
Automated Benchmarking of KR-Systems?

Christoph Redl

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

redl@kr.tuwien.ac.at

Abstract. Benchmarking is an important part of scientific work on solving tech-
niques for KR systems. The implementation of hand-crafted scripts for each
benchmark problem is cumbersome and repetitive. While most benchmarks are
similar such that the process appears to be largely automatable, there are also differ-
ences which inhibit a complete reuse of existing scripts, e.g., different parameters
to be measured and different aggregation functions to be applied. This calls for a
tool which is applicable out of the box for a large range of benchmarks, but still
allows for easy customization if needed. In this paper, we present such a system
for automated benchmarking, which we base on a formalization of customizable
benchmarks. The system captures the whole benchmarking process, including the
run of individual instances, extraction of relevant information from the command
outputs, aggregation of the results, and generation of the final benchmark table.
A single command can then be used to generate the final table in LATEX format
which can conveniently be copied and pasted into a paper. In contrast to existing
approaches, which usually focus on standardized settings such as in large-scale
competitions, ours focuses on the possibility for customization, i.e., on bench-
marks with possibly heterogeneous parameters and values to be measured, such as
those which arise when evaluating new evaluation techniques.

Keywords: Benchmarking, Benchmark Description, Experimental Evaluation, System
Description

1 Introduction

In this paper we present the ABC system (automated benchmarking based on HTCondor)
for automating the experimental evaluation of KR-systems. This includes the execu-
tion of single instances, extraction of relevant information from the command outputs,
aggregation of the results, and generation of the final LATEX table. We aim at a system
which is easy to use yet customizable and extensible. That is, it should be applicable
out of the box for typical benchmarks, while advanced options and extensibility allow
for adoption to less standardized cases. To this end, we allow for customizing many
system components, but also provide default values and implementations which are good
for a large number of experiments. We note that while our system was developed for
evaluating systems in KR and AI, it can in fact be used for evaluating any command-line
oriented tool.

Our contributions and the organization of this paper are as follows:
? This research has been supported by the Austrian Science Fund (FWF) project P27730.

45

– Before we present the system, we first formalize benchmarks in a customizable way.
This is in order to identify the features which are to be supported by the system
(Section 2).

– We then implement our formalization in a script system which is mainly based on
standard Linux tools, the statistics system R1, and the HTCondor load-balancing
tool for parallelization and guaranteeing robust runtimes2 (Section 3); all required
tools are freely available.

– Finally, we discuss related systems and point out the differences to ours (Section 4),
and conclude with a summary and an outlook (Section 5).

2 Formalization of Benchmarks

Towards a formalization of benchmark problems, we first discuss their typical structure
informally. Our basic assumption is that each benchmark problem consists of a set of
instances and a set of configurations to compare. Configurations can be different settings
of a single system or entirely different systems to be compared.

When running the benchmark, the first step is to execute all instances under all
configurations. Each run of an instance under a configuration yields several results,
consisting of the output produced by the system to be evaluated (e.g, the contents
written to the standard output and standard error streams, the exit code) and meta-
information produced by the observer (e.g., runtime and memory consumption, timeout
or no timeout).

Depending on the benchmark problem at hand, only parts of the results might be
relevant. For instance, in many cases not the complete output is needed for the evaluation,
but only in the number of lines (which often correspond to the number of results/models
when evaluating KR-tools). Also the runtime and the memory consumption might be
relevant or not depending on the benchmark scenario. For instance, besides typical
resource usage, benchmarks may also measure the number of solutions found by an
algorithm within a given time limit, or the quality of the solution rather than the required
resources. To capture also these cases, we make use of the concept of output builder
functions (or just output builders), which extract the relevant features of the full output
of a single run.

Moreover, benchmark results presented in publications or on the Web usually do
not contain results of individual instances, but rather aggregated results for classes of
instances (e.g., sets of instances of the same size). Aggregation amounts often to the
computation of an average value, but can also be application-dependent: for instance, if
one wants to measure the overall runtime needed to solve a class of instances, then the
aggregation function might be sum instead of average. Furthermore, if multiple values
are measured, then the aggregation function might be a different one for each column.
For instance, one might want to compute the average of the runtimes but the sum of 0/1
timeout flags. Hence, the possibility to customize aggregation functions is an important
requirement.

1 https://www.r-project.org
2 https://research.cs.wisc.edu/htcondor

C.Redl Automated benchmarking of KR-systems

46

Benchmark problems. Based on these consideration, we formalize benchmark prob-
lems abstractly. In the following, let I and C be domains of instances and configurations,
respectively. Usually, the instances are text files (e.g. SAT instances in DIMACS format,
ASP programs, ontologies, etc) and the configurations are shell commands (e.g. reasoner
calls). The sets I and C can thus in most cases be defined as the sets of all files and strings,
respectively. Moreover, we assume that D is a domain of all values which can occur in
the final benchmark table; this will frequently be the set of all floating point values (with
integers as special cases) and possibly special values such as “n/a”, “timeout”, “failed”,
etc.

Based on I, C and D and the considerations from above we define a benchmark
problem as follows:

Definition 1. A benchmark problem is a tuple B = 〈(I1, . . . , I`), C, o, a〉 composed
of a list of sets of instances I1, . . . , I` ⊆ I, a list of configurations C ⊆ C, an output
builder function o and an aggregation function a.

The instances are organized in sublists I1, . . . , I`, each of which is meant to be
aggregated to one entry in the final benchmark table. For instance, sublist Ij might
contain all instances of size j which are to be aggregated to a single row. For such
a benchmark B, we let I refer to the concatenation of lists I1, . . . , I`. Note that the
instances and configurations are ordered to resemble the desired ordering in the final
table, i.e., the aggregated entry for Ii occurs before Ij whenever i < j; similarily for
configurations.

Example 1. Suppose we want to compare the runtime of multiple SAT-solvers. Then I
is the set of all syntactically wellformed DIMACS files, C is a set of SAT solver calls,
and D is the set of all floating point values.

Under the assumption that we have two different instance sizes 1 and 2 wrt. the
number of variables (for simplicity), we have that I1, I2 are sets of SAT-instances to
be run. The instances grouped by the number of variables 1 ≤ i ≤ 2. For the sake of
simplicity we further assume that each group contains only |I1| = |I2| = 2 instances. The
configurations C are a list of SAT-solvers to compare, possibly including command-line
parameters, e.g. C = (minisat3, clasp4,manysat5). We assume that we are interested
in the runtime and maximum memory usage from each run, and that aggregation should
be done by computing the averages of runtimes resp. maximum memory usages of all
instances. More details on the definitions of the output builder o and the aggregation
function a follow below. 2

Evaluating instances. In order to evaluate an instance, we need a (benchmark-indepen-
dent) evaluation function ε which maps the instance and the configuration to the output
from an abstract output domain O. This step corresponds to the execution of the shell
command with a given instance. As described above, the elements from the output
domain consist of the values produced by the configuration (text output, return code)

3 http://minisat.se
4 http://potassco.sourceforge.net
5 http://www.cril.univ-artois.fr/∼jabbour/manysat.htm

C.Redl Automated benchmarking of KR-systems

47

and meta-information collected by the observer; the whole output domain is then the set
of all possible outputs.

Definition 2. The evaluation function ε is of type ε : I × C → O and associates each
instance i ∈ I and configuration c ∈ C with an output from O.

Selecting the relevant output. For most benchmarks, only parts of the output are
relevant. We thus make use of an output builder o which extracts these relevant parts.
This might be the number of lines in the standard output and the runtime. An output
builder basically associates each instance output with a list of relevant output values.
The length of this list and the data type depend on the desired final benchmark table.

Definition 3. For a benchmark with domainD, an output builder o is a function o : O →
Dn, where n is the number of values per instance and configuration measured by o.

We assume that n is fixed for a given o. The previous two definitions together allow
us to compute for an instance i ∈ I and a configuration c ∈ C the n relevant output
columns o(ε(i, c)).

Example 2 (cont’d). Continuing the previous example of benchmarking SAT-solvers,
the output domain O contains all possible outputs, each of which consisting of the
standard output (e.g. a satisfiability flag, possibly models), the standard error output
(e.g. log information), the return value of the call (e.g. indicating satisfiability), and
meta-information (e.g. observed runtime and memory consumption). The output builder
o from our scenario extracts from this information the observed runtime and maximum
memory usage and returns it as two floating point values, hence n = 2.

For a comparison of the three configurations C = (minisat , clasp,manysat) and
a concrete instance, say the first instance i2,1 ∈ I2 of size 2, we have that o(ε(i2,1, c))
evaluates to a vector of floating point values of length 2 for each c ∈ C, which
represents the runtime and maximum memory usage under configuration c. For in-
stance, the results o(ε(i2,1,minisat)) = (6.44, 2.40) o(ε(i2,1, clasp)) = (3.53, 1.30)
and o(ε(i2,1,manysat)) = (1.12, 5.00) indicate that the runtimes of the three solvers
were 6.44, 3.53 and 1.12 seconds, and the memory usages were 2.40, 1.30 and 5.00
MiB, respectively. 2

Note that we assume that all configurations produce the same number n of output
values, and all values come from the same domain D. This might not always be the case
as some values can be unavailable for some configurations. For instance, if different
configurations compare runs for computing all models and for computing the first model,
values such as the average time between models are not available in the latter case.
Moreover, different output elements might come from different domains, e.g. if one
wants to measure both satisfiability (Boolean value) and the runtime (floating point
value). However, our assumption is wlog. because superfluous columns can be filled
with dedicated “n/a” values and the domain D can be selected such that all required
values are contained.

We can now define the benchmark table with individual instance results. The table
consists of one row for each instance (therefore |I| rows) and n columns for each
configuration (therefore |C| · n columns in total).

C.Redl Automated benchmarking of KR-systems

48

Definition 4 (Instance Results Table). The instance results table TI(B) associated
with a benchmark B as by Definition 1 is the unique table of size |I| × |C| · n such that
(tiu,v·n+1, . . . , tiu,v·n+n) = o(ε(Iu, Cv+1)) for all 1 ≤ u ≤ |I|, 0 ≤ v < |C|.

An example is postponed until after Definition 6.
Intuitively, for n output values per instance and configuration, element tiu,v of the

table should be an output value of instance u, such that 1 ≤ v ≤ n contain the output
values of the first configuration, n < v ≤ 2n the values of the second, etc.
Results aggregation. We now turn to the aggregation of the results as the final step
of the benchmark table generation. To this end, we make use of aggregation functions
which map a set of rows from the instance results table to a single row in the aggregated
table.

Definition 5. An aggregation function for a benchmarkB as by Definition 1 is a function
a : 2D

|C|·n → D|C|·n.

Informally, an aggregation function maps a set of rows of length |C| · n to a single
row of the same length. In the following, for a table TI(B) let TI(B)k be its k-th row.

Definition 6 (Aggregated Results Table). The aggregated results table TA(B) associ-
ated with a benchmark B (Definition 1) has rows ri = a({TI(B)s+1, . . . , TI(B)s+|Ii|})
for all 1 ≤ i ≤ `, where s = Σ1≤j<i|Ij | is the number of instances preceding instance
group i.

Informally, a row ` in the aggregated table is computed by passing all rows of TI(B),
which correspond to the instances in instance group I`, together to the aggregation
function.

Example 3 (cont’d). Continuing the previous example of benchmarking SAT-solvers,
each row of TI(B) consists of |C| · 2 columns because the output builder returns two
values (runtime and memory consumption) for each instance and configuration.

Suppose the instance results table looks as follows:

TI(B) minisat clasp manysat
runtime memory runtime memory runtime memory

TI(B)1 0.04 0.10 1.21 1.00 0.51 0.40
}
I1TI(B)2 1.64 0.90 5.23 2.20 0.20 0.20

TI(B)3 6.44 2.40 3.53 1.30 1.12 5.00
}
I2TI(B)4 7.70 2.80 6.11 3.30 8.32 7.20

The first two rows represent the results of instances of size 1, the latter two from in-
stances of size 2. The aggregation function a is separately applied to {TI(B)1, TI(B)2}
and {TI(B)3, TI(B)4} and computes the columnwise average values. As above, for a
table TA(B) let TA(B)k be its k-th row. This yields table TA(B) with two rows:

TA(B) minisat clasp manysat
runtime memory runtime memory runtime memory

TA(B)1 0.84 0.50 3.22 1.60 0.36 0.30
TA(B)2 7.07 2.60 4.82 2.30 4.72 6.10

C.Redl Automated benchmarking of KR-systems

49

2

Table TA(B) is the final result from a theoretical perspective. We turn now to
the implementation perspective, where TA(B) is actually transformed into a LATEX
representation.

3 Implementation

We implemented the ABC system (automated benchmarking based on HTCondor) for
computing the aggregated results (Definition 6) as a set of shell scrips which use mainly
standard commands. It is available from https://github.com/credl/abcbenchmarking.

The system supports the execution of multiple instances in parallel using the HTCon-
dor system6, but can also be used without HTCondor in sequential mode. However, it is
suggested to use it with HTCondor as this does not only exploit multi-core or multi-CPU
environments but also guarantees robust runtimes, i.e., multiple runs have negligible
derivations (provided that the tool to be evaluated has a deterministic behavior); in
previous experiments conducted with the ABC system, the derivations between repeated
runs were in the magnitude of 0.1 seconds.

The ABC system runs on all standard Linux systems with the statistics system R
installed (https://www.r-project.org). Obviously, also HTCondor must be installed in
order to run instances on top of it.

We give here a rough overview about the system and present some basic settings, but
refer to the system documentation for a full description [5].

3.1 Basic Usage of the System

It is suggested to include the path to the ABC system in the system search path such that
all scripts are found automatically without specifying absolute paths. Then the user has
to create only a single benchmark-specific run.sh file, which is usually stored in the
directory of the benchmark problem. It is expected to import a “header file” from the
ABC system using

source run header.sh

and calling the run method, defined in this header, with appropriate parameters.
These parameters specify the benchmark problem at hand as by Definition 1, i.e., the
instances, the configurations, the output builder and the aggregation function.

The system provides default values and implementations of most settings. For in-
stance, the lists I1, . . . , I` of instances are automatically extracted from the overall list I
of instances by interpreting the first number found in the filename of each instance as size
and grouping the instances accordingly. For example, suppose col 100 inst 1.dl,
col 100 inst 2.dl, col 200 inst 1.dl and col 200 inst 2.dl are ASP
programs which encode 3-colorability instances. Then the filenames are interpreted

6 https://research.cs.wisc.edu/htcondor

C.Redl Automated benchmarking of KR-systems

50

such that 100 resp. 200 specify two instance groups (with 100 and 200 nodes, re-
spectively), each of which is composed of 2 instances. The file run.sh further sup-
ports several parameters (processing of these parameters is imported from source
run header.sh), for instance for overriding the default timeout value of 300 seconds
or for executing only a specific instance.

In order to simplify editing and increase interoperability with other software pro-
grams, the generic output of the ABC system is a table in CSV format, but it comes with
further scripts for conversion to LATEX.

Example 4. In this example, our instances are given by all files of type *.dlv (DLV7

programs) in the directory instances. The ABC system automatically iterates over
these files.

We compare the configurations dlv and dlv -n=1 to compare the computation
of all and of the first solution. The configurations are specified as semicolon-separated
list. The definition combine="CONF INST" specifies how a configuration and an
instance are combined to the overall command, where the tokens CONF and INST
represent the current configuration and the instance, respectively.

Optionally, one can define a benchmark name; if it is not defined, the current direc-
tory’s name is used. In the example we further use the default output builder, which
measures the overall runtime and the number of timeout instances, and the default aggre-
gation script, which computes the average runtime and the count of timeout instances.

This is implemented in the following file run.sh:

source r u n h e a d e r . sh

mandatory
i n s t a n c e s =” i n s t a n c e s / ∗ . d l v ”
c o n f i g u r a t i o n s =” d l v ; d l v −n=1”
combine=”CONF INST”

o p t i o n a l
benchmarkname=” d l v ”
a g g r e g a t i o n f u n c =” ”
o u t p u t b u i l d e r =” ”

run ” $ i n s t a n c e s ” ” $ c o n f i g u r a t i o n s ” ” $combine ” \
” $benchmarkname ” ” $ a g g r e g a t i o n f u n c ” ” $ o u t p u t b u i l d e r ”

Assuming that there are three groups of 10 instances of sizes 1, 2 and 3, the output
of the call ./run.sh is a table of the following form:

1 10 0.12 0 0.07 0
2 10 1.08 0 43.15 1
3 10 22.81 0 270.01 9

The rows read as follows: instance size 3 consists of 10 instances, the first configu-
ration yields an average runtime of 22.81 seconds where 0 instances had timeouts, the

7 www.dlvsystem.com

C.Redl Automated benchmarking of KR-systems

51

instance dlv dlv -n=1
1 (10) 0.12 (0) 0.07 (0)
2 (10) 1.08 (0) 43.15 (1)
3 (10) 22.81 (0) 270.01 (9)

Table 1: Benchmark Results: Final Appearance

second configuration yields an average runtime of 270.01 seconds where 9 instances had
timeouts (aborted after 300.00 seconds).

This ABC system allows for an automatic translation of this table to LATEX code as
shown in Figure 1, which compiles to Table 1. 2

\begin{table}[t]
\scriptsize
\centering
\begin{tabular}[t]{r|rrr}
\hline
instance & \verb+dlv+ & \verb+dlv -n=1+ \\
\hline
1 (10) & 0.12 (0) & 0.07 (0) \\
2 (10) & 1.08 (0) & 43.15 (1) \\
3 (10) & 22.81 (0) & 270.01 (9) \\
\hline
\end{tabular}
\caption{Benchmark Results}
\label{tab:results}
\end{table}

Fig. 1: Benchmark Results: LATEX Code

For more custom use-cases, a different output builder and/or aggregation function
can be specified in form of the filename of a separate script with a certain input-output
behavior (cf. [5]). The ABC system however comes with a set of predefined output
builders and aggregation scripts which are good for many use cases.

Our system computes the aggregated results table as by Definition 6:

Proposition 1. For a benchmark as by Definition 1, an output builder as by Definition 3
and an aggregation function as by Definition 5, the ABC system computes the aggregated
results table TA as by Definition 6.

3.2 Customization of the Output Builder and the Aggregation Function

A custom output builder as by Definition 3 is implemented as a shell script which
extracts the relevant parts from the standard output and standard error of the command

C.Redl Automated benchmarking of KR-systems

52

and meta-information (the return code, the measured time and memory consumption).
To this end, standard output, standard error output and meta-information are redirected
to temporary files, whose filenames are passed to the output builder. The implementation
of the output builder accesses these temporary files and extracts the relevant information,
e.g. by the use of the grep command or similar.

Aggregation functions as by Definition 5 have full access to the instance results table
TI . The implementation supports fully customized scripts that transform table TI into
the final table TA by arbitrary means. However, in many cases, users who implement
custom aggregation scripts just want to specify the aggregation function (such as avg,
sum, max, etc) for each column. Thus, the default aggregation script supports parameters
which allow for selection of the aggregation function individually for each column and a
custom aggregation script can just redirect the call to the default one with an appropriate
selection of the parameters.

3.3 Additional Features

The ABC system provides additional scripts for post-processing and for conversion of
the output format. This includes scripts for reordering or projecting columns or joining
multiple tables and for formatting the LATEX table using different packages.

Also email notifications to the user upon finishing the benchmark runs are supported.
The notifications come with a textual representation of the benchmark results.

Finally, also a comparison of the current results to previous ones is possible. Al-
though HTCondor guarantees robust runtimes, such that for deterministic reasoners the
differences between mutliple runs are usually in the magnitude of 0.1 seconds, small
differences are unavoidable. Therefore, the results must be statistically compared such
that significant changes are discriminated from normal ones. Per default, the comparison
method is based on a treshold both for relative and absolute changes of the results, but
custom comparison methods are also supported. The system can be configured such that
significant changes yield a warning, which can be used, for instance, for nightly tests
which do not only identify traditional bugs (abnormal termination and wrong results) but
also performance bugs (unintended performance decrease due to code modifications).

For details we refer to the system documentation [5].

3.4 System Architecture

The architecture of the ABC system is visualized in Figure 2. The benchmark-specific
file run.sh largely delegates the call to the run method imported from source
run header.sh with appropriate parameters.

Internally, this method uses the scripts runinsts.sh and runconfigs.sh
from the ABC system (those are not benchmark-specific) to schedule all instances for all
configurations which are to be compared. Those scripts make callbacks to run.sh in a
recursive fashion for evaluating single instances (appropriate parameters make this script
run a single instance rather than all instances). Note that the two run.sh occurrences
in Figure 2 refer to a single physical file (symbolized by their connection).

For each finished instance, the system calls an output builder (either the default one
or a custom one specified in run.sh) which extracts the actual benchmark parameters

C.Redl Automated benchmarking of KR-systems

53

the user is interested in, e.g. time information and number of answer sets, from the
reasoner output (standard output and standard error). The result is stored in a separate
result file for each instance. When all instances have finished, the script system further
calls an aggregation script (either the default one or a custom one specified in run.sh),
which generates the final benchmark table from the results of individual instances.

User Final Benchmark Table

run.sh (all)

runinsts.sh Aggregation Script

run.sh (single) Instance Results

runconfigs.sh Output Builder

Reasoner (e.g. DLV) Reasoner Outputs
and Return Values

benchmark-specific

optional customization

static

control flow

data flow

Fig. 2: ABC System Architecture

4 Discussion and Related Work

The ABC system is related to the VCWC workflow compiler, which was developed
for running system competitions such as the ASP Competition [2]. Both systems are
used to schedule problem instances, aggregate results, and compare systems in a largely
automated workflow. However, our system focuses on individual experiments as part

C.Redl Automated benchmarking of KR-systems

54

of the development of new evaluation techniques for KR tasks. This differs from com-
petitions in several points: most importantly, different aspects are considered static or
dynamic. In competitions, the systems to be compared are much more standardized
because organizers specify the interfaces to be provided by participating systems very
precisely. In contrast, experiments presented in publications are often carried out with
third-party systems which are not standardized at all and might be in an experimental
state. It is not always feasible to standardize interfaces while core components are still
under development. Therefore, the systems may be called in a much more heterogeneous
way, i.e., command-line calls and the input might need to be adapted to single systems.

Also the experiments are less standardized. Competitions focus on a certain domain
(such as ASP or SAT solving) and the number of types of benchmark problems is limited.
In case of ASP (cf. e.g. [3]), this might be e.g. answer set computation, satisfiability
checking and optimization problems. In contrast, a general benchmarking system cannot
make such assumptions about the structure of the output. Each system provides a generic
standard and error output (plus meta-information observed from outside such as the
wall-clock time), and it depends on the experiment which values are relevant. Finally, the
computation of the final statistics is also not hard-coded. Depending on the benchmark,
the aggregation over multiple instances might use a different function. For instance,
assume each instance provides the wall-clock time, a boolean timeout value (timeout
or no timeout) and the memory consumption. When aggregating instances of the same
size, one might want to compute the average runtime, the sum of binary timeouts, and
the maximum memory consumption. On the other hand, due to a much larger amount of
system runs in a competition, the requirements for recovery after software or hardware
failures are possibly higher than with individual benchmarking.

The script system BMTOOL is related to our tool [4], but is more focused on the
comparison of configurations as it does not support loop conditions such that automated
iteration over the instances; also aggregation of the results is not implemented.

Related is also the DecBench system [1], which allows for the specification of
benchmarks using answer set programs. Facts over special predicates specify solvers,
test domains and instances, and derived atoms relate these entities by specifying which
solvers are run with which instances. While the technical realization is different (ASP
instead of shell scripts), the basic goal is similar to the one of the ABC system. However,
DecBench’s flexibility ends with the execution of the benchmarks. In contrast to the
ABC system, the values to be included in the result table (cf. output builders) and the
aggregation function cannot easily be customized (only data export in different formats
is possible, while postprocessing is intended to be done by e.g. spreadsheet programs).
Also support for high-throughput computing systems such as HTCondor is missing.

Concerning declarativity, we note that despite the use of shell scripts, benchmarks
in our system are in standard cases specified by setting parameters and thus it can be
considered largely declarative. We did intentionally not use a purely declarative language
like ASP in DecBench because scripts provide more flexibility for customization. This
is because declarative benchmark descriptions need to be compiled into an executable
format (such as makefiles as in DecBench) anyway; but then the room for customization
of a benchmark description is limited by the compiler, e.g., by the predicates which are
interpreted. However, it is an interesting starting point for future work to provide an ASP
frontend for standard use cases.

C.Redl Automated benchmarking of KR-systems

55

5 Conclusion

We presented the ABC system for automating benchmark experiments in the area of
KR and AI research. To this end, we first formalized benchmarks in an abstract and
customizable way. We then implemented a system based on shell scripts and the free
Linux tools HTCondor and the statistics system R. Different from existing systems,
we did not focus on the support for large-scale competitions but on experiments to be
carried out as part of scientific work. While the former requires e.g. automated restarts
and the possibility to add instances on-the-fly (cf. e.g. [2]), the interfaces of participating
solvers are standardized by precisely specified input and output formats. In contrast,
experiments for evaluating brand-new techniques have a much more ad-hoc character.
Different from competitions, when comparing newly developed to third-party software
as part of scientific work, the systems can usually not be assumed to have standardized
interfaces. Also the parameters to be measured (runtime, number of models, etc) should
be easily updatable since intermediate results while writing a paper might hint that
further parameters are also relevant. In contrast, the valuation method for competitions
is fixed before benchmark runs start. Therefore, a design goal when developing the ABC
system was maximal flexibility, which was realized by the possibility for customized
feature extraction scripts (called output builders) and aggregation scripts.

For future work, the use of a declarative language as a frontend is an interesting
starting point. However, as declarative languages are often less suited for numeric
computations (as needed when defining aggregation functions), it is challenging to
retain flexibility. Other possible extensions are the support for alternative backends
(e.g. makefiles with parallelization option instead of HTCondor) and the support for
further output file formats in addition to LATEX (e.g. XML, HTML tables).

References

1. Alviano, M., Cuteri, B., Ricca, F.: Declarative specification of benchmark sessions via asp. In:
Proceedings of the Twenty-First RCRA International Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion (July 2014)

2. Charwat, G., Ianni, G., Krennwallner, T., Kronegger, M., Pfandler, A., Redl, C., Schwengerer,
M., Spendier, L., Wallner, J.P., Xiao, G.: VCWC: a versioning competition workflow compiler.
In: Cabalar, P., Son, T.C. (eds.) Proceedings of the Twelfth ernational Conference on Logic
Programming and Nonmonotonic Reasoning, Corunna, Spain, September 15-19, 2013. LNCS,
vol. 8148, pp. 233–238. Springer (September 2013), http://www.kr.tuwien.ac.at/staff/tkren/pub/
2013/lpnmr2013-vcwc.pdf

3. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: 5th International
Reasoning Web Summer School (RW 2009), Brixen/Bressanone, Italy, August 30–September
4, 2009. LNCS, vol. 5689, pp. 40–110. Springer (2009), http://www.kr.tuwien.ac.at/staff/tkren/
pub/2009/rw2009-asp.pdf

4. Faber, W.: A tool for benchmarking command-line systems. Tech. Rep. CS-2005-03, Computer
Science Group (2005)

5. Redl, C.: The abc benchmarking system. Tech. Rep. INFSYS RR-1843-15-07, Vienna Univer-
sity of Technology, Institute for Information Systems (October 2015)

C.Redl Automated benchmarking of KR-systems

56

