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Abstract. Interconnectivity of production machines is a key feature of
the Industrial Internet of Things (IIoT). This feature allows for many
advantages in producing. Configuration and maintenance gets easier, as
access to the given production unit is not necessarily coupled to physical
presence. Customized production of goods is easily possible, reducing
production times and increasing throughput. There are, however, also
dangers to the increasing talkativeness of industrial production machines.
The more open a system is, the more points of entry for an attacker exist.
Furthermore, the amount of data a production site also increases rapidly
due to the integrated intelligence and interconnectivity. To keep track of
this data in order to detect attacks and errors in the production site, it
is necessary to smartly aggregate and evaluate the data. In this paper,
we present a new approach for collecting, aggregating and analysing
data from different sources and on three different levels of abstraction.
Our model is event-centric, considering every occurrence of information
inside the system as an event. In the lowest level of abstraction, singular
packets are collected, correlated with log-entries and analysed. On the
highest level of abstraction, networks are pictured as a connectivity graph,
enriched with information about host-based activities. Furthermore, we
describe our work in progress of evaluating our aggregation model on two
different system settings. In the first scenario, we verify the usability of
our model in a remote maintenance application. In the second scenario,
we evaluate our model in the context of network sniffing and correlation
with log-files. First results show that our model is a promising solution to
cope with increasing amounts of data and to correlate information from
different types of sources.
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1 Introduction

The fourth industrial revolution is a driver that leads to increased interconnectivity
of production assets. Machines and goods are equipped with intelligence as well
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as communication abilities to negotiate processing steps. As a result, a lot
of communication takes place, within a production site but also across the
boundaries of several facilities. For several reasons, such as security and intrusion
detection, pre-emptive maintenance, quality management and error detection,
it is necessary to monitor this communication data. The data generated by
smart devices also contains relevant information about conditions of entities.
Particularly in Industrial Internet of Things (IIoT), the above mentioned effects
take place: The amount of devices is rising generating more and more of various
data, being increasingly interconnected. On the other hand, the production
of value shifts from physical assets to Intellectual Property (IP), making the
Information Technology (IT) infrastructure of a company a desired target for
adversaries [8]. Properties like Self-Healing, Self-Protection and Self-Organziation
are demanded by industry and require a lot of information [16]. Furthermore,
the information of controlling entities such as Manufacturing Execution Systems
(MES), Enterprise Resource Planning (ERP) or maintenance ticketing systems
can be used to validate the soundness of device behaviour. Even though a lot
of information is already generated and readily available in modern industrial
applications, there are very few means to connect and correlate this data. In
order to gain overview over complex interconnected systems, the data obtained
needs to be made sense of, not only with respect to the entity it was generated
on, but in the context of the whole network. The sensors for generating data are
usually already available, e.g. the Programmable Logic Controller (PLC), router,
switch, MES, ERP or something similar, only the correlation of data has been
neglected. In this paper, a holistic approach to collect and connect this data
is presented. In our approach, every information is derived from time-discrete
events. It therefore contributes to the field of Complex Event Processing (CEP)
in the domain of IIoT. We describe a model to classify the data that can be
extracted and a way to connect data from different sources. This is especially
useful to take the context of events into consideration and to semantically assess
them. This paper is organized as follows. In chapter II, the state of the art of
monitoring and aggregation of data as well as context-aware data analytics is
described. An exhaustive specification of our data aggregation model is presented
in chapter III. In chapter IV, the application of our model to two use cases is
evaluated. A conclusion is drawn in chapter VI, as well as an outlook on the
continuation of our work.

2 Related Work

Event processing has been brought up in the 1950’s in the context of discrete
event simulation [13]. Since then, a lot of development has taken place. Nowadays,
because of the rising amount of data and the increasing complexity of information,
databases and sophisticated queries are employed [5, 19]. This field is called
"CEP" and applied on many domains, often on business and finance intelligence
[4, 7], but also on education [6] or automation purposes [15, 18]. For network
management and IT security, similar concepts are used under the name of Event
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Correlation [9, 11, 12]. The methods of CEP are used to correlate, aggregate and
access information in order to gain intelligence that is only available due to the
combination of multiple events [14]. Most CEP systems are based on data bases
and tailored query languages, for example SASE [10], but many others as well [5].
One core idea of CEP is gaining and storing only relevant information from a
wide range of sources. This is called "aggregation". One of the current issues of
CEP is the horizontal correlation of events [11,15]. Correlation is used to describe
relations of cause and effect. This is a non-trivial topic and is heavily domain
dependant task [7,11]. Our model proposes a concept for this issue in the domain
of IIoT.

3 Concept of the Aggregation Model

In this section, the motivation for as well as the concept of the aggregation
model are described. As mentioned in section 1, modern systems generate a lot
of data that is especially useful for anomaly detection. The biggest issue lies in
the distribution of this data: Especially in industrial applications, there are lots
of information on local instances of devices, however only a relatively small part
is gathered and presented to a human operator. The abundance on available
information makes it impractical to look at each feature separately. In order
to change this, a model is needed to gather data centrally in order to correlate
individual events, generated by different types of data sources and see relation-
ships of different activities. On the other hand, it is tedious, computationally
expensive and time-consuming to gather all information in a central place and
process it. Today, most embedded devices are capable of performing complex
computations on their own. The presented model aims at bringing together
all relevant information from a heterogeneous network, as typically found in
industrial environments, while at the same time performing as much computation
as possible on the devices that generated it. This keeps the data that needs to
be collected on a global scale small, while still allowing for a full and expressive
picture of the network conditions. It consists of three vertical and horizontal
levels each, as can be seen in table 1. The vertical levels depict the layer of
abstraction. The lowest level in the table corresponds to the highest resolution,
while the highest level corresponds to the most abstract view. To ascend from a
level to another, data has to be summarized. The horizontal levels describe the
relation between different sources of data. Each column represents a different
kind of data source that can be used to get a specific kind of data. Three types of
data sources are chosen, since three different kinds of data sources in industrial
systems were identified.

The leftmost column describes the cause of an event. It is the command or
the action on a system that triggers network traffic and an action on a remote
system. In the middle column, the network traffic of an event is depicted. The
rightmost column describes the effect of an event. It is the action on a remote
machine, triggered by some action or the activity a PLC executes due to a
change of parameters. We assume a network-centric approach, meaning that only
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Table 1. Aggregation Model

Cause Traffic Effect
Level 1 e.g. Configuration entries e.g. Network Packets e.g. Log-entries
Level 2 e.g. Application Info e.g. Network Flow e.g. Log-files
Level 3 e.g. Data base e.g. Flow Graph e.g. Log file collection

actions that spread within the network are considered relevant. This is because
of the increasing importance of interconnectivity and the inherent effects of it
on computing. Actions on a single host can translated to information of effect
and cause, without any network traffic. This case, however, is not the goal of our
model. Those kinds of data need to be correlated in order to gain intelligence on
the system that is represented by the model. The general hypothesis is that in
an interconnected environment, no event takes place without some cause, some
effect and, since the scope extends to networks, not only to host based systems,
some traffic. If those three parts of an event can be gathered, the knowledge
about said event consists of all possible points of view, not only of one systems
perspective that could be flawed or tampered.

The layers are introduced to encode the resolution that is used. Three layers
of resolution are chosen, since they allow for a differentiated view on the system.
The level of abstraction ranges from singular host and network connection to
the whole system. More layers would lead to an increased effort in aggregation
without additional benefit. On the lowest level, Level 1 in table 1, singular
network packets are collected and analysed. They are correlated with singular
log-entries on both cause and effect side. The idea is that a single IP-packet is
the smallest unit worth analysing. On both sides of the communication, actions
can be determined that either result in or were caused by this traffic, such as
log entries or syscalls. This information can be aggregated and taken to a higher
level of abstraction, Level 2 in table 1. The network packets can be aggregated
to flows. Flows only contain source and destination as well as duration, number
of packets some more meta information. The log-entries on the hosts involved
can be aggregated to log-traces, as can the syscalls. On the machine labelled
as the cause, application data can be taken into account, depending on the
application to gather intelligence on the context of the event. On the highest level
of abstraction, Level 3 in table 1, the whole network is taken into consideration.
The network-flows are aggregated to network topology graphs. The log- and
syscall traces as well as the application information are stored in a compressed
form as node-information and correlated with the corresponding edges in the
graph. This allows for a compact, yet complete overview of the network. So on
the first level, a local, possibly extensive analysis of all data takes place, since all
information is available. In order to collect it on a higher level, however, some
data reduction needs to take place. Only relevant information, such as metadata,
summarized log/event traces or reduced application settings are stored. This
allows for a complete, yet compact representation of the whole system on level 3.
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4 Use Cases and Evaluation

The proposed model can easily be applied to different use cases, since it is not
domain specific but abstract. Even though in this work, the main focus is on IIoT,
the proposed model can be applied for almost any domain that consists of more
than one system. Furthermore, it is highly scalable, as on each level, the number
of sensors can be extended without needing to change the overall structure. Still,
the amount of data that is gathered on each level will be manageable due to the
principle of aggregation. In this chapter, two use cases of our model are depicted.
The first use case is a remote maintenance scenario. In the context of the second
use case, modbus-based network traffic is correlated with logs gathered from
PLCs. Although the model can be used for a multitude of applications, our main
focus is IT-security by means of anomaly detection in network behaviour. In
both use cases, the data is collected and analysed in order to detect malicious
behaviour.

4.1 Remote Maintenance

In increasingly interconnected production networks, secure remote maintenance
gains importance. We apply our model to an architecture for secure session-based
remote administration and maintenance that suits the requirements of segmented
and firewalled production network environments. The architecture is depicted
in fig. 11. It is divided by means of the zones A, B with limited, i.e. firewalled,
access to zone C, thus without the ability to setup zone-spanning peer-to-peer
connections. The cloud platform takes the role of a relay agent, forwarding
legitimate traffic between entities from zone A to zone B and vice versa.

Fig. 1. Architectural Overview Remote Maintenance

The cloud platform consists of three core components, each of them contribut-
ing information to the aggregation model. The session database holds information
about scheduled, ongoing as well as terminated remote administration sessions. It
is queried by the VPN endpoint in order to additionally authenticate connecting

1 The icons have been taken from [3]
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entities, as well as the routing engine to setup forwarding tables according to
session properties. Any traffic related to remote administration passes the VPN
endpoint and can easily be extracted for aggregation. Additional session state
information can be obtained by the routing engine. We further note that commu-
nication between the core components may also be subject to aggregation.

The process of a remote maintenance action starts after the machine owner
in zone A notices some malfunction in her machines. She issues a maintenance
ticket to the cloud platform. A maintenance technician accepts the ticket, is
authorized to access the machine in the context of the maintenance process and
performs the maintenance action. After the technician is done, she disconnects
and the machine revives operation. In our implementation, iptables are employed
on the cloud platform in order to re-route the clients via a OpenVPN connection.
The ticket handling is done with OTRS. In this use case, the data collection
is machine owner-centric, this means we assume that the machine owner only
has access to her own network in Zone A. Each ticket, that has been issued,
is collected as a level 1 cause. They can be used to provide insight about the
condition of a machine. Each setting of the machine after the maintenance action
took place is collected as a level 1 effect. The traffic between the machine and the
maintenance technician is the level 1 traffic. This information can be gathered
and processed locally. It is then aggregated and collected on level 2, where the
network traffic is abstracted to a network flow, the tickets of a singular machine
are summarized to a ticket history as the machine settings after the maintenance
are concentrated to setting histories. On the level 3, this information is combined
with information from different machines of the machine owner.

On level 1, the individual network packets are correlated with log entries of
the machine. This can help in detecting inconsistencies in the programming, for
example if a ticket is issued even though no error or warning could be detected
in the machine logs. Another possibility lies in an maintenance technician to
misconfigure a machine. The comparison of current network traffic and machine
settings to the previous settings of the machine and the corresponding traffic on
level 2 can detect such errors. On level 3, all machines of the same owner are
considered. This way, machines that have a high rate of errors can be identified,
as this can be a sign of adversarial activities.

4.2 Log and traffic correlation

PLCs are computation units in industrial networks that control production
processes. They can be configured via network access. In order to gain intelligence,
we propose to collect network traffic data as well as host-based log information
on the PLC. The schematic architecture that helps us gather the information
necessary is pictured in fig. 2.

The Industrial Control System (ICS) communicates with the PLC we set
up using openPLC [2]. The network traffic is gathered with packetbeat, the log
inforamtion can be extracted with logstash. Elasticsearch serves as a collector, the
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Fig. 2. Architectural Overview PLC Aggregation

findings can be visualized with kibana. These tools are provided by the company
elastic [1].

Every change on the PLC is issued by the ICS and transmitted via a fieldbus
protocol. On level 1, the settings of the application on the ICS, the individual
network packets and the log entries and register settings of the PLC are collected.
Inconsistencies, such as parameterization from an ICS that has no knowledge
about this process, are a hint for malicious activities, e.g. spoofing [17]. The
abstraction to level 2 allows for a more abstract view of all past settings in
order to capture unlikely or unprecedented behaviour that is a sign of erroneous
behaviour. Level 3 allows for the comparison of PLCs and ICSs on the system
level, identifying ICSs that communicate with suspiciously few PLCs or PLCs
that are set to singular, unlikely settings.

5 Conclusion and Outlook

In this paper, we introduced a novel data aggregation and correlation model. We
showed that it can be employed in multiple fields by presenting two different use
cases. Furthermore, we spotlighted features of our model that meet the demands
in IIoT. Those features can be used to help managing the rising amount of data of
interconnected and intelligent systems. Several different tasks, such as IT-security
or maintenance, motivate the necessity for sophisticated data management. Our
model is able to support this increasingly complex task.

The contribution of this work is a model that can be used to address the
problem of the increasing amount of heterogeneous data, especially in the indus-
trial environment. At the same time, industrial applications are getting more
attractive for attackers, creating the need for efficient detection of malicious
behaviour. Correlating and evaluating data is a crucial task in this arising s, one
that is aided by the presented model.

As a next step, we will develop connection operators to make correlation
of events easier. We will enrich our list of data sources to get a more holistic
overview of networks. Other than that, we plan to incorporate algorithms of

Context-based Data Aggregation Model 57



machine learning into our framework to help the system find correlations between
events and detect anomalies of any kind.
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