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Abstract—We propose an approach to encode state diagrams 

with and-cross transitions. The notion of and-cross transitions is 

being rejected by researchers and practitioners in model-driven 

engineering community for reasons that include limited use-in-

practice, unmanageable underlying complexity, and availability 

of alternative modeling solutions. In this paper, we show that 

and-cross transitions can be useful in practice and its underlying 

structural complexity can be managed for the purpose of 

analysis. 

Index Terms—Formal Methods, Model-Driven Engineering, 

Umple, Symbolic Model Verification, State Machine Diagrams, 

And-Cross, Region-Cross. 

I. INTRODUCTION 

We present a novel approach to modeling systems under 

analysis (SUAs) with and-cross transitions for the purpose of 

formal analysis. By and-cross transitions, we mean transitions 

whose sources and destinations states are located in parallel 

regions of an orthogonal state. For example, transition 𝑡2 from 

Emergency to Applied (in Figure 1) is an and-cross transition. 

An orthogonal state is a composite state with regions whose 

submachines execute in parallel. The proposed approach is not 

limited by depth of and-cross transitions.  

The underlying complexities of formal specification, 

verification and validation of safety-critical and embedded 

systems are increasing relentlessly [1]. Research efforts on 

managing these complexities have given rise to a variety of 

implementation solutions. These include solutions based on 

programming [2]–[4], modeling [4]–[6] and simulation of 

software abstractions [7]–[9] prior to implementation or 

deployment. 

Model-Driven Engineering (MDE) [10] emerged as a 

disciplined approach to address software complexity and 

effectively represent domain concepts. It provides a level of 

abstraction demanded to represent components of software 

systems. MDE advocates domain-specific modeling languages, 

transformation engines and generators as means of managing 

emerging complexities in the software industry.  

Umple is a model-driven engineering (MDE) technology 

that merges programming with modeling to facilitate the 

development and generation of complete software systems. In 

particular, it supports the model-code duality principle by 

representing models not only as diagrams but also text [4]. It 

provides succinct constructs for the representation of both 

static and dynamic aspects of software abstractions. These 

include class, state machine, and composite structure models.  

In this work, our goal is to present an approach to compute 

enabling or disabling transitions for states and sub-state 

machines of an SUA. This cleanly separates concerns and eases 

analysis even in the presence of and-cross transitions 

irrespective of the depth. Our approach works on full Umple 

state machines, including those with deep nesting, and 

concurrent regions. In particular, we support and-cross 

(including what Faghih and Day  called unusual transitions in 

[11]). 

Harel’s state-chart semantics (see [12], [13]) for and-cross 

transitions facilitate re-initializing every concurrent sub-

machines (of an orthogonal state) but setting the target machine 

(i.e., host machine of the next state of and-cross transition) to 

the next state of the transition. The notion of and-cross is 

however being rejected by researchers and practitioners in 

model-driven engineering community for its limited use in 

practice; underlying complexity; and alternative modeling 

solutions. This is exemplified by the recent removal of and-

cross transitions support from the UML [14]. 

However, since the goal of MDE is to provide sufficient 

level of abstraction to manage the complexities arising from 

the development of modern-day software systems, we deem it 

important to facilitate the representation and analysis of and-

cross transitions. The construct is simple and sufficiently 

abstract to be substituted with the details provided by 

alternative solutions. Consequently, we focus on providing an 

approach to manage the complexities of and-cross transitions 

for the purpose of formal analysis by model checking.  

In the literature, various encodings or implementations exist 

for the representation of state diagrams for symbolic model 

verification and the reasoning of temporal properties. These 

include RSML2SMV [15], BSML2SMV [11], SMUML [16] 

and STATEMATE2SMV [17]. But general problems with 

these tools or approaches include: a complete neglect of or only 

partial solutions to and-cross. We introduce modeling 

strategies to address these issues. First, we cleanly separate 

concerns but systematically integrate components of 

hierarchical systems. We also assume deterministic transitions 

during the transformation as our algorithm presented in [18] 

can be applied to compute a set of pairs of potentially 

conflicting (non-deterministic) transitions that can be further 

analyzed for actual cases of non-determinism. 

The rest of the paper is organized as follows: In Section II, 

we present a modeling example that inspired this work. Section 

III presents formal background on the syntax and semantics of 

Umple. Section IV presents our approach to handling and-

crossing by example. Section V discusses the state of research 
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on and-crossing for model checking. Section VI concludes this 

work and state future thoughts. 

II. MOTIVATING EXAMPLE 

In this section, we present a modeling example with the goal of 

demonstrating the need (or an application) of and-cross 

transitions in the design of real-world systems. There may be a 

possibility of modeling the system we presented here with an 

alternative approach but we only assume that and-cross 

transition will facilitate a more intuitive representation of the 

expressed concept. 

We consider a collision avoidance feature of a vehicle with 

the focus on the aspect that takes action autonomously without 

driver input (i.e., by braking at a lower speed). In particular, a 

typical use case relevant to our example may involve the 

activation of a collision detection system when a stationary 

object (e.g., vehicle, pedestrian, animal, etc.) is detected in a 

close-range (e.g., warning radius – 3 meters) and requires 

maximum braking force. Collisions in this category may be 

forward or rearward. For example, a realistic automotive case 

is experienced whenever a threat is detected during parallel 

parking. Avoiding a collision in this instance demands issuing 

a warning and actuating the braking mechanism autonomously.  

Let us assume a collision system is a collection of parallel 

sub-systems such as object detection, braking, transmission 

and engine. The object detection sub-system is equipped to 

periodically send signals to its environment so as to detect 

objects within its range of detection. If an object is discovered, 

it is classified according to its position and heading and an 

input signal is generated from the environment indicating an 

object is discovered. The object detection sub-system is 

initially set to “Normal” but transitions to “Emergency” mode 

whenever an object is detected. At this point, the braking 

system is autonomously invoked. 

The automatic braking sub-system (ABS) is initially 

“Released”. Whenever the brake is applied, a signal is 

generated and the brake changes to “Applied” from its initial 

mode. Suppose the driver releases the brake, it is reset to the 

initial mode. The transmission sub-system can be in “Park”, 

“Neutral”, “Reverse” and “Drive” modes. We regard “Drive” 
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Figure 1. Visual Representation of a Simplified Collision Avoidance System 
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Figure 2. Alternative Modeling Solution to the Collision Avoidance System 

 



as a black box entity in the design. 

The engine sub-system can assume any of the following 

modes: “Off”, “Idle”, and “Driving”.  A release trigger causes a 

driving engine to become idle but accelerate causes a change of 

state to “Driving” and so on. The details of our motivating 

example are expressed graphically in Figure 1.  

And-cross semantics is relevant in this case because in an 

emergency situation, the brake is applied, object detection and 

transmission are reset to normal and park respectively, and 

engine is turned off (to avoid potential risk of fire, etc.) in a 

step. In essence, all other parallel submachines of orthogonal 

state – “CollisionAvoidance” must be re-initialized except the 

brake whose state must be changed to a non-initial state - 

“Applied”. As an alternative solution to the use of and-cross 

transition, this semantics may be modeled by introducing 

several transitions from non-initial states (e.g., “Idle”) to the 

initial states of their parent machine (for non-targeted 

machines) such that whenever emergency arises, the non-

targeted submachines are reset to their initial states. We present 

this modeling approach in Figure 2.  

To facilitate comprehension, we introduce operator “$” 

such that given a non-orthogonal composite state, say A then 

“$A” is the corresponding state machine of “A”. Similarly, we 

introduce environment operator “𝜐” such that 𝜐ሺ$𝐴, 𝑠𝑖ሻ is the 

state of “$A” at step 𝑠𝑖.  

According to Figure 2, we would need additional 7 

transitions to model the semantics under consideration as 

opposed to one (1) and-cross transition. These are represented 

in red arrows. They include “Driving → Off” (i.e., 𝑡15), “Idle → 

Off” (i.e., 𝑡16), “Drive → ParkAndNeutral” (i.e.,𝑡17), “Reverse 

→ ParkAndNeutral” (i.e.,𝑡19), “Drive → ParkAndNeutral” 

(i.e.,𝑡18), “Emergency → Normal” (now 𝑡2) and “Released → 

Applied” (i.e., 𝑡20). The execution of a subset of these 

transitions will reinitialize all the submachines except the 

Brake (i.e., set to “Applied”).  We require these transitions to 

ensure there are paths to the initial states of these submachines 

at any given time irrespective of the current states.  

In Figure 3, we present another alternative solution to the 

same problem. The figure represents the maximum possible 

abstraction without the use of and-cross transitions. It requires 

four additional transitions as opposed to seven transitions in 

Figure 2. These include “Emergency → Normal” (i.e., 𝑡2), 

“Released → Applied” (i.e., 𝑡15), “Transmission → 

Transmission” (i.e., 𝑡16), and “Engine → Engine” (i.e., 𝑡17). 

However, a single and-cross transition (i.e., 𝑡∗) is required 

with the semantics of such transition being sufficient for the 

required initialisations based on Harel’s state machine 

semantics. In particular, suppose  𝑡∗ is enabled at step 𝑠𝑗−1 and 
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Figure 3. Alternative Modeling Solution to the Collision Avoidance System (Maximum Abstraction) 

 

Listing 1. Collision Avoidance System (Umple)  
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class Example { 

 Integer warningRadius; 

 sm {  

  CollisionAvoidance { 

   ObjectDetection { 

    Normal { objectDiscovered -> Emergency; } //t1 

    Emergency { [warningRadius <= 3] -> Applied; } 

     //t2 

   } 

   || 

   Brake { 

    Released { applyBrake -> Applied; } //t3 

    Applied { release -> Released; } //t4 

   } 

   || 

   Transmission { 

    ParkAndNeutral { 

     selectReverse -> Reverse; //t5 

     selectDrive -> Drive; //t6 

     Park { selectneutral -> Neutral; } //t9 

     Neutral { selectPark -> Park; } //t10 

    } 

    Reverse { selectPark -> Park;  } //t7 

    Drive { selectNeutral -> Neutral; } //t8 

   } 

   || 

   Engine { 

    Off { turnOn -> Idle; } //t11 

    Idle { accelerate -> Driving;  } //t12 

    Driving {  

     release -> Idle; //t13 

     applyBrake -> Idle; //t14 

   }}}}} 

 



executes at step 𝑠𝑗 then 

 𝜐ሺ$Brake, 𝑠𝑗ሻ = 𝐴𝑝𝑝𝑙𝑖𝑒𝑑,  

𝜐ሺ$Transmission, 𝑠𝑗ሻ = 𝑃𝑎𝑟𝑘𝐴𝑛𝑑𝑁𝑒𝑢𝑡𝑟𝑎𝑙,  

𝜐ሺ$ParkAndNeutral, 𝑠𝑗ሻ = 𝑃𝑎𝑟𝑘,  

𝜐ሺ$ObjectDetection, 𝑠𝑗ሻ = 𝑁𝑜𝑟𝑚𝑎𝑙, and  

𝜐ሺEngine, 𝑠𝑗ሻ = 𝑂𝑓𝑓.  

This is synonymous to what is achievable with the 7 

transitions of the alternative solution. We can thus observe 

better abstraction as advocated by MDE with and-cross 

transitions. Therefore, managing the underlying complexities 

of the notion of and-crossing becomes critical and the focus of 

this paper.  

III. BACKGROUND 

We present the syntax and semantics of Umple. To ease 

readability of Listing 1 simple state names are green; 

composite state names are red; and keywords are blue.  

Umple is a model-oriented programming technology for the 

development of real-world software systems. It supports the 

model-code duality principle by representing software models 

interchangeably as diagrams and text [4]. Umple allows 

developers to model static views (i.e., class diagrams) and 

dynamic views (i.e., state diagrams) of software systems and 

automatically generates code for languages such as Java, C++, 

Ruby, and Php from the model. Umple achieves this by 

providing constructs and environments to express an extended 

subset of the Unified Modeling Language (UML) [19]. By 

extended, we mean that we provide a few features that UML 

does not support; for example, UML 2.5 [14] does not allow 

and-cross (or region-cross) transitions but we support this 

notion. Similarly, Umple allows developers to merge modeling 

with programming [20]. In particular, algorithmic logics are 

expressible in the dialect of the target language (e.g. Java, C++, 

Ruby, Php, etc.). 

Listing 1 is an Umple version of the collision avoidance 

system presented in Figure 1. We will use this to describe the 

constructs of Umple. 

A. Informal Syntax and Semantics of Umple 

The notion of state machines as facilitated by Umple provides 

constructs to represent states (simple, composite, and 

orthogonal), transitions (regular, guarded, high-level), and 

events. State machines in Umple can either be simple or 

hierarchical. A simple state machine is composed of a set of 

simple states. For a hierarchical state machine, there are one or 

more composite or orthogonal sub-states. 

An example of a simple state is “Emergency” defined in 

line 7 of Listing 1; an example composite state is 

“ParkAndNeutral” defined in lines 17-25 of Listing 1.  

Orthogonal states (e.g., “CollisionAvoidance” defined on 

lines 4-33 of Listing 1) exist when two or more sub-states all 

become activated whenever control is transferred to their 

parent. For example, sub-states “ObjectDetection”, “Brake”, 

“Transmission” and “Engine” become activated whenever 

“CollisionAvoidance” is activated. In other words, the 

execution of sub-states occurs concurrently. Child states of 

composite and orthogonal states may be simple, composite, or 

orthogonal themselves. 

By default, the first state (i.e., simple or composite) defined 

within an Umple state machine at any level of the hierarchy is 

regarded as its initial state (e.g., the state “CollisionAvoidance” 

in Listing 1). 

Associated with a state, there can be any number of 

transitions. A state with zero outgoing transition is considered 

as an “end” state. A state can also be tagged as ‘final’ implying 

the end of the object’s life whenever control is transferred to 

that state. Several transitions, indicated by “->” are shown in 

Listing 1. The state enclosing the transition is referred to as the 

‘source’; while the target state is referred to as the 

‘destination’. For transition 𝑡4 on line 13 of Listing 1, 

“Applied” and “Released” are its source and destination states 

respectively. A basic transition is a transition without a guard 

statement. 

A guarded transition has a Boolean expression controlling 

whether or not a transition is taken whenever an event arrives 

or automatically taken whenever it is an auto-transition. A 

high-level transition is any kind of transition defined outside of 

sub-states in a composite state, but which has effect in all the 

sub-states (e.g., 𝑡5, line 18 of Listing 1). Associated with every 

transition is an event (e.g., “selectPark” on line 23 of Listing 

1). 

Although, the subset of Umple considered in this work 

excludes actions, we consider it necessary to discuss variables 

and types supported in Umple since the values of guards are 

computed from the variables at every step of execution. Umple 

allows the use of primitive and non-primitive data types. The 

primitive data types of focus are Boolean, Integer and Real. 

For example, on line 2 of Listing 1 we present a definition of 

an Integer variable “warningRadius” defaulted to “0”. 

Umple transforms hierarchical state machine (e.g., “sm” of 

Listing 1) internally into a collection of state machines. For 

each non-orthogonal composite state, there is a corresponding 

state machine such that its sub-states become the states of the 

state machine when active. We introduce a special ‘null’ state 

for every state machine such that these state machines are in 

their ‘null’ state until they are being activated. Similarly, for 

every region of orthogonal states, there is also a corresponding 

state machine. A state machine is also generated for the root 

state machine but without the ‘null’ state, since the root is 

always active throughout its containing object’s life cycle. But 

sub-state machines are only active whenever control is 

transferred to their parent state or any of their sub-states  [4], 

[21]. 

B. Formal Syntax and Semantics of Umple 

To facilitate easy discussion of concepts involved in our 

approach to managing and-crossing, a formal description of 

syntax and semantics of Umple becomes critical. 

A state machine in Umple (e.g., “sm”, lines 4-35), say 𝐴, is 

a 6-tuple 〈𝑛𝐴, 𝑆𝐴, 𝑙𝐴, 𝑠𝐴
0, 𝑉𝐴, 𝑅𝐴〉; such that 𝑛𝐴 is the name, 𝑆𝐴 is a 

finite set of top-level states (excluding indirect sub-states), 

𝑠𝐴
0 ∈ 𝑆𝐴 is the initial state (e.g., “CollisionAvoidance”), 𝑙𝐴 is a 

finite set of labels, 𝑉𝐴 is a finite set of variables (or attributes – 



“warningRadius”) and 𝑅𝐴 ⊆ 𝑆𝐴 × 𝑙𝐴 × 𝑆𝐴 defines a transition 

relation on 𝐴. By ‘indirect sub-state’ of a state machine, we 

mean a state whose ancestor is a top-level state of the state 

machine under consideration irrespective of its depth. A 

submachine of a composite state is a state machine 

encapsulating a region enclosed by the state. For example, a 

non-orthogonal composite state encloses a region but an 

orthogonal composite state encloses at least two regions. In our 

approach a state machine is defined for every region.  

Let 𝑈𝑠 be the universal set of states of a SUA. 𝑈𝑠 contains 

all the states of the model at any level (e.g., Engine, Idle, Park, 

Reverse, Brake, Emergency etc.). Let 𝑈𝑙 (e.g., {𝑡𝑖| 1 ≤ 𝑖 ≤ 14} 

for Figure 1) be the set of all labels in the SUA and 𝑅 be the 

universal set of transitions of the SUA such that 𝑅 ⊆ 𝑈𝑆 ×
𝑈𝑙 × 𝑈𝑆.   

Let 𝑉𝐴 be a set of pairs 〈𝑛𝑣 , 𝑡𝑣〉, where 𝑛𝑣 is a name and 𝑡𝑣 ∈ 𝕋 

is a type of a given variable 𝑣 ∈ 𝑉𝐴, such that 𝕋 =
{integer, boolean, real}. We consider 𝐺𝑙 as the universal set 

of guards, 𝐸𝑙  as the universal set of non-parameterized events, 

and 𝐴𝑙  as the universal set of actions such that 𝑙𝐴 ⊆ 𝐺𝑙 × 𝐸𝑙 ×
𝐴𝑙.. 

Let 𝛾: 𝑙𝐴 → 𝐸𝑙  such that  𝛾ሺ𝑔, 𝑒, 𝑎ሻ = 𝑒 We also define 

𝐿: 𝑅𝐴 → 𝑙𝐴 such that 𝐿ሺ𝑠, 𝑙, 𝑠′ሻ = 𝑙.  
Given any state 𝑠 ∈ 𝑆𝐴, we define a mapping function 

𝛽: 𝑠 → ℕ to map a state, s to its number of sub machines; such 

that ∀𝑠 ∈ 𝑆𝐴
 𝛽ሺ𝑠ሻ =  0, 1, 𝑛  when 𝑠 is simple, non-orthogonal 

composite and orthogonal composite states respectively where 

𝑛 > 1. For example, 𝛽ሺAppliedሻ = 0, 𝛽ሺParkAndNeutralሻ =
1, and 𝛽ሺCollisionAvoidanceሻ = 4. 

We say 𝑀 is a simple state machine if and only if ∀𝑠 ∈ 𝑆𝑀
 

𝛽ሺ𝑠ሻ =  0 and it is hierarchical ∃𝑠 ∈ 𝑆𝑀
, such that 𝛽ሺ𝑠ሻ ≥ 1. To 

facilitate the specification of hierarchical structures, we 

introduce a binary relation ⊑ on  𝑊, such that 𝑊 is the set of 

all sub-state machines (including the root). If 𝑀, 𝐿, 𝑍 ∈ 𝑊 then 

𝑀 ⊑ 𝐿 specifies 𝐿 as a direct ancestor or a parent state machine 

of  𝑀. ⊑⃛ is the reflexive closure of ⊑ on W. Where 𝑀 ⊑⃛ 𝑍 

defines 𝑀 as a submachine of 𝑍, such that 𝑍 is ancestrally-

related to 𝑀. We introduce a partial mapping function 𝜌 ∶ 𝑀 →
𝑈𝑆 such that 𝜌ሺ𝑀ሻ = 𝑠, 𝑠 being the parent state of M. Hence, 

we say 𝑍 is a root state machine iff 𝜌ሺ𝑍ሻ is undefined. On the 

other hand, for any non-root state machine 𝑀, 𝜌ሺ𝑀ሻ is defined. 

In particular, there can only be a submachine 𝑀 if and only if 

𝑆𝐿 being a set of states of state machine 𝐿, ∃𝑘 ∈ 𝑆𝐿
, 𝜌ሺ𝑀ሻ = 𝑘 

and 𝑀 ⊑ 𝐿. 

Recall that 𝑘 is an orthogonal state iff 𝛽ሺ𝑘ሻ ≥ 2. In 

essence, there are at least two sub-state machines for 𝑘. We 

introduce the relation ⊑|| to define parallelism between any 

two orthogonal state machines, such that 𝑀 ⊑|| 𝐿 iff ∃𝑦 ∈ 𝑆𝐻
, 

𝜌ሺ𝑀ሻ = 𝜌ሺ𝐿ሻ = 𝑦 and 𝑀 ⊑ 𝐻, 𝐿 ⊑ 𝐻.  

A pair of elements 𝑗, 𝑠 ∈ 𝑈𝑠 such that 𝑗 ≅ 𝑠, implies 𝑠 (e.g., 

Engine, line 27-33) is ancestrally related to 𝑗 (e.g., Idle, line 

29. Let 𝑈𝑡 be a universal set of transitions of the SUA (e.g., 
{𝑡𝑖| 1 ≤ 𝑖 ≤ 14}) such that if 𝑍 is a root state machine, then 

𝑈𝑡 = 𝑅𝑍. Let 𝐹, 𝑋 ⊆ 𝑈𝑡 × 2𝑈𝑠  such that 𝑡 ∈ 𝑈𝑡, ሺ𝑡, 𝐹𝑠ሻ 𝑖𝑛 𝐹 

and ሺ𝑡, 𝑋𝑠ሻ 𝑖𝑛 𝑋 where 𝐹𝑠, 𝑋𝑠 ∈ 2𝑈𝑠  are sets of from (source) 

and next (destination) states of transition 𝑡 respectively. 

IV. OUR WORK 

In this section, we present our approach to enabling and 

disabling states and sub-machines for and-cross transitions. 

However, we present more formal definitions of some concepts 

to facilitate the discussion.  

DEFINITION 1. AND-CROSS TRANSITION 

Given an orthogonal composite state, say 𝑘 (i.e., 𝛽ሺ𝑘ሻ ≥ 2) 

and M, N are two parallel sub-state machines of k (𝜌ሺ𝑀ሻ =
𝜌ሺ𝑁ሻ = 𝑘 and 𝑀 ⊑|| 𝑁); O, P such that  𝑂 ⊑⃛ 𝑀 ∧ 𝑃 ⊑⃛ 𝑁;  𝑠1, 

𝑠2 embedded states such that 𝑠1 ∈ 𝑆𝑂 , 𝑠2 ∈ 𝑆𝑃; any transition 𝑡 

such that there are ሺ𝑡, 𝐹𝑠ሻ 𝑖𝑛 𝐹, ሺ𝑡, 𝑋𝑠ሻ 𝑖𝑛 𝑋 with 𝑠1 𝑖𝑛 𝐹𝑠  
and 𝑠2 𝑖𝑛 𝑋𝑠 is an and-cross transition. The set of and-cross 

transition of a composite state k is denoted as 𝛿ሺ𝑘ሻ.  

We introduce an operator 𝜀ሺ𝑀ሻ which defines a union of a 

set of transitions whose target state is external to 𝑠, an 

orthogonal but parent state of 𝑀 and a set of external-and-cross 

transitions of 𝑠 with respect to 𝑀.  

DEFINITION 2. EXTERNAL TRANSITION 

We say transition 𝑡 is an “external transition” of a composite 

state 𝑠, if there is a state 𝑘 such that 𝑘 ≅ 𝑠 and sub-state 

machines 𝑀, 𝑁 such that 𝜌ሺ𝑠ሻ = 𝑀, 𝑀 ⊑ 𝑁 then 𝑡 ∈ 𝑅𝑁 is 

external with respect to 𝑠 whenever 𝑘 ∉ 𝑋ሺ𝑡ሻ. We represent 

this transition set as extሺsሻ.  

DEFINITION 3. EXTERNAL-AND-CROSS TRANSITION 

An external-and-cross transition 𝑡 of state s with respect to sub-

machine 𝑀 (denoted as 𝜔ሺ𝑠, 𝑀ሻ), where 𝑡 ∈ 𝛿ሺ𝑠ሻ and 𝑠 =
𝜌ሺ𝑀ሻ. If there exist states 𝑗, 𝑥 such that 𝑗 ∈ 𝑆𝑀, 𝑥 ≇ 𝑗 and 𝑥 ≅
𝑠. If 𝑥 ∈ 𝑋ሺ𝑡ሻ then 𝑡 is an external-and-cross transition.  

Hence, 𝜀ሺ𝑀ሻ is simplified as {𝑡, 𝑡′} where 𝑡 ∈
𝜔ሺ𝑠, 𝑀ሻ, 𝑡′ ∈ 𝑒𝑥𝑡ሺ𝑠ሻ. 

DEFINITION 4. DISABLING TRANSITION 

Transition 𝑡 disables sub-machine 𝑀 if there exists a state 𝑠 

such that 𝑠 ∈ 𝑆𝑁, 𝑡 ∈ 𝑅𝑁, 𝑀 ⊑ 𝑁, 𝑠 = 𝜌ሺ𝑀ሻ and 𝑡 ∈ 𝜀ሺ𝑀ሻ. In 

other words, a sub-machine is disabled or will remain disabled 

whenever a transition whose next state is the parent state or 

non-embedded sub-state of the parent state of the sub-machine 

under consideration execute (i.e., external transition) or an and-

cross transition whose destination state is not a direct or 

indirect sub-state of the sub-machine is fired. By “non-

embedded sub-state” of a composite state 𝑠, we mean states 

outside the boundaries of 𝑠 but local to the host state machine 

Listing 2. $ParkAndNeutral sub-machine (SMV)  
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

MODULE $ParkAndNeutral ( sm, transmission ) 

 VAR 

  state : { Park , Neutral , null }; 

 ASSIGN 

  init( state ) := null; 

  next( state ) := case 

   sm.t5 | sm.t6 : null; -- disabling transitions 

   sm.t10 | sm.t7 : Park; -- enabling transitions 

   sm.t9 | sm.t8 : Neutral; -- enabling transitions 

   transmission.state = ParkAndNeutral &  

     state = null : Park; 

   TRUE : state; 

  esac; 

 



of 𝑠. 

By this definition, not only orthogonal submachines are 

disabled but also non-orthogonal ones. For example, in Figure 

1 “ParkAndNeutral” is a non-orthogonal composite state and 

“ParkAndNeutral” is its sub-state machine. The SMV 

representation of “$ParkAndNeutral” sub-state machine is 

presented in Listing 2. Its set of disabling transitions is given 

as: {𝑡5, 𝑡6}. We computed this set as follow: 

a) “$ParkAndNeutral” ⊑ “$Transmission”. 

b) 𝑡$𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = {𝑡𝑖 | 5 ≤ 𝑖 ≤ 10}. 

c) 𝜔(ParkAndNeutral, $ParkandNeutral) = ∅. 

d) 𝑒𝑥𝑡(ParkAndNeutral) = {𝑡6, 𝑡5}. 

e) 𝜀ሺ𝑀ሻ = {𝑡5, 𝑡6} ∪ ∅ = {𝑡5, 𝑡6}. 

On another hand, the set of disabling transitions for an 

orthogonal submachine is dependent on the destination or 

source of an and-cross transition. In particular, an orthogonal 

sub-machine whose sub-state is a destination of an and-cross 

transition may be disabled only by external transitions of its 

parent state. For example, the set of disabling transition for 

“$Brake” is ∅. We determined this as follow:  

a) 𝑡2 is an and-cross transition from “$ObjectDetection” to 

“$Brake”. 

b) “$Brake” ⊑ “$Sm”. 

c) 𝑡$𝑆𝑚 = {𝑡𝑖  | 1 ≤ 𝑖 ≤ 10}. 

d) 𝜔(CollisionAvoidance, $Brake) = ∅. 

e) 𝑒𝑥𝑡(CollisionAvoidance) = ∅. 

f) 𝜀ሺ𝑀ሻ = ∅ ∪ ∅ = ∅. 

The SMV representation of the “$Brake” sub-state machine 

is presented in Listing 3. Since the disabling set is empty, there 

was no expression assigning “null” to the state variable of the 

sub-state machine. 

An orthogonal sub-machine whose sub-state is not a 

destination of an and-cross transition may be disabled by at 

least and-cross transitions whenever the set of and-cross 

transition of its parent state is non-empty. Let us consider 

“$Engine” sub-state machine. The set of disabling transition is 

given as: {𝑡2}. We derived this as follow: 

a) 𝑡2 is an and-cross transition from “$ObjectDetection” to 

“$Brake”. 

b) “$Engine” ⊑ “$CollisionAvoidance”. 

c) 𝑡$𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 = {𝑡𝑖 | 1 ≤ 𝑖 ≤ 10}. 

d) 𝜔(CollisionAvoidance, $Engine) = {𝑡2}. 

e) 𝑒𝑥𝑡(CollisionAvoidance) = ∅. 

f) 𝜀ሺ𝑀ሻ = {𝑡2} ∪ ∅ = {𝑡2}. 

The SMV representation of the “$Engine” sub-state 

machine is presented in Listing 4. Note that whenever a 

member of the set of transitions external to the parent state of a 

sub-state machine under consideration executes, it is 

guaranteed that the machine is inactive at any given step. The 

disabling transitions of a machine are therefore necessarily a 

subset of transitions of the state machine containing its parent 

state.   

The process of enabling a sub-state machine differs. In 

particular, we enable a machine based on the transitions 

enabling its direct or indirect sub-state(s) or by default. By 

“default”, we mean enabling the machine whenever a transition 

whose next state includes the parent state of the machine under 

consideration executes. We introduce operator 𝜈 ∶ 𝑀 → 𝑆𝑀 to 

facilitate further discussion, such that, 𝜈ሺ𝑀ሻ is the current state 

of the machine 𝑀. We formally define state activation by 

default as follows: 

DEFINITION 5. ACTIVATION BY DEFAULT     

State 𝑠 ∈ 𝑈𝑠 is activated by default in a micro-step, say 𝑠′′ if 

and only if there exist module 𝑀, state 𝑗 such that 𝑠 = 𝑠𝑀
0 , 𝑗 =

𝜌ሺ𝑀ሻ, 𝜈ሺ𝑀ሻ = 𝑛𝑢𝑙𝑙 and 𝑗 becomes enabled at the previous 

micro-step 𝑠′. 

For example, “$ObjectDetection” sub-state machine will be 

enabled whenever state “Normal” is activated by default. 

Furthermore, we define a transition set to enable states of a 

state machine.  

DEFINITION 6. ENABLING TRANSITION 

Transition 𝑡 ∈ 𝑈𝑙  is an enabling transition of state 𝑠 if and only 

if 𝑠 ∈ 𝑋ሺ𝑡ሻ or there is a state 𝑘 ∈ 𝑈𝑠 such that 𝑘 ≅ 𝑠 and 𝑘 ∈
𝑋ሺ𝑡ሻ. In other words, a state is enabled by a set of transitions 

into itself and those of its sub-states. 

For example, consider simple state “Applied” of Figure 1, 

the set of transitions enabling this state are 𝑡2. The set of 

enabling transitions of non-orthogonal composite state 

“ParkAndNeutral” are: {𝑡𝑖  | 5 ≤ 𝑖 ≤ 10}. To enable orthogonal 

composite state “CollisionAvoidance” the following set of 

transitions are relevant: {𝑡𝑖  | 1 ≤ 𝑖 ≤ 10}  

For a concurrent machine, whenever a transition into a sub-

state of a parallel machine executes, the parent state is activated 

in the same micro-step and the parallel machines are activated 

in the next micro-step. These cycle continues until the system 

assumes a stable state. In other words, the semantics we 

adopted for this case is “run-to-completion” paradigm [14]. A 

global configuration based on our approach is defined as 

follows:  

Listing 3. $Brake sub-machine (SMV)  
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

MODULE $Brake ( sm ) 

 VAR 

  state : { Released , Applied , null }; 

 ASSIGN 

  init( state ) := null; 

  next( state ) := case 

   sm.t4 : Released; -- enabling transitions 

   sm.t2 | sm.t3 : Applied; -- enabling transitions 

   sm.state = CollisionAvoidance &  

    state = null : Released; -- default activation 

   TRUE : state; 

  esac; 

 

Listing 4. $Engine sub-machine (SMV)  
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

MODULE $Engine ( sm ) 

 VAR 

  state : { Off , Idle , Driving , null }; 

 ASSIGN 

  init( state ) := null; 

  next( state ) := case 

   sm.t2 : null; -- disabling transitions 

   sm.t13 | sm.t11 | sm.t14 : Idle; 

   sm.t12 : Driving; -- enabling transitions 

   sm.state = CollisionAvoidance &  

    state = null : Off; -- default activation 

   TRUE : state; 

  esac; 

 



DEFINITION 7. GLOBAL CONFIGURATION 

A global configuration of an Umple state machine 𝐴 is a 

quadruple 〈𝑀 × 𝑈𝑠 × 𝐸𝑠 × 𝑉𝐴〉 such that 𝑀 is the set of sub-

state machines (including the root), 𝐸𝑠 is a set of execution 

steps and 𝑉𝐴 is a finite set of pairs 〈𝑛𝑎, 𝑣𝑎〉 such that 𝑛𝑎 is a 

variable name and 𝑣𝑎 is its value. Equation (1) defines the 

configuration of an SUA at step 𝑖 where sub-machine 𝑚1 is in 

state 𝑠1, variable 𝑛1 is evaluated to value 𝑣1, and 𝑘, 𝑗 are the 

number of variables and sub-machines respectively. 

〈〈𝑚1, … , 𝑚𝑗〉, 〈𝑠1, … , 𝑠𝑗〉, 𝑠𝑖 , 〈〈𝑛1, … , 𝑛𝑘〉, 〈𝑣1, … , 𝑣𝑘〉〉〉    (1) 

If an enabled transition fires, it may lead to a change in 

configuration. In particular, it may change the states of sub-

machines (for non-self-transitions) as well as the values of 

variables (for transitions with non-empty actions statements). 

In summary, a sub-state machine becomes active in a micro-

step its sub-state is activated. This includes the micro-step at 

which its initial state receives control or activated by default. 

However, it is worthy to note that the root state machine is 

enabled throughout the life cycle of the model under analysis. 

We will also like to emphasize that our approach is not limited 

by the depth of and-cross transitions. The set of transitions 

composed for enabling and disabling states and sub-state 

machines as presented in this paper have been implemented in 

Umple2SMV [22].   

V. RELATED WORK 

And-cross transition has gained limited attention in model-

driven engineering community due to its complexity or 

availability of alternative solutions or their limited use-in-

practice. We present an overview of the literature to discuss the 

state of research on and-crossing.   

Faghih and Day [11] propose an algorithm for creating a 

semantics-based, parameterized translator from a family of big-

step modeling languages (BSML) to SMV for model checking 

purposes. The translator developed allowed configuration of 

semantics for different modeling languages. It handles various 

kinds of consistency checks (including non-determinism) and 

allows the specifications of and-cross transitions. However, 

and-crossing within a child and-state of an and-state is not 

supported. This kind of transitions is what Faghih and Day 

referred to as unusual transition. The semantics of and-cross 

transitions are based on the concept of scope. A scope defines 

the least-common ancestor to the source and destinations of a 

transition. Hence, the sub-states to be exited and entered are 

determined.     

Harel et. al [13] presents Rhapsody, an  implementation of 

the semantics of state charts [12]. Rhapsody allows the 

execution of object-oriented state charts. Among various 

notions facilitated are And-state, Or-state and basic states, join, 

connector, etc. It also facilitates the representation of 

compound transition (including and-crossing). The semantics 

of compound transitions are based on the concept of scope as 

in [11]. 

Chan et al. [23] translated RSML specification of TCAS II 

system to SMV for symbolic model verification. RSML 

(Requirements State Machine Language) is a communicating 

state machine model. It includes features like parallel state 

machines and hierarchical abstractions. Composite structures 

are abstracted into super-states. The applicability of the 

approach presented to and-crossing is not discussed. 

Sreemani and Atlee [24] implemented a program that 

translates a requirement expressed in Software Cost Reduction 

(SCR) into an equivalent SMV specification. The focus of their 

work is to demonstrate the feasibility of symbolic model 

checking to reason about temporal properties of large software 

specifications. They successfully applied their approach and 

falsified some properties. However, the work lacks details on 

the notions facilitated and and-crossing is also not discussed. 

VI. CONCLUSION AND FUTURE WORK 

We presented an approach to model the semantics of and-cross 

transitions for the purpose of symbolic model verification. The 

need for and-crossing was exemplified in this work. We also 

present both informal and formal background on Umple to 

facilitate formal discussion of our approach to enable or disable 

sub-machines and states involved in and-crossing. We applied 

our approach to the motivating example to demonstrate how 

these sets are being composed. 

Our long-term goal is to apply this technique to several 

industrial case studies for the formal verification of complex 

systems modeled using and-cross transitions.   
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