the 2015 Spring
Simulation Multi-Conference (2015)

17. Piaget, J.: The Child’s Conception of Physical Causality. Routledge (1930/1999)
18. Piaget, J.: The Moral Judgment of the Child (1960)
19. Sun, R.: Duality of the Mind: A Bottom Up Approach Toward Cognition. Lawrence

Erlbaum Associates, Mahwah, NJ (2002)
20. Sun, R.: Desiderata for Cognitive Architectures. Philosophical Psychol-

ogy 17(3), 341–373 (Sep 2004), http://www.informaworld.com/openurl?



genre=article\&doi=10.1080/0951508042000286721\&magic=crossref|

|D404A21C5BB053405B1A640AFFD44AE3

21. Sun, R., Peterson, T.: Autonomous Learning of Sequential Tasks: Experiments
and Analyses. IEEE Transactions on Neural Networks 9(6), 1217–1234 (November
1998)

22. Sun, R., Zhang, X.: Accounting for Similarity-Based Reasoning within a Cogni-
tive Architecture. In: Proceedings of the 26th Annual Conference of the Cognitive
Science Society. Lawrence Erlbaum Associates (2004)


