
pyRecLab: A Software Library forQuick Prototyping of
Recommender Systems

Gabriel Sepulveda
Pontificia Universidad Catolica de

Chile
Santiago, Chile

grsepulveda@uc.cl

Vicente Dominguez
Pontificia Universidad Catolica de

Chile
Santiago, Chile

vidominguez@uc.cl

Denis Parra
Pontificia Universidad Catolica de

Chile
Santiago, Chile

dparra@ing.puc.cl

ABSTRACT
This paper introduces pyRecLab, a software library written in C++
with Python bindings which allows to quickly train, test and de-
velop recommender systems. Although there are several software
libraries for this purpose, only a few let developers to get quickly
started with the most traditional methods, permitting them to try
different parameters and approach several tasks without a signif-
icant loss of performance. Among the few libraries that have all
these features, they are available in languages such as Java, Scala
or C#, what is a disadvantage for less experienced programmers
more used to the popular Python programming language. In this
article we introduce details of pyRecLab, showing as well perfor-
mance analysis in terms of error metrics (MAE and RMSE) and
train/test time. We benchmark it against the popular Java-based
library LibRec, showing similar results. We expect programmers
with little experience and people interested in quickly prototyping
recommender systems to be benefited from pyRecLab.

KEYWORDS
Recommender Systems, Software Development, Recommender Li-
brary, Python Library
ACM Reference format:
Gabriel Sepulveda, Vicente Dominguez, and Denis Parra. 2017. pyRecLab:
A Software Library for Quick Prototyping of Recommender Systems. In
Proceedings of RecSys 2017 Posters, Como, Italy, August 27-31, 2 pages.

1 INTRODUCTION
When software developers face the challenge of learning about
recommender systems (RecSys), developing a RecSys for the first
time, or quickly prototyping a recommender to test available data,
a reasonable option to get started is using an existent software
library. Nowadays, it is possible to find several libraries in different
programming languages, being among of the most popular ones
MyMedialite [3], LensKit [2], LibRec [4], lightfm [7] and rrecsys [1].

While the aforementioned tools have documentation, implement
several methods, and present most of the common functionality
required to develop and evaluate a recommendation system, all of
them miss some type of functionality or algorithm which hinder
specially newcomers. In particular, while teaching for three years a
graduate course on Recommender Systems during the Fall Semester
(2014-2016) at the Department of Computer Science at PUC Chile,
most students have found recurrent difficulties in using existent
tools to finish an introductory assignment. The assignment is re-
lated to tasks such as rating prediction and item recommendation

RecSys 2017 Poster Proceedings, August 27-31, Como, Italy

Python Interface

Data Handlers
(Rating Matrix, Sparse Matrix, Data Frame)

File IO

Python Interpreter

>>> import pylibrec

Item
Avg

Slope
One

User
KNN

Item
KNN

Funk
SVD

Most
Popular

Figure 1: pyRecLab architecture.
to specific users, using well-known collaborative filtering meth-
ods such as User K-NN, Item K-NN, Slope One and FunkSVD [9].
Some of the problems found were: (a) the lack of implementation
of certain methods in some libraries, (b) poor train/test time perfor-
mance under medium-sized datasets (such as Rrecsys which does
not implement sparse matrices), (c) lack of functionality which is
typical in a recommendation setting, such us suggesting a list of
items given a specific user ID, (d) difficulties to change parameters
in certain models, and (e) students’ lack of familiarity with certain
programming languages such as Java or C#. While Java is the most
popular language based on several rankings, it is also the case that
Python is the most popular introductory teaching language in the
U.S. since 2004 [5] as well as the one with largest growth in the
latest 5 years based on the PYPL ranking1.

For these reasons, we developed pyRecLab2. We wrote it in C++
with Python bindings, in order to facilitate its adoption among new
programmers familiar with Python, but also offering an appropriate
performance when dealing with larger datasets. We implemented
most of the foundational recommendation methods for rating pre-
diction and recommendation. Moreover, users can easily change
parameters to understand their effect and they can also produce
recommendations given a specific user ID.

2 OTHER RECOMMENDATION LIBRARIES
MyMediaLite[3]: It implements several recommendation algo-
rithms, supporting explicit and implicit feedback, as well as context-
aware methods. It also allows evaluation with metrics such as MAE,
RMSE, prec@N, and nDCG [9]. Many of it functionalities are avail-
able from command line; however, to integrate it with other soft-
ware it is necessary to program in languages like C# or F#, which
is difficult for many newcomer Python developers. Lenskit[2]:

1http://pypl.github.io/PYPL.html
2Documentation and code samples at https://github.com/gasevi/pyreclab

https://github.com/gasevi/pyreclab

RecSys 2017 Poster Proceedings, August 27-31, Como, Italy Sepulveda et al.

Table 1: pyRecLab vs. LibRec on MovieLens 100K data.

MAE RMSE
pyRecLab LibRec pyRecLab LibRec

UserAvg 0.850191 0.850191 1.062995 1.062995
ItemAvg 0.827568 0.827568 1.033411 1.033411
SlopeOne 0.748552 0.748299 0.952795 0.952460
User KNN 0.754816 0.755361 0.962355 0.966395
Item KNN 0.749316 0.748354 0.953637 0.953433
Funk SVD 0.732820 0.731986 0.925390 0.923978

A popular library which provides all basic collaborative filtering
methods for predicting ratings (User/Item KNN, Slope One and
FunkSVD). It is developed in Java, which could be an entry bar-
rier for new programmers who are mostly familiar with Python.
LibRec[4]: Just like MyMediaLite and Lenskit, a well developed
library in terms of algorithms implemented and the metrics avail-
able for evaluation. However, documentation is not as good as
Lenskit and since it is implemented in Java, it also raises the barrier
for new programmers. Lightfm[7]: This library implements sev-
eral matrix factorization algorithms for both implicit and explicit
feedback. It also has an interface for Python, facilitating its use
to several developers. However, it does not implement basic tradi-
tional recommender algorithms (User/Item KNN, slope One), so it
is not advisable for introductory teaching purposes. Rrecsys[1]:
This tool gets the closest to pyRecLab in terms of easy-of-use, quick
prototyping and educational purposes. It is written in R language.
However, it has two main weaknesses: it misses some traditional
algorithms (like Slope One) and it is limited in terms of the amount
of data it can process, since it does not support sparse matrices.

3 DESIGN AND IMPLEMENTATION
Figure 1, shows the main modules of pyRecLab. At the bottom,
the blue block represents the Python interpreter, which loads the
methods and data structures when importing the PyRecLab module.
At the top, in orange, all the sub-modules of the library:
• File IO. This component allows data input/output by means of
reading from text files, as well as writing output recommenda-
tions in txt and json formats. It allows great flexibility in terms of
input file formats (csv, tsv) as well as allowing the user to specify
what to file columns represent.

• Data handlers. This module implements several data structures,
which allow a homogeneous access to the ratings. It grants a good
level of independence from the original format from which data
were read, with a high level of abstraction. These data structures
will be directly used by the recommendation algorithms for the
processing, storage and generation of output data.

• RecommendationAlgorithms. Under the Data handlers block,
there are a number of contiguous blocks representing the rec-
ommendation algorithms. Algorithms for rating prediction and
recommendation are: Item Average, Slope One, User KNN, Item
KNN and Funk SVD. On the other hand, Most Popular is only
used to generate recommendations.

• Python Interface. This module represents the interface be-
tween the recommendation algorithms and the Python inter-
preter. It was developed in C++, and since we aimed at maintain-
ing an appropriate level of code readability, we decided to use

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

10

20

30

40

50

60

70

80

90

200 400 600 800 1000 1200 1400 1600

Tr
ai

ni
ng

 T
im

e
[5

 -
80

 s
]

Number of latent factors

librec train pyreclab train librec test pyreclab test

Figure 2: pyRecLab vs. LibRec on time performance.
the Python/C API rather than Cython for implementation. This
allows us to define low-level structures in C++ language with a
direct mapping with objects handled by the Python interpreter.
In this way, we have defined a data type for each of the recom-
mendation algorithms, which can be instantiated directly from
the Python interpreter.

4 RESULTS & CONCLUSION
To check the performance of pyRecLab, we tested it against the
popular library LibRec [4] in terms of error and train/test time.

Prediction Results. MAE and RMSE results of rating prediction
over Movielens 100K dataset are shown in Table 1. Differences are
very small to LibRec, showing that pyRecLab can reproduce results
of a mature recommender library. Time Performance. Although
the results vary depending on the method, Figure 2 shows train/test
performance using FunkSVD. While both libraries perform simi-
larly in training phase, pyRecLab performs faster in testing time at
different number of latent factors.

Summarizing, we have introduced PyRecLab, a library for rec-
ommender systems which combines the performance of C++ in
its implementation with the versatility of Python for easy-of-use.
We expect to add new algorithms (such as WRMF [6] and gSLIM
[8]) and recommendations metrics, as well as new code samples to
facilitate its adoption.

REFERENCES
[1] Ludovik Çoba and Markus Zanker. 2016. rrecsys: an R-package for prototyping

recommendation algorithms. (2016).
[2] Michael D Ekstrand, Michael Ludwig, Jack Kolb, and John T Riedl. 2011. LensKit:

a modular recommender framework. In Proceedings of the fifth ACM conference
on Recommender systems. ACM, 349–350.

[3] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme.
2011. MyMediaLite: A free recommender system library. In Proceedings of the
fifth ACM conference on Recommender systems. ACM, 305–308.

[4] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A Java
Library for Recommender Systems.. In UMAP Workshops.

[5] Philip Guo. 2014. Python is now the most popular introductory teaching language
at top us universities. BLOG@ CACM, July (2014), 47.

[6] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for im-
plicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. Ieee, 263–272.

[7] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recom-
mendations. In Proceedings of the 2nd Workshop on New Trends on Content-Based
Recommender Systems (CEUR Workshop Proceedings), Vol. 1448. 14–21.

[8] Santiago Larraín, Denis Parra, and Alvaro Soto. 2015. Towards Improving Top-N
Recommendation by Generalization of SLIM.. In RecSys Posters.

[9] Denis Parra and Shaghayegh Sahebi. 2013. Recommender systems: Sources of
knowledge and evaluation metrics. In Advanced Techniques in Web Intelligence-2.
Springer, 149–175.

	Abstract
	1 Introduction
	2 Other Recommendation Libraries
	3 Design and Implementation
	4 Results & Conclusion
	References

