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Abstract. In this paper we present a new audio classification method
for bird species identification. Whereas most approaches apply nearest
neighbour matching [6] or decision trees [8] using extracted templates for
each bird species, ours draws upon techniques from speech recognition
and recent advances in the domain of deep learning. With novel prepro-
cessing and data augmentation methods, we train a convolutional neural
network on the biggest publicly available dataset [5]. Our network archi-
tecture achieves a mean average precision score of 0.686 when predicting
the main species of each sound file and scores 0.555 when background
species are used as additional prediction targets. As this performance
surpasses current state of the art results, our approach won this years
international BirdCLEF 2016 Recognition Challenge [3,4,1].

Keywords: Bird Identification, Deep Learning, Convolution Neural Net-
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1 Introduction

1.1 Motivation

Large scale, accurate bird recognition is essential for avian biodiversity conser-
vation. It helps us quantify the impact of land use and land management on bird
species and is fundamental for bird watchers, conservation organizations, park
rangers, ecology consultants, and ornithologists all over the world. Many books
have been published [10,2,11] to help humans determine the correct species and
dedicated online forums exist where recordings can be shared and discussed [15].
Nevertheless, because recordings, spanning hundreds of hours, need to be care-
fully analysed and categorised, large scale bird identification remains almost an
impossible task to be done manually. It, therefore, seems natural to look at ways
to automate the process. Unfortunately a number of challenges have made this
task extremely difficult to tackle. Most prominent are:

– Background noise
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– Multiple birds singing at the same time (multi-label)
– Difference between mating calls and songs
– Inter-species variance [9]
– Variable length of sound recordings
– Large number of different species

Because of these, most systems are developed to deal with only a small num-
ber of species and require a lot of re-training and fine-tuning for each new species.
In this paper, we describe a fully automatic, robust machine learning method
that is able to overcome these issues. We evaluated our method on the biggest
publicly available dataset which contains over 33’000 recordings of 999 different
species. We achieved a mean average precision (MAP) score of 0.69 and an accu-
racy score of 0.58 which is currently the highest recorded score. Consequently our
approach won the international BirdCLEF 2016 Recognition Challenge [3,4,1].

1.2 Approach

We use a convolutional neural network with five convolutional and one dense
layer. Every convolutional layer uses a rectify activation function and is followed
by a max-pooling layer. For preprocessing, we split the sound file into a sig-
nal part where bird songs/calls are audible and a noise part where no bird is
singing/calling (background noise is still present in these parts). We compute
the spectrograms (Short Time Fourier Transform) of both parts and split each
spectrogram into equally sized chunks. Each chunk can be seen as the spectro-
gram of a short time interval (typically around 3 seconds). As such, we can use
each chunk from the signal part as a unique training/testing sample for our neu-
ral network. A detailed description of every step will be provided in the next
chapters.

Figure 1 and Figure 2 give an overview of our training / testing pipeline.

2 Feature Generation

The generation of good input features is vital to the success of the neural net-
work. There are three main stages. First, we decide which parts of the sound
file correspond to a bird singing/calling (signal parts) and which parts contain
noise or silence (noise parts). Second, we compute the spectrogram for both sig-
nal and noise part. Third, we divide the spectrogram of each part into equally
sized chunks. We can then use each chunk from the signal spectrogram as a
unique sample for training/testing and augment it with a chunk from the noise
spectrogram.

2.1 Signal/Noise Separation

To divide the sound file into a signal and a noise part, we first compute the
spectrogram of the whole file. Note that all spectrograms in this paper are com-
puted in the same way. First the signal is passed through a short-time Fourier
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Fig. 1: Overview of the pipeline for training the neural network. CNN stands for
convolutional neural network. During training, we use a batch size of 16 training
examples per iteration. However, due to memory limitations of the GPU, we
sometimes have to fall back to batches of size 8.
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Fig. 2: Overview of the testing pipeline. Note that we get multiple predictions
per sound file (one prediction per chunk/sample) which we can average to obtain
a single prediction per file.



transform (STFT), this is done using a Hanning window function (size 512, 75%
overlap). Then the logarithm of the amplitude of the STFT is taken. However,
the signal/noise separation is the exception to this rule because here, we do
not take the logarithm of the amplitude but instead divide every element by
the maximum value, such that all values end up in the interval [0, 1]. With the
spectrogram at hand, we are now able to look for the signal/noise intervals.

For the signal part we follow [7] quite closely. We first select all pixels in
the spectrogram that are three times bigger than the row median and three
times bigger than the column median. Intuitively, this gives us all the important
parts of the spectrograms, because a high amplitude usually corresponds to a
bird singing/calling. We set these pixels to 1 and everything else to 0. We apply
a binary erosion and dilation filter to get rid of the noise and join segments.
Experimentally we found that a 4 by 4 filter produced the best results. We
create a new indicator vector which has as many elements as there are columns
in the spectrogram. The i-th element in this vector is set to 1 if the i-th column
contains at least one 1, otherwise it is set to 0. We smooth the indicator vector
by applying two more binary dilation filters (filter size 4 by 1). Finally we scale
our indicator vector to the length of the original sound file. We can now use it
as a mask to extract the signal part. Figure 3 shows a visual representation of
each step.

For the noise part we follow the same steps but instead of selecting the pixels
which are three times bigger than row and column median, we select all pixels
which are 2.5 times bigger than the row and column median. We then proceed as
described above but invert the result at the very end. Note that, by construction
of our algorithm, a single column should never belong to both signal and noise
part. On the other hand, it can happen that a column is not part of either noise
nor signal part because we use different thresholds (3 versus 2.5). This is intended
as it provides a safety margin for our selection process. The reasoning is that
everything that was not selected as either signal nor noise, provides almost no
information to the neural network. The bird is either barely audible/distorted
or the sound does not match our concept of background noise very well.

The signal and noise masks split the sound file into many short intervals. We
simply join these intervals together to form one signal- and one noise-sound-file.
Everything that is not selected is disregarded and not used in any future steps.
The transition marks, that occur when two segments are joined together, are
usually not audible because the cuts happen when no bird is calling/singing.
Furthermore, the use of the dilation filters, as described earlier, ensures that we
keep the number of generated intervals to a minimum when applying the masks.
From the two resulting sound files we can now compute a spectrogram for both
signal and noise part. Figure 4 shows an example.

2.2 Dividing the Spectrograms into Chunks

As described in the last section, we compute a spectrogram for both the signal
and noise part of the sound file. Afterwards we split both spectrograms into
chunks of equal size (we use a length of 512). The splitting is done for three



0

1
Selected Columns

0

1
Selected Columns after first Dilation

0

1
Selected Columns after second Dilation

Original Spectrogram

Selected Pixels

Selected Pixels after Erosion

Selected Pixels after Erosion and Dilation

Fig. 3: Detection of signal parts for the file LIFE-
CLEF2014 BIRDAMAZON XC WAV RN3508. The two dilation steps at
the end are important because they end up improving the smoothness of our
mask/signal part.



STFT

Sound File

Signal Part Noise Part

STFT

Fig. 4: Separation of signal and noise part for the sound file IFE-
CLEF2014 BIRDAMAZON XC WAV RN3508. The green color in the sound file
image corresponds to the signal part, the red color to the noise part. Everything
that has a white background was not considered as either signal nor noise and
got discarded.



reasons. For one, we need a fixed sized input for our neural network architecture.
We could pad the input but the large variance in the length of the recordings
would mean that some samples would contain over 99% padding. We could
also try to use varying step sizes of our pooling layers but this would stretch
or compress the signal in the time dimension. In comparison, chunks allow us
to pad only the last part and keep our step size constant. Second, thanks to
our signal/noise separation method we do not have to deal with the issue of
empty chunks (without a bird calling/singing) which means we can use each
chunk as a unique sample for training/testing. Third, we can let the network
make multiple predictions per sound file (one prediction per chunk) and average
them to generate a final prediction. This makes our predictions more robust and
reliable. As an extension, one could try to merge multiple predictions in a more
sophisticated way but, so far, no extensive testing has been done.

3 Data Augmentation

Because the number of sound files is quite small, compared to the number of
classes (the training set (of 24’607 files) contains an average of only 25 sound
files per class), we need additional methods to avoid over fitting. Apart from
drop-out, data augmentation was one of the most important ingredients to im-
prove the generalization performance of the system. We apply four different data
augmentation methods. For an overview of the the impact each data augmenta-
tion method has, consult Table 1.

Table 1: Mean Average Precision for different runs on a dataset with 50 random
bird species. The baseline run uses all data augmentation methods (Background
Noise, Same Class Combining, Time Shifts and Pitch Shifts), while all the other
runs are missing one or two of the data augmentation methods. We use “w/o”
as an abbreviation for “without”. The first column corresponds to the mean
average precision when only the foreground (FG) species are considered. The
second column also considers the species in the background (BG) as prediction
targets. Underlined are the best results in each category. We stopped all runs
after 12 hours of training time.

MAP (FG only) MAP (FG & BG)

Baseline 0.842 0.728

w/o Noise 0.831 0.731

w/o Same Class 0.839 0.730

w/o Time Shift 0.801 0.701

w/o Pitch Shift 0.828 0.725

w/o Noise and Same Class 0.768 0.661



3.1 Time Shift

Every time we present the neural network with a training example, we shift it
in time by a random amount. In terms of the spectrogram this means that we
cut it into two parts and place the second part in front of the first (wrap around
shifts). This creates a sharp corner where the end of the second part meets
the beginning of the first part but all the information is preserved. With this
augmentation we force the network to deal with irregularities in the spectrogram
and also, more importantly, teach the network that bird songs/calls appear at
any time, independent of the bird species.

3.2 Pitch Shift

In a review of different augmentation methods [12] showed that pitch shifts
(vertical shifts) also helped reducing the classification error. We found that,
while a small shift (about 5%) seemed to help, a larger shift was not beneficial.
Again we used a wrap-around method to preserve the complete information.

3.3 Combining Same Class Audio Files

We follow [14] and add sound files that correspond to the same class. Adding is
a simple process because each sound file can be represented by a single vector. If
one of the sound files is shorter than the other we repeat the shorter one as many
times as it is necessary. After adding two sound files, we re-normalize the result
to preserve the original maximum amplitude of the sound files. The operation
describes the effect of multiple birds (of the same species) singing at the same
time. Adding files improves convergence because the neural network sees more
important patterns at once, we also found a slight increase in the accuracy of
the system (see Table 1).

3.4 Adding Noise

One of the most important augmentation steps is to add background noise. In
Section 2.1 we described how we split each file into a signal and noise part.
For every signal sample we can choose an arbitrary noise sample (since the
background noise should be independent of the class label) and add it on top
of the original training sample at hand. As for combining same class audio files,
this operation should be done in the time domain by adding both sound files
and repeating the smaller one as often as necessary. We can even add multiple
noise samples. In our test we found that three noise samples added on top of the
signal, each with a dampening factor of 0.4 produces the best results. This means
that, given enough training time, for a single training sample we eventually add
every possible background noise which decreases the generalization error.
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Fig. 5: Architecture used for the run “Cube Run 2” in the BirdCLEF 2016
Recognition Challenge. For “Cube Run 3” the same architecture was used but
the input image had dimensions 256 by 512.

4 Network architecture

Figure 5 shows a visual representation of our neural network architecture. The
network contains 5 convolutional layer, each followed by a max-pooling layer. We
insert one dense layer before the final soft-max layer. The dense layer contains
1024 and the soft-max layer 1000 units, generating a probability for each class.
We use batch normalization before every convolutional and before the dense
layer. The convolutional layers use a rectify activation function. Drop-out is
used on the input layer (probability 0.2), on the dense layer (probability 0.4)
and on the soft-max layer (probability 0.4). As a cost function we use the single
label categorical cross entropy function (in the log domain).

4.1 Batch Size

We use batches of 8 or 16 training examples. We found that using 16 training
samples per batch produced slightly better results but, due to memory limita-
tions of the GPU, some models were trained with only 8 samples per batch.
If many samples, from the same sound file, are present in a single batch, the
performance of the batch normalization function drops considerably. We, there-
fore, select the samples for each batch uniform at random without replacement.
Normalizing the sound files beforehand might be an alternative solution.

4.2 Learning method

We use the Nesterov momentum method to compute the updates for our weights.
The momentum is set to 0.9 and the initial learning rate is equal to 0.1. After 4
days of training (around 100 epochs) we reduce the learning rate to 0.01.

5 Results

We evaluate our results locally by splitting the original training set into a training
and validation set. To preserve the original label distribution we group files



by their class id (species) and used 10% of each group for validation and the
remaining 90% for training. Note that, even for our contest submissions, we
never trained on the validation set. Our contest results would probably improve,
if training would be performed on both training and validation set.

Training the neural network takes a lot of time. We, therefore, choose a sub-
set of the training set, containing 50 different species, to fine tune parameters.
This (20 times smaller) dataset enabled us to test over 500 different network
configurations. Our final configuration was then trained on the complete train-
ing set (considering all 999 species) and reached an accuracy score of 0.59 and
a mean average precision (MAP) score of 0.67 on the local validation set (999
species). On the remote test set our best run reached a MAP score of 0.69 when
considering only the main (foreground) species, 0.55 when considering the back-
ground species as well and 0.08 when only background species were considered.
This means our approach outperformed the next best contestant by 17% in the
category where background species were ignored. Figure 6 shows a visual com-
parison of the scores for all participants. As seen in Figure 6 we submitted a total

Fig. 6: Official scores from the BirdCLEF 2016 Recognition Challenge. Our team
name was “Cube” and we submitted four runs.

of four runs. The first run “Cube Run 1” was an early submission where param-
eters had not yet been tuned and the model was only trained for a single day.
The second and third run were almost identical but “Cube Run 2” was trained
on spectrograms that were resized by 50% while “Cube Run 3” was trained on
the original sized spectrograms. Both times the model was first trained for 4



days, using the Nesterov momentum method (momentum = 0.9, learning rate
= 0.1) and then trained for one more day with a decreased learning rate of 0.01.
Furthermore, “Cube Run 3” was trained with a batch size of 8 because of the
limited GPU memory, while “Cube Run 2” was able to use batches of size 16
(scaled spectrograms). Finally, “Cube Run 4” was created by simply averaging
the predictions from “Cube Run 2” and “Cube Run 3”. We can see that “Cube
Run 4” outperformed all other submission which means that an ensemble of
neural networks could increase our score even further.

5.1 Discussion

Our approach surpassed state of the art performance when targeting the dom-
inant foreground species. When background species were taken into account,
other approaches performed almost as well as ours. When no foreground species
was present one other approach was able to outperform us. This should not sur-
prise us, considering our data augmentation and preprocessing method. First of
all, we were cutting out the noise part, focusing only on the signal part. In theory
this should help our network to focus on the important parts but in practice we
might disregard less audible background species. Second, we are augmenting our
data by adding background noise from other files on top of the signal part. As
shown in Table 1, the score for identifying background species increases if we
train without this data augmentation techniques. That means, even though, we
do not use any data augmentation method when dealing with the test set, the
network is still trained to ignore everything that happens in the background.
One possible solution would be to alter the cost function and target background
species as well. An other solution could be to employ a preprocessing step that
tries to split the original files into differently sized parts, each part containing
only one bird call/song. This is similar to [7] who compares single bird calls/songs
instead of complete sound files.

5.2 Unsuccessful approaches we tested

We tested a lot of different ideas and not all of them worked, we will briefly list
them in this chapter to give a complete picture.

Bi-directional LSTM Recurrent Neural Networks: We tried different cost
functions and parameters but were not able to match the performance of our
convolutional neural network.

Regularization: We tested L1 and L2 regularization of all weights but found
that our generalization error did not decrease. Furthermore, adding these extra
terms made training considerably slower.



Non-Square-Filters: For the convolutional layers we tried to use non square
filters because we wanted to treat the time dimension differently than the fre-
quency dimension. We found, however, that small variations did not change the
performance while an attempt with a 1D (height of filter equals height of spec-
trogram) convolution produced worse results.

Deeper-Networks: We tried to add more layers to our neural network but the
performance dropped after adding the 5th layer. This seems to be a common
problem and many solutions have been proposed, for example, using highway
networks [13]. We have not tested any of these proposed solutions but they
might be an important ingredient in an attempt to increase the accuracy of the
system even further.

6 Outlook

We already mentioned a few improvements that could be made. One idea is to
use an ensemble of neural networks. An other idea is to modify our cost function
to consider the background species or present single bird calls/songs instead of
the currently fixed sized samples. One problem with the current approach is that
longer files, as they generate more chunks, seem more important to the network.
To combat this, we could show the same number of chunks for each class by
repeating chunks from classes with a lower number of chunks / shorter files.
Finally, the dataset provides us with a lot of meta-data: Date, time and location
to name a few. We are currently only relying on the sound files but incorporating
these values could greatly increase our score because we could narrow down the
total number of species which we need to consider. While testing parameters,
we found, for example, that with only 50 different species, we were able to reach
a MAP score around 0.84 (compared to 0.67, our best score on the validation
dataset). Training models for different regions / species and combining them
using the meta-data, therefore, seems like a natural extension to the current
approach.
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