
Improving Bird Identification using Multiresolution 

Template Matching and Feature Selection during 

Training
 

 

Mario Lasseck 

Animal Sound Archive  
Museum für Naturkunde Berlin 

Mario.Lasseck@mfn-berlin.de 

Abstract. This working note describes methods to automatically identify a 

large number of different bird species by their songs and calls. It focuses pri-

marily on new techniques introduced for this year’s task like advanced spectro-

gram segmentation and decision tree based feature selection during training. 

Considering the identification of dominant species, previous results of the 

LifeCLEF Bird Identification Task could be further improved by 29%, achiev-

ing a mean Average Precision of 59% (mAP). The proposed approach ranked 

second place among all participating teams and provided the best system to 

identify birds in soundscape recordings. 
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1 Introduction 

Automated acoustic methods of species identification can serve as a useful tool for 

biodiversity assessments. Within the scope of the LifeCLEF 2016 Bird Identification 

Task researchers are challenged to identify 999 different species in a large and highly 

diverse set of audio files. The audio recordings forming the training and test data set 

are built from the Xeno-canto collaborative database (www.xeno-canto.org). A novel-

ty in this year’s challenge is the enrichment of the test data set by including a new set 

of soundscape recordings. These soundscapes are not targeting any specific species 

during recording and can contain an arbitrary number of singing birds. To establish 

reliable acoustic methods for assessing biodiversity it is essential to improve the au-

tomated identification of birds in general but especially within these soundscape re-

cordings. An overview and further details about the Bird Identification Task are given 

in [1]. The task is among others part of the LifeCLEF 2016 evaluation campaign [2]. 

Some methods referred to in the following sections are further developments of ap-

proaches already successfully applied in previous identification tasks. A more detailed 

description of these approaches can be found in [3,4,5]. 
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2 Feature Engineering 

Two main categories of features (the same as last year) were used for training and 

prediction: matching probabilities of species-specific 2D spectrogram segments (see 

2.1 Segment-Probabilities) and acoustic features extracted with openSMILE (see 2.2 

Parametric Acoustic Features). For this year’s task a large number of new Segment-

Probability features were added for training by extracting new sound segments from 

audio files using the following two methods. 

Re-segmentation of large segments. Using the automated segmentation method of 

spectrograms described in [3] some of the extracted segments turned out to be quite 

large and in some cases not very useful for template matching – especially when pro-

cessing audio files with a lot of background noise, low signal to noise ratio or many 

overlapping sounds. To overcome this problem all segments having a duration longer 

than half a second or a frequency range greater than 6 kHz were treated as separate 

spectrogram images and re-segmented again with a slightly different image prepro-

cessing technique. The preprocessing steps for these too large segments differed in the 

following ways from the original preprocessing of the spectrogram image: 

 transform spectrogram into a binary image via Median Clipping by setting each 

pixel to 1, if it is 3.5 (instead of 3) times the median of its corresponding row AND 

column, otherwise to 0 

 apply binary closing with structuring element of size 2x2 (instead of 6x10) pixel 

 no dilation (instead of binary dilation with structuring element of size 3x5 pixel) 

 apply median filter with window size of 4x4 (instead of 5x3) pixel 

 remove small objects if smaller then 10 (instead of 50) pixel 

 enlarge segments in each direction by 10 (instead of 12) pixels 

 

Basically the image preprocessing was adjusted to be more sensitive and to capture 

smaller sound components and species-specific sub-elements within larger song struc-

tures and call sequences. Figure 1 visualizes an example of the new segmentation 

method. 

 

 

 

 

 

 

 



 

 

Fig. 1. Spectrogram re-segmentation example (MediaID: 8). top: initial segmentation (large 

segments marked in yellow), bottom: via re-segmentation of large segments extracted addi-

tional segments in red 

With re-segmentation of previously segmented files 1,671,600 new segments were 

extracted and subsequently used for template matching to generate additional Seg-

ment-Probability features.  

Extracting more features by segmenting files with low average precision. Besides 

re-segmentation of segmented files, additional files from the training set were chosen 

for segment extraction. However, instead of a random selection, a small number of 

files were chosen for each species (approx. 2 to 4) by selecting the ones having the 

lowest average precision score calculated during cross validation in previous training 

steps. This was done in two iterations (with new training and feature selection steps in 

between) increasing the number of features by additional 1,375,928 Segment-

Probabilities. 

2.1 Segment-Probabilities 

For each species an individual feature set was formed by sweeping all segments relat-

ed to that particular species over the spectrogram representations of all training and 

test recordings. The features were extracted via multiresolution template matching 

followed by selecting the maxima of the normalized cross-correlation [6]. In this con-

text, multiresolution has a double meaning. On one hand it is referring to the time and 

frequency resolution of the spectrogram image itself. For 492,753 segments (already 

used for the BirdCLEF 2014 identification task) a time resolution of Δt = 11.6 ms 

(approx. 86 pixel per seconds) and a frequency resolution of Δf = 43.07 Hz (approx. 

23 pixel per kHz) was used. For all other and newly extracted segments both time and 

frequency resolution was halved through downsampling the spectrogram image by a 

factor of 2. On the other hand the template matching can be also interpreted as multi-

resolution in terms of time and frequency range or size of the different spectrogram 

patches. Because further re-segmenting large segments, matching is performed for 



both: larger sound combinations (song syllables, call sequences) and smaller, rather 

fine-grained sound sub-elements (song elements, single calls).  

2.2 Parametric Acoustic Features 

Besides Segment-Probabilities, for some models also parametric acoustic features 

were used for prediction. To extract these features the openSMILE Feature Extractor 

Tool [7] was utilized again. The configuration file originally designed for emotion 

detection in speech signals was adapted to capture the characteristics of bird sounds. 

It first calculates 57 low-level descriptors (LLDs) per frame, adds delta (velocity) and 

delta-delta (acceleration) coefficients to each LLD and finally applies 39 statistical 

functionals on all, via moving average smoothened, feature trajectories.  

The all in all 73 LLDs consist of: 1 time domain signal feature (zero crossing rate), 39 

spectral features (Mel-spectrum bins 0-25; 25%, 50%, 75% and 90% spectral roll-off 

points; spectral centroid, flux, entropy, variance, skewness, kurtosis and slope; rela-

tive position of spectral minimum and maximum), 17 cepstral features (MFCC 0-16), 

6 pitch-related features (F0, F0 envelope, F0 raw, voicing probability, voice quality, 

log harmonics-to-noise ratio computed from the ACF) and 10 energy-related features 

(logarithmic energy as well as energy in frequency bands: 150-500 Hz, 400-1000 Hz, 

800-1500 Hz, 1000-2000 Hz, 1500-4000 Hz, 3000-6000 Hz, 5000-8000 Hz, 7000-

10000 Hz and 9000-11000 Hz). To summarize an entire recording, statistics are cal-

culated from all LLD, velocity and acceleration trajectories by 39 functionals includ-

ing e.g. means, extremes, moments, percentiles and linear as well as quadratic regres-

sion. In total this sums up to 8541 (73·3·39) features per recording. Further details 

regarding openSMILE and the features extracted for bird identification can be found 

in the openSMILE book [8] and the OpenSmileForBirds_v2.conf configuration file 

[9]. 

3 Training and Feature Selection 

The classification task was transformed to 999 one-vs-rest multi-label regression 

tasks. This way the number of selected features could be optimized separately and 

independently for each species during training. For each audio file in the training set 

the target function was set to 1.0 for the dominant species and 0.5 for all background 

species. Ensembles of randomized decision trees (ExtraTreesRegressor [10]) of the 

scikit-learn machine learning library were used for training and prediction [11]. 

Feature Selection during Training. Feature importance returned by the ensemble of 

decision trees was cumulated during training and used to rank individual features. The 

importance of each feature is determined by the total reduction of the mean squared 

error brought by that particular feature. After a complete training pass, including cross 

validation, the number of features was reduced by keeping only the N highest scoring 

and therefore most important features. The number N of features kept for the next 

training iteration was set to select 85% of the best features from the previous iteration. 



Different percentages were tested (75% to 90%) to find a good compromise between 

time of training and finding the optimal number of features. After the time consuming 

feature reduction procedure (the number of training iterations was repeated until there 

were only 5 features left to predict each species) the optimal number and best per-

forming features per species were selected by finding either the maximum of the Area 

Under the Curve (AUC) or alternatively the maximum mAP score calculated over the 

entire training set. Figure 2 shows two examples of resulting AUC (with and without 

background species), mAP and R2 (coefficient of determination) score trajectories 

when successively discarding 15% of the least important features. The maximum of 

each evaluation criteria is marked with a red square. The features used in the corre-

sponding training iteration (maximum of AUC or mAP score) were then chosen for 

predicting the test files. 

 

 

    

Fig. 2. Progress of AUC, mAP and R2 scores during feature selection for left: Scytalopus 

latrans (SpeciesID: lzezgo) and right: Psarocolius decumanus (SpeciesID: cxyhrl) 

 

 

 

 



4 Submission Results 

In Table 1 results of the submitted runs are summarized using two evaluation statis-

tics: mean of the Area Under the Curve calculated per species and mean Average 

Precision on the public training and the private test sets. For all runs no external re-

sources and only audio features (features extracted from audio files) were used for 

training and prediction. 

Table 1. Performance of submitted runs (without | with background species) 

 Public Training Set Test Set Test Soundscapes 

Run Mean AUC  [%] mAP  [%] mAP  [%] mAP  [%] 

1 96.4 | 93.5 64.1 | 61.9 58.5 | 51.9 13.7 

2 96.2 | 92.1 62.4 | 58.2 39.9 | 33.6 - 

3 96.9 | 92.2 74.5 | 70.1 45.6 | 39.6 13.0 

4 97.1 | 92.5 74.7 | 70.2 55.1 | 47.2 12.9 

 

Run 1. For the best performing first run just a single model was used. This model was 

trained using only a small but highly optimized selection of Segment-Probabilities (as 

described in the previous section). For this run, features were selected per species by 

optimizing the mAP score on the training set. A total of 125,402 features (with a min-

imum of 20, a maximum of 1833 and an average of 126 features per species) were 

used to predict all species in the test files. 

Run 2. The second run was submitted quite early as an interim result and is therefore 

not worthy of being discussed here. It was actually supposed to be replaced by the 

submission of another run averaging the predictions of several different models. Un-

fortunately uploading could not be completed before the submission deadline. 

Run 3. For the third submitted run blending of different models followed by post-

processing was used as described in [5]. Predictions from all models created during 

training as well as predictions from the two best performing models submitted last 

year were included (in total 24 models). Some models used Segment-Probabilities or 

openSMILE features only, others a combination of both. Also different feature sets 

were used with the number of features included for training and prediction optimized 

regarding either AUC (with and without using background species) or mAP score. 

Run 4. The fourth run also used blending to aggregate model predictions. But unlike 

run 3 only those predictions were included that after blending resulted in the highest 

possible mAP score calculated on the entire training set (13 models including the best 

model from 2015).  



Figure 3 visualizes the official scores of the LifeCLEF 2016 Bird Identification Task. 

The here proposed approach ranked second place among all teams (MarioTsaBerlin 

Run 1 & 4) and provided the best system to identify birds in soundscape recordings. 

 

 

Fig. 3.  Official scores of the LifeCLEF 2016 Bird Identification Task. The above described 

methods and submitted runs belong to MarioTsaBerlin. 

5 Discussion 

Interestingly, for the best performing submission (Run 1) just a single model was used 

with only one category of features. Although using a good selection of features for 

this model one would expect that blending several models with different feature sets 

would perform better than just a single one. One possible explanation for the compar-

atively weak results achieved with blending could be the inclusion of the best com-

bined models from 2015. Those combined and post-processed predictions already 

showed a fairly high overfitting on the training set and blending was perhaps done in 

favor of these predictions at the cost of the maybe better generalizing new models. 

On the other hand achieving an improvement by almost 30% on the mAP score with a 

single model (25% if taking background species into account) clearly shows that the 

techniques introduced this year could be applied very successfully. They also seem to 

complement each other quite well. Extracting additional, fine-grained spectrogram 

segments for template matching by re-segmenting larger segments captures typical 

sub-elements of songs or call sequences. Matching these sub-elements can give better 

identification performance than matching larger song structures, especially if those 

show a high variability between different individuals of the same species. The down-

side of the new segmentation method is a collection of many redundant or even use-



less segments e.g. when dealing with noisy recordings or overlapping sounds from 

other species or sources. However, the proposed feature selection method can com-

pensate for that by successively discarding irrelevant features during training. 

This year also deep learning techniques were successfully applied to the BirdCLEF 

dataset [12]. By using convolutional neural networks (CNNs) the best performing 

system achieved a mAP score of almost 70% when ignoring background species. It 

outperformed the here described approach by 17%, or 7% when also identifying all 

background species (see Fig.3 Cube Run 4). For soundscape recordings, however, the 

technique proposed in this paper achieved a 76% better performance than the best run 

using CNNs. Although identification performance for the new introduced test set was 

generally low among all teams, in the case of soundscapes, template matching seems 

to be better suited. The matching of rather small templates is not so much affected by 

surrounding sound events (e.g. coming from many simultaneously vocalizing ani-

mals) and therefore can create features more robust to various background noises. 

Compared to the black box architecture of a neuronal network classifier, using tem-

plate matching and decision tree based feature selection also has some additional 

advantages. By visually or acoustically examining the most important and best dis-

criminating sound elements of a species (typical calls, syllables or song phrases) one 

can gain a better insight into its sound repertoire and learn more about its call or song 

characteristics. The following figures visualize sound elements most suitable to iden-

tify a certain species. Each spectrogram segment is positioned at its original frequency 

position within a box representing the frequency range of 0 to 11025 Hz. More figures 

and additional material can be found at [13]. 

 

Fig. 4. Pallid Spinetail / Cranioleuca pallida, (ID: aiwvzm) 

 

Fig. 5. Streak-headed Antbird / Drymophila striaticeps, (ID: alouyq) 

 

Fig. 6. Southern Beardless Tyrannulet / Camptostoma obsoletum, (ID: armfvy) 

 

Fig. 7. Chestnut-capped Brush Finch / Arremon brunneinucha, (ID: ayfewp) 



 

Fig. 8. Bare-faced Curassow / Crax fasciolata, (ID: bgqyzr) 

 

Fig. 9. Rufous-headed Pygmy Tyrant / Pseudotriccus ruficeps, (ID: bgtgbo) 

 

Fig. 10. Yellow-throated Flycatcher / Conopias parvus, (ID: bpufoz) 

 

Fig. 11. Caatinga Antwren / Herpsilochmus sellowi, (ID: cuwfkj) 

 

Fig. 12. Ochre-rumped Antbird / Drymophila ochropyga, (ID: dhzucj) 

 

Fig. 13. Yellow-headed Brush Finch / Atlapetes flaviceps, (ID: dxtjbh) 

 

Fig. 14. Black-and-gold Cotinga / Tijuca atra, (ID: eofsmg) 

 

Fig. 15. Bare-throated Bellbird / Procnias nudicollis, (ID: fcojdk) 



 

Fig. 16. Itatiaia Spinetail / Asthenes moreirae, (ID: gshgib) 

 

Fig. 17. Cliff Flycatcher / Hirundinea ferruginea, (ID: hdtboj) 

 

Fig. 18. Scalloped Antbird / Myrmeciza ruficauda, (ID: hgmqff) 

 

Fig. 19. Dwarf Tyrant-Manakin / Tyranneutes stolzmanni, (ID: iyshfg) 

 

Fig. 20. Eastern Sirystes / Sirystes sibilator, (ID: jiuopg) 

 

Fig. 21. Large-tailed Antshrike / Mackenziaena leachii, (ID: jpjrlh) 

 

Fig. 22. Slender-billed Inezia / Inezia tenuirostris, (ID: myrlln) 

 

Fig. 23. White-throated Hummingbird / Leucochloris albicollis, (ID: orktkw) 



 

Fig. 24. Orange-breasted Thornbird / Phacellodomus ferrugineigula, (ID: osqzxt) 

 

Fig. 25. Southern Chestnut-tailed Antbird / Myrmeciza hemimelaena, (ID: ptwyjr) 

 

Fig. 26. Ashy-headed Greenlet / Hylophilus pectoralis, (ID: szaokc) 

 

Fig. 27. Cinnamon Flycatcher / Pyrrhomyias cinnamomeus, (ID: uissyt) 

 

Fig. 28. Roadside Hawk / Rupornis magnirostris, (ID: uphahj) 

 

Fig. 29. Black-collared Jay / Cyanolyca armillata, (ID: vnkcgy) 

 

Fig. 30. Tawny-crowned Pygmy Tyrant / Euscarthmus meloryphus, (ID: wckepf) 

 

Fig. 31. Dot-winged Antwren / Microrhopias quixensis, (ID: xyvbwf) 



 

Fig. 32. Brown-banded Puffbird / Notharchus ordii, (ID: ynwbeg) 

 

Fig. 33. Rufous-collared Sparrow / Zonotrichia capensis, (ID: yyjrms) 
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