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Abstract

In this paper, we introduce a framework of reservoir computing that is capable
of both connectionist machine intelligence and symbolic computation. Cellular
automaton is used as the reservoir of dynamical systems. A cellular automaton is
a very sparsely connected network with logical nodes and nonlinear/logical con-
nection functions, hence the proposed system corresponds to a binary valued and
nonlinear neuro-symbolic architecture. Input is randomly projected onto the ini-
tial conditions of automaton cells and nonlinear computation is performed on the
input via application of a rule in the automaton for a period of time. The evolution
of the automaton creates a space-time volume of the automaton state space, and
it is used as the reservoir. In addition to being used as the feature representation
for pattern recognition, binary reservoir vectors can be combined using Boolean
operations as in hyperdimensional computing, paving a direct way symbolic pro-
cessing. To demonstrate the capability of the proposed system, we make analogies
directly on image data by asking ’What is the Automobile of Air’?, and make log-
ical inference using rules by asking ’Which object is the largest?’

1 Introduction

We have introduced a holistic intelligence framework capable of simultaneous pattern recognition
Yilmaz (2015b) and symbolic computation Yilmaz (2015a,c). Cellular automaton is the main com-
putational block that holds a distributed representation of high order input attribute statistics as in
neural architectures (Figure 1 b). The proposed architecture is a cross fertilization of cellular au-
tomata, reservoir computing and hyperdimensional computing frameworks (Figure 1 a). The cellular
automata (CA) computation can be viewed as a feedforward network with logical nodes and con-
nections, as shown in Figure 1 c. In this paper, we analyze the symbolic computation capability of
the system on making analogies and rule based logical inferences, directly on the image data. The
results show that (Figure 2), binary vector representation of images derived through CA evolution
provide very precise analogies and accurate rule based inference, even though very small number of
examples are provided. In the next subsection we review cellular automata 1, then introduce relevant
neuro-symbolic computation studies. Finally, we state our contribution.

∗Web: ozguryilmazresearch.net
1The literature review is narrowed down in this paper due to space considerations. Please visit our pub-

lished papers to get a wider view of our architecture among existing reservoir and hyperdimensional computing
approaches.
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Figure 1: a. Our work is a cross fertilization of cellular automata, reservoir computing and hyperdi-
mensional computing frameworks. b. In cellular automata reservoir, data is projected onto cellular
automaton instead of a real valued node as in classical neural networks. c. The network formed by
the cellular automaton feature space of rule 90. It can be viewed as a time unrolled feedforward
network, however the connections are not all-to-all between layers due to partitioning of different
permutations, given as separate rows. And the connections are not algebraic but logical, i.e. XOR
operation. See Yilmaz (2015b) for details.

1.1 Cellular Automata

Cellular automaton is a discrete computational model consisting of a regular grid of cells, each in one
of a finite number of states (Figure 1 c). The state of an individual cell evolves in time according to
a fixed rule, depending on the current state and the state of its neighbors. The information presented
as the initial states of a grid of cells is processed in the state transitions of cellular automaton and
computation is typically very local. Essentially, a cellular automaton is a very sparsely connected
network with logical nodes and nonlinear/logical connection functions (Figure 1 c). Some of the
cellular automata rules are proven to be computationally universal, capable of simulating a Turing
machine (Cook, 2004).

The rules of cellular automata are classified according to their behavior: attractor, oscillating,
chaotic, and edge of chaos (Wolfram, 2002). Turing complete rules are generally associated with the
last class (rule 110, Conway game of life). Lyapunov exponent of a cellular automaton can be com-
puted and it is shown to be a good indicator of the computational power of the automata (Baetens &
De Baets, 2010). A spectrum of Lyapunov exponent values can be achieved using different cellular
automata rules. Therefore, a dynamical system with specific memory capacity (i.e. Lyapunov expo-
nent value) can be constructed by using a corresponding cellular automaton. The time evolution of
the cellular automata has very rich computational representation Mitchell et al. (1996), especially for
the edge of chaos dynamics. The proposed algorithm in this paper exploits the entire time evolution
of the CA and uses the states as the reservoir LukošEvičIus & Jaeger (2009); Maass et al. (2002) of
nonlinear computation.

1.2 Symbolic Computation on Neural Representations

Uniting the expressive power of mathematical logic and pattern recognition capability of distributed
representations (eg. neural networks) has been an open question for decades although several suc-
cessful theories have been proposed (Garcez et al., 2012; Bader et al., 2008; Marcus, 2003; Mi-
ikkulainen et al., 2006; Besold et al., 2014; Pollack, 1990). The difficulty arises due to the very
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different mathematical nature of logical reasoning and dynamical systems theory. Along with many
other researchers, we conjecture that combining connectionist and symbolic processing requires
commonalizing the representation of data and knowledge.

Along the same vein, (Kanerva, 2009) introduced hyperdimensional computing that utilizes high-
dimensional random binary vectors for representing objects, predicates and rules for symbolic ma-
nipulation and inference. The general family of the methods is called ’reduced representations’ or
’vector symbolic architectures’, and detailed introductions can be found in (Plate, 2003; Levy &
Gayler, 2008). In this approach, high dimensionality and randomness enable binding and grouping
operations that are essential for one shot learning, analogy-making, hierarchical concept building
and rule based logical inference. Most recently (Gallant & Okaywe, 2013) introduced random ma-
trices to this context and extended the binding and quoting operations. The two basic mathematical
tools of reduced representations are vector addition and XOR.

In this paper, we borrow these tools of hyperdimensional computing framework, and build a se-
mantically more meaningful representation by removing the randomness and replacing it with the
cellular automata computation. This provides not only a more expressive symbolic computation
architecture, but also enables pattern recognition capabilities otherwise not possible with random
vectors.

1.3 Contributions

We provide a low computational complexity method Yilmaz (2015b) for recurrent computation us-
ing cellular automata based hyperdimensional computing. It is shown that the framework has a great
potential for symbolic processing such that the cellular automata feature space can directly be com-
bined by Boolean operations as in hyperdimensional computing, hence they can represent concepts
and form a hierarchy of semantic interpretations. We demonstrate this capability by making analo-
gies directly on images and infer relationships using logical rules. In the next section, we give the
details of the algorithm, and then provide results experiments that demonstrate our contributions.

2 Cellular Automata Feature Expansion

In our reservoir computing method, data are passed on a cellular automaton instead of an echo
state network and the nonlinear dynamics of cellular automaton provide the necessary projection
of the input data onto an expressive and discriminative space. Compared to classical neuron-based
reservoir computing, the reservoir design is trivial: cellular automaton rule selection. Utilization of
edge of chaos automaton rules ensures Turing-complete computation in the reservoir, which is not
guaranteed in classical reservoir computing approaches.

The reservoir computing system receives the input data. First, the encoding stage translates the
input into the initial states of a 1D elementary cellular automaton. For binary input data, each
feature dimension can randomly be mapped onto the cells of the cellular automaton. For this type
of mapping, the size of the CA should follow the input data’s feature dimension. After encoding,
suppose that the cellular automaton is initialized with the vector A0

P1 , in which P1 corresponds
to a random permutation of raw input data. Then, cellular automata evolution is computed using a
prespecified rule, Z (1D elementary CA rule), for a fixed period of iterations (I):

A1
P1 = Z(A0

P1),

A2
P1 = Z(A1

P1),

...

AI
P1 = Z(AI−1

P1).

The evolution of the cellular automaton is recorded such that, at each time step a snapshot of the
whole states in the cellular automaton is vectorized and concatenated. Therfore, we concatenate the
evolution of cellular automata to obtain a reservoir for a single permutation:

AP1 = [A0
P1 ;A1

P1 ;A2
P1 ; ...AI

P1 ]

It is experimentally observed that multiple random permutation mappings significantly improve ac-
curacy. There are R number of different random mappings, i.e., separate CA reservoirs, and they
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are combined into a large reservoir feature vector:

AR = [AP1 ;AP2 ;AP3 ; ...APR ].

The computation in CA takes place when cell activities due to nonzero initial values (i.e., input)
mix and interact. Both prolonged evolution duration (large I) and existence of different random
mappings (large R) increase the probability of long-range interactions, hence improve computational
power and enhance representation.

3 Symbolic Processing and Non-Random Hyperdimensional Computing

Hyperdimensional computing uses random very large-sized binary vectors to represent objects, con-
cepts, and predicates. Then, appropriate binding and grouping operations are used to manipulate the
vectors for hierarchical concept building, analogy-making, learning from a single example, etc., that
are hallmarks of symbolic computation. The large size of the vector provides a vast space of random
vectors, two of which are always nearly orthogonal. Yet, the code is robust against a distortion in
the vector due to noise or imperfection in storage because after distortion it will still stay closer to
the original vector than the other random vectors.

The grouping operation is normalized vector summation, and it enables forming sets of ob-
jects/concepts. Suppose we want to group two binary vectors, V1 and V2. We compute their element-
wise sums, and the resultant vector contains 0, 1 and 2 entries. We normalize the vector by accepting
the 0 entries as they are, transforming 2 entries into 1. Note that, these are consistent within the two
initial vectors. Then, the inconsistent entries are randomly decided: 1 entries as transformed into 0
or 1. Many vectors can be combined iteratively or in a batch to form a grouped representation of the
bundle. The resultant vector is similar to all the elements of the vector due to the fact that consistent
entries are untouched. The elements of the set can be recovered from the reduced representation by
probing with the closest item in the memory, and consecutive subtraction. Grouping is essential for
defining ’a part of’, ’contains’ relationships. + symbol will be used for normalized summation in
the following arguments.

There are two binding operations: bitwise XOR (circled plus symbol, ⊕) and permutation 2. Bind-
ing operation maps (randomizes) the vector to a completely different space, while preserving the
distances between two vectors. As stated in Kanerva (2009), ”...when a set of points is mapped
by multiplying with the same vector, the distances are maintained, it is like moving a constellation
of points bodily into a different (and indifferent) part of the space while maintaining the relations
(distances) between them. Such mappings could play a role in high-level cognitive functions such as
analogy and the grammatical use of language where the relations between objects is more important
than the objects themselves.

A few representative examples to demonstrate the expressive power of hyperdimensional computing:

1. We can represent pairs of objects via multiplication. OA,B = A ⊕ B where A and B are two
object vectors.

2. A triplet is a relationship between two objects, defined by a predicate. This can similarly be
formed by TA,P,B = A⊕ P ⊕B. These types of triplet relationships are very successfully utilized
for information extraction in large knowledge bases Dong et al. (2014).

3. A composite object can be built by binding with attribute representation and summation. For a
composite object C,

C = X ⊕A1 + Y ⊕A2 + Z ⊕A3,

where A1, A2 and A3 are vectors for attributes and X , Y and Z are the values of the attributes for a
specific composite object.

4. A value of an attribute for a composite object can be substituted by multiplication. Suppose we
have assignment X⊕A1, then we can substitute A1 with B1 by, (X⊕A1)⊕ (A1⊕B1) = X⊕B1.
It is equivalent to say that A1 and B1 are analogous. This property is essential for analogy making.

2Please see Kanerva (2009) for the details of permutation operation, as a way of doing multiplication.
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5. We can define rules of inference by binding and summation operations. Suppose we have a rule
stating that ”If x is the mother of y and y is the father of z, then x is the grandmother of z” 3. Define
atomic relationships:

Mxy = M1 ⊕X +M2 ⊕ Y,

Fyz = F1 ⊕ Y +M2 ⊕ Z,

Gxz = G1 ⊕X +G2 ⊕ Z,

then the rule is,

Rxyz = Gxz ⊕ (Mxy + Fyz).

Given the knowledge base, ”Anna is the mother of Bill” and ”Bill is the father of Cid”, we can infer
grandmother relationship by applying the rule Rxyz:

Mab = M1 ⊕A+M2 ⊕B,

Fbc = F1 ⊕B +M2 ⊕ C,

G
′

ac = Rxyz ⊕ (Mab + Fbc),

where vector G
′

ac is expected to be very similar to Gac, which says ”Anna is the grandmother of
Cid”. Please note that the if-then rules represented by hyperdimensional computing can only be
if-and-only-if logical statements because operations used to represent the rules are symmetric.

Without losing the expressive power of classical hyperdimensional computing, we are introducing
cellular automata to the framework. In our approach, we use binary cellular automata reservoir
vector as the representation of objects and predicates instead of random vectors to be used for sym-
bolic computation. There are two major advantages of this approach over random binary vector
generation:

1. Reservoir vector enables connectionist pattern recognition and statistical machine learning (as
demonstrated in Yilmaz (2015b)) while random vectors are mainly tailored for symbolic computa-
tion.

2. The composition and modification of objects can be achieved in a semantically more meaningful
way. The semantic similarity of the two data instances can be preserved in the reservoir hyperdi-
mensional vector representation, but there is no straightforward mechanism for this in the classical
hyperdimensional computing framework.

4 Experiments on Analogy Making

In order to demonstrate the power of enabled logical operation, we will use analogy making. Anal-
ogy making is crucial for generalization of what is already learned. We tested the capability of our
symbolic system using images. The example given here follows ”What is the Dollar of Mexico?”
in Kanerva (2009). However in the original example, sensory data (i.e. image) is not considered
because there is no straightforward way to introduce sensory data into the hyperdimensional com-
puting framework. The benefit of using non-random binary vectors is obvious in this context.

We have previously shown that binarization of the hidden layer activities of a feedforward network
is not very detrimental for classification purposes Yilmaz et al. (2015). For an image, the binary
representation of the first hidden layer activities holds an indicator for the existence of Gabor like
corner and edge features. In order to test the symbolic computation performance of CA features on
binarized hidden layer activities, we use CIFAR 10 dataset Krizhevsky & Hinton (2009). We used
the first 500 training/test images and obtained single layer hidden neuron representation using the
algorithm in Coates et al. (2011) (200 number of different receptive fields, receptive fields size of 6
pixels). The neural activities are binarized according to a threshold and, on average, 22 percent of
the neurons fired with the selected threshold. After binarization of neural activities, CA features can
be computed on the binary representation as explained in section 2. We formed a separate concept
vector for each class (total 10 classes, 50 examples for each class) using binary neural representation
of CIFAR training data and vector addition defined in Snaider (2012). These are the basis class
concepts extracted from the visual database.

3The example is adapted from Kanerva (2009).
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a b

Figure 2: a. Analogy making experiment results. The feature expansion (defined as the product
R× I) due to cellular automata evolution is given in the x axis (log scale) and the percent correct is
given in the y axis. b. Rule based logical inference experiment results.

We formed two new concepts called Land and Air:

Land = Animal ⊕Horse+ V ehicle⊕Automobile,

Air = Animal ⊕Bird+ V ehicle⊕Airplane.

In these two concepts, CA features of Horse and Bird images are used to bind with the Animal
filler, and CA features of Automobile and Airplane images are used to bind with the Vehicle filler
4. Animal and Vehicle fields are represented by two random vectors 5, those with the same size as
the CA features. Multiplication is performed by xor (⊕) operation and vector summation is again
identical to Snaider (2012). The products, Land and Air are also CA feature vectors, and they
represent the merged concept of observed animals and vehicles in Land and Air respectively. We
can ask the analogical question ”What is the Automobile of Air?”, AoA in short. The answer can
simply be given by this equality (inference):

AoA = Automobile⊕ Land⊕Air.

AoA is a CA feature vector and expected to be very similar to Airplane concept vector. We tested the
analogical accuracy using unseen Automobile test images (50 in total), computing their CA feature
vectors followed by AoA inference, then finding the closest concept class vector to AoA vector
(max inner product). It is expected to be the Airplane class. The result of this experiment is given
in Figure 2 a 6 for various R and I combinations. The multiplication of the two defines the amount
of feature expansion due to cellular automata state space. The analogy on CA features is 98 percent
accurate (for both R and I equals 128), whereas if the binary hidden layer activity is used instead
of CA features (corresponds to R and I equal to 1), the analogy is only 21 percent accurate. This
result clearly demonstrates the benefit of CA feature expansion for symbolic computation.

The devised analogy implicitly assumes that Automobile concept is already encoded in the concept
of Land. What if we ask ”What is the Truck of Air?”? Even though Truck images are not used in
building the Land concept, due to the similarity of Truck and Automobile concepts, we might still
get good analogies. The results on this second order analogy is contrasted in Table 1. Automobile
and Horse (i.e. ”What is the Horse of Air?”, the answer should be Bird.) are first order analogies
and they result in comparably superior performance as expected, but second order analogy is much
higher than chance level (i.e., 10 percent).

Please note that these analogies are performed strictly on the sensory data, i.e., images. Given an im-
age, the system is able to retrieve a set of relevant images that are linked through a logical statement.

4There are 50 training images for each class. CA rule 110 is used for evolution. And mean of 20 Monte
Carlo simulations is given to account for randomness in experiments

5Also 22 percent non-zero elements
6These are extended results for our previous publication Yilmaz (2015a). We were unable to test for large

R and I values due to hardware limitations.
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Automobile Horse Truck
79 68 52

Table 1: Analogy-making experiment results on CIFAR 10 dataset (subset). R and I are both 32.
The accuracy of the analogy is given for first (given in bold) and second order analogies. See text
for details.

A very small number of training data is used, yet we can infer conceptual relationships between
images surprisingly accurately. However, again it should be emphasized that this is only a single
experiment with a very limited analogical scope, and more experiments are needed to understand
the limits of the proposed architecture.

It is possible to build much more complicated concepts using hierarchies. For example, Land and
Air are types of environments and can be used as fillers in Environment field. Ontologies are helpful
to narrow down the set of required concepts for attaining a satisfactory description of the world.
Other modalities such as text data are also of great interest, (see Mikolov et al. (2013); Pennington
et al. (2014) for state-of-the-art studies), as well as information fusion on multiple modalities (e.g.,
Image and text).

5 Experiments on Rule Based Inference

In order to test proposed architecture’s capability for logical inference, we define a rule and form a
knowledge base on image data. Then we make an inference on the knowledge base by applying the
rule. The inference may or may not be right, hence the symbolic system is not completely sound. 7

For demonstration of logical inference on our system, we define size relationships among different
objects using the following rule set.
Object in image X is larger than object in image Y :

Lxy = L1 ⊕X + L2 ⊕ Y.

Object in image X is smaller than object in image Z:

Sxz = S1 ⊕X + S2 ⊕ Z.

And finally, we state the largest object is in image Z:

Tz = T1 ⊕ Z.

Then the rule is stated as ’If object in X is larger than object in Y and smaller than object in Z,
largest object is in Z’. The rule vector is computed as the manipulation of object vectors using
hyperdimensional computing framework:

Rxyz = Tz ⊕ (Lxy + Sxz).

Our knowledge base is again formed on the images of CIFAR 10 dataset. First, we use Truck,
Automobile, and Airplane images (50 each) to compute X , Y and Z concept vectors (CA rule 110);
then we obtain the rule vector Rxyz as explained above utilizing the concept vectors. In a completely
different set of test image triplet, we make use of single Truck, Automobile, and Airplane images
and compute their vector representation; a, b and c respectively. Knowledge base is created on the
object vectors in three test images:

Lab = L1 ⊕ a+ L2 ⊕ b,

Sac = F1 ⊕ a+M2 ⊕ c,

as ’object in image a is larger than object in image b, and object in image a is smaller than object
in image c’. Can we infer the largest object? When we apply the rule vector on existing knowledge
base, we get an estimate for the vector representation of the largest object:

Test = Rxyz ⊕ (Lab + Sac).

We compute the Hamming distance of Test to existing object vectors (i.e. a, b and c), then it is
possible to decide on the estimated largest object, i.e. closest vector to Test which should be vector

7The completeness of the system requires a proof and it is a future work.
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c. The average accuracy of 50 different test image triplets are shown in Figure 2 b. The chance
level is 33 percent and it is observed that the binary neural representation (i.e., both R and I is equal
to 1) is around 50 percent accurate, whereas cellular automata state space provides a 100 percent
inference accuracy for a relatively small reservoir size. Please note that, similar to analogy making
experiments logical inference is performed directly on image data and we can make object size
inference using a very small number of example images (50).

6 Discussion

Along with the pattern recognition capabilities of cellular automata based reservoir computing Yil-
maz (2015b), hyperdimensional computing framework enables symbolic processing. Due to the
binary categorical indicator nature of the representation, the rules that make up the knowledge base
and feature representation of the data that make up the statistical model live on the same space,
which is essential for combining connectionist and symbolic capabilities. It is possible to make
analogies, form hierarchies of concepts, and apply logical rules on the reservoir feature vectors 8.

To illustrate the logical query, we have shown the capability of the system to make analogies on
image data. We asked the question ”What is the Automobile of Air?” after building Land and Air
concepts based on the images of Horse, Automobile (Land), Bird and Airplane (Air). The correct
answer is Airplane and the system infers this relationship with 98 percent accuracy, with only 50
training images per class. Additionally we have tested the performance of our architecture on rule
based logical inference on images. We defined an object size related rule on image data, provided a
knowledge base and inferred the largest object strictly using the image features.

Neural network data embeddings (eg. Kiros et al. (2014); Mikolov et al. (2013)) are an alternative
to our approach, in which representation suitable for logical manipulation is learned from the data
using gradient descent. Although these promising approaches are showing state-of-the-art results,
they are bound to suffer from the dilemma of ’no free lunch’ because the representation is data-
specific. The other extreme is random embeddings adopted in hyperdimensional computing and
reduced vector representation approaches. Although randomness maximizes the orthogonality of
vectors and optimizes the effective usage of the space, it does not allow statistical machine learning
or semantically meaningful modifications on existing vectors. Our approach lies in the middle: it
does not create random vectors, thus can manipulate existing vectors and use machine learning, but
do not learn the representation from the data therefore it is less prone to overfitting as well as to the
dilemma of ’no free lunch’. Moreover, cellular automata reservoir is orders of magnitude faster than
neural network counterparts Yilmaz (2015b).
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