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Abstract— Semantic Web services provide semantically en-
hanced service descriptions which allow the development of
automated service discovery and composition. Yet, an efficient
semantic-based service discovery remains a major open challenge
towards a wide acceptance of semantic Web services. In this
paper we present a fully-automated matchmaking system for
discovering sets of OWL-S Web services capable of satisfying a
given client request.

I. INTRODUCTION

Web services are internet-based, self-describing and plat-
form-independent application components published using
standard interface description languages (WSDL [23]) and
universally available via standard communication protocols
(SOAP [22]). Web services are emerging as the new funda-
mental elements for developing complex software applications.
However, a prerequisite to reusing and composing Web ser-
vices is the ability to find the right service(s).

The only accepted standard for service discovery is UDDI
[21], which performs a keywords-based search on registries
of WSDL services. One of the main limitations of the current
service standards is that they do not provide an explicit seman-
tics. Indeed, two identical WSDL documents may describe two
completely different services. A promising approach seems
to be semantically modelling service capabilities in order to
enable a discovery based on what the services really provide.
The application of the Semantic Web [4] model to the Web
service area has recently promoted the development of so-
called Semantic Web Services. A semantic Web service (SWS)
is a software component which self-describes its functionali-
ties by annotating them with (instances of) concepts formally
defined by means of ontologies. One of the most promising
languages for describing SWSs is the Ontology Web Language
for Web Services (OWL-S [16]), which provides each service
with three documents: the service profile (“what the service
does”), the process model (“how the service works”) and the
service grounding (“how to access the service”).

The development of semantics-based service discovery
mechanisms constitutes a major open challenge in this context,
and it raises several important issues. One of them is the ability
of coping with different ontologies, as different services are
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typically described in terms of different ontologies. Another
important feature is the capability of discovering service
compositions rather than single services. Indeed it is often
the case that a client query cannot be fulfilled by a single
service, while it may be fulfilled by a suitable composition
of services. Last, but not least, efficiency is obviously an
important objective of service discovery mechanisms.

In this perspective, we described in [6] the design of a
composition-oriented methodology for discovering OWL-S
SWSs. Such methodology employs the notion of Semantic
Field [14] to cross different ontologies and it achieves ef-
ficiency by pre-computing off-line all the query-independent
tasks, viz., to determine the dependencies within/among ser-
vices as well as the relationships among ontologies. An hyper-
graph is employed to collect all the computed dependencies.
The search algorithm of [6] analyses the hypergraph in order
to discover the sets of services (candidated to be composed)
capable of satisfying a given client request, which specifies
inputs and outputs of the desired service.

In this paper we develop the methodology proposed in [6]
by introducing the algorithms needed to pre-process ontolo-
gies, to pre-compute service dependencies as well as to dis-
cover service compositions. We also present a first prototype
of our system which interacts with the clients by means of a
suitable Web interface.

The rest of the paper is organised as follows. Sections II and
III are devoted to present the discovery system. In Section II
we define the data structure we use to collect information about
ontology concepts, services and their dependencies, while in
Section III we describe the search algorithm for discovering
Web service compositions. A first prototype of the discovery
system is presented in Section IV. Finally, related work is
discussed in Section V, while some concluding remarks are
drawn in Section VI.

II. THE DEPENDENCY HYPERGRAPH

In order to store the knowledge derived from the pre-
processing of ontologies and service descriptions, we need a
data structure capable of suitably representing service and data
dependencies. The hypergraph seems to be a good candidate
as dependencies can be naturally modelled by means of
hyperedges.



According to [7], a directed hypergraph H = (V,E) is a
pair, where V is a finite set of vertices and E is a set of
directed hyperedges. A directed hyperedge is an ordered pair
(X, Y ) of (possible empty) disjoint subsets of V , where X and
Y denote the tail and the head of the hyperedge, respectively.

In this context, the vertices of the hypergraph correspond
to the concepts defined in the ontologies employed by the
analysed service descriptions, while the hyperedges represent
relationships among such concepts. More precisely, an hyper-
edge has one of the following three types:
• E⊂ = (D, {c}, nil) – subConceptOf relationship. Let c

be a concept defined in an ontology O and let D ∈ O be
the set of the (direct) subconcepts of c. Then, there is a
E⊂ hyperedge from D to c.

• E≡ = ({e}, {f}, sim) – equivalentConceptOf relation-
ship. Let e, f be two concepts defined in two separate
ontologies and let sim be the similarity between e and
f , i.e., the probability that e is (semantically) equivalent
to f . If sim is above a given similarity threshold, there
is a E≡ hyperedge from e to f labelled by sim.

• ES = (I,O, s) – intra-service dependency. Let s be (a
profile of) a service and let I be the set of inputs that s
requires to produce the set O of outputs. Then, there is
a ES hyperedge from I to O labelled by s.

It is worth noting that the proposed hypergraph automati-
cally models other important aspects regarding the registry-
published services and ontologies. The hypergraph models
an extended notion of subConceptOf between two concepts
c, d defined in two given ontologies. More specifically, c is
subConceptOf d (hereafter, c 7→ d) if and only if there exists a
path from c to d which consists of subConceptOf relationships
(E⊂ hyperedges) and/or equivalentConceptOf relationships
(E≡ hyperedges). Moreover, the hypergraph directly repre-
sents the inter-service dependencies. Indeed, there is a inter-
service dependency between two services s and t if the head
of a s-labelled ES hyperedge and the tail of a t-labelled ES

hyperedge share (at least) a concept. Note that there is a inter-
service dependency between s and t also if there exist two
concepts cs and ct such that cs 7→ ct, cs belongs to the head
of the s-labelled ES hyperedge and ct belongs to the tail of
the t-labelled ES hyperedge.

In the following subsections we describe how subConceptOf
relationships, equivalentConceptOf relationships and intra-
service dependencies can be determined.

A. The SemFiT application

Semantic Fields [14], [1] are groups of interrelated ontolo-
gies that may be relevant to a given information request, in
which the client needs to find related ontologies, from a set of
ontologies, for a given set of concepts of a specific ontology.
As searching for relevant concepts from a large number of
ontologies is a time-consuming task, one goal of Semantic
Fields is to reduce the number of candidate ontologies to offer
the user a good solution within a reasonable period of time.

In order to build Semantic Fields, namely to find relation-
ships between ontologies, we firstly compute the similarity

between pairs of concepts and next we calculate the distance
between pairs of ontologies (i.e., how similar two ontologies
are). Mappings between concepts can be determined by means
of different ontology matching tools, which check whether two
concepts are equivalent with a given probability.

Since the results depend on the employed matching tools,
we have hence developed a framework for adapting existent
matching tools and combine them in order to improve the
obtained results. In the framework instance used in this paper
we combine the results of individual matchers which analy-
ses the similarity between pairs of concepts with different
strategies: (1) name similarity: compares the names of the
provided concepts, (2) data type similarity: compares the
types of the provided concepts, and establishes a similarity
value depending on the possibility of producing each type
from another type by casting, (3) WordNet similarity: checks
whether the two concepts are synonyms in WordNet [18], (4)
path similarity: compares the path from each concept to its
root in the ontology, and provides an average between the path
length similarity and the name similarity between all concepts
in both paths, (5) property similarity: compares the similarities
among the properties of the concepts compared, and (6) edit
distance similarities: this family of algorithms is based on the
comparison of strings, and calculates the difference between
them as the operations that should be performed on one string
to obtain another. As these algorithms calculate the distance
between two concepts, it is necessary to calculate the similarity
from the value provided.

The calculus of mappings is done between pairs of ontolo-
gies, hence if we have N ontologies then we have to calculate
N2 − N matrixes. Assuming that the mapping between two
ontologies is a symmetric relationship we need to calculate
(N2 − N)/2 matrixes. Yet, our tool calculates the similarity
matrixes between the new ontology and all the previously
published ontologies when the new one is registered. Thus,
each insertion only requires N − 1 calculations.

Once the mappings between two different ontologies are
established, the distance between the ontologies is calculated
by making use of some ontology distance measurements.
Given a matrix with the similarity between pairs of concepts
of two ontologies (O1 and O2), we can make use of several
measurements based on the definitions of distance in different
contexts. First, we define the directed distance (DD) between
them (as it is an asymmetric measure):

DD(O1, O2) =
#Concepts(O1)∑

c∈Concepts(O1)
max(mappings(c,O2))

D(O1, O2) = min(DD(O1, O2), DD(O2, O1))

We can calculate the distance (which is a symmetric mea-
sure) between two ontologies (D) in different ways (see
for example the second formula) depending on the distance
concept used. These measures allow us to establish how
similar two ontologies are, and in this way to know whether it
will be necessary to include the already calculated similarities



Fig. 1. Semantic Field Calculation.

between their concepts to solve the problem of determining
the user Semantic Field.

Let us suppose that we have the set of registered ontologies
in Figure 1, in which the edge values mean the already
calculated distance between pairs of ontologies. Let us assume
that the user selects the EconomyDomain ontology, which
covers his intended domain, and sets up a distance threshold
of 2. In this example the Semantic Field will be composed
of the ontologies at a distance less than this value, which are
those included in the dotted rectangle of Figure 1, i.e., event,
hotel and e-commerce.

Semantic Fields have been implemented as a configurable
tool1 (SemFiT) which can be used directly through a Web
Service or Web forms for registered users. The Semantic Field
Tool suitably configured to be employed by the matchmaking
algorithm provides the following methods:
• startSession()

returns an identifier for the user session, which will be
necessary in other methods;

• insertOntology(string ontologyURI , int sessionId)
inserts a new ontology (if not already present) in the
user session. This process includes the calculation of the
mappings and distances among the inserted ontology and
all the ontologies previously inserted. This calculation
implies the use of the framework for ontology matching,
and creating a set of similarity matrixes which contain
the similarity between concepts of pairs of ontologies (a
value between 0 and 1 indicating the probability of two
concepts of being the same semantic concept);

• getOntologies(int sessionId)
returns the ontologies which belong to the user session;

• searchEquivalentConcepts(string concept, string
ontologyURI , float minSimilarity, int sessionId)

taking into account the user Semantic Field (the ontolo-
gies in which he/she is interested in) this method analyses
the similarity matrixes (between pairs of ontologies in
his/her Semantic Field) for finding relationships between
concepts. Concepts with a similarity value greater that
minSimilarity are considered equivalent concepts;

• searchParentsForConcept(string ontologyURI ,
string concept, int sessionId)

1available at http://khaos.uma.es/semanticfields/

searches in the ontology hierarchy for parents of the given
concept, returning a set of vectors with concept, ontology
and similarity value. Since the search of hierarchical
relationships is a time consuming task, the hierarchy is
precalculated from the OWL file by means of the Jena2

parser and stored in an internal database of SemFiT;
• searchChildrenForConcept(string ontologyURI ,

string concept, int sessionId)
searches in the ontology hierarchy for children of the
given concept, returning a set of vectors with concept,
ontology and similarity value. This method makes use of
the pre-calculated hierarchy as well.

B. Computing intra-service dependencies

As described above, an intra-service dependency is a hyper-
edge connecting two sets of nodes, respectively representing
the inputs and the outputs of a service. Yet, a service may
behave in different ways and features different functionalities.
Consider, for instance, a simple service s which inputs a and
produces as output b or c (i.e., a choice process). s can behave
in two different ways, namely, as a service s1 which inputs
a and yields b and as a service s2 which inputs a and yields
c. Hence s exposes two different profiles, which correspond
to the different intra-service dependencies ({a}, {b}, s1) and
({a}, {c}, s2).

The intra-service dependencies of an OWL-S described ser-
vice can be determined by analysing its process model, which
details the complete behaviour of the service. We present next
the recursive function DataDep, initially invoked over the root
composite process of a service s, which determines all the
intra-service dependencies (I, O) of s.
• DataDep(atomic(A)) = {(A.inputs, A.outputs)};
• DataDep(ifThenElse(P1, P2))

= {(I1, O1)|(I1, O1) ∈ DataDep(P1)} ∪
{(I2, O2)|(I2, O2) ∈ DataDep(P2)}

• DataDep(choice(P1, ..., Pk))
=
Sk

i=1 {(I, O)|(I, O) ∈ DataDep(Pi)}
• DataDep(sequence(P1, ..., Pk))

= DataDep(split(P1, ..., Pk))
= DataDep(split+join(P1, ..., Pk))
= DataDep(any-order(P1, ..., Pk))
= {(

Sk
i=1 Ii,

Sk
i=1 Oi)|(Ii, Oi) ∈ DataDep(Pi)}

• DataDep(iterate(P ))
= DataDep(choice(P , sequence(P, P ), ...,

sequence(P, ..., P| {z }
Alt(P )

)))

Before defining Alt(P ), we need to specify some assump-
tions. The proposed algorithm for discovering semantic Web
services works on ontology types. As a consequence, the
algorithm checks whether an output (i.e., a type) can be
produced by some available service, while it does not take
care of how many times such output can be produced. This
assumption allows us to expand the iterate process into a
choice of sequences, where each sequence is a possible iterated
execution of P . Alt(P ), which is defined below, computes how

2http://jena.sourceforge.net/



many times the process P has to be executed in order to yield
all the outputs producible by its atomic process children.
• Alt(atomic(A)) = 1
• Alt(ifThenElse(P1, P2)) = Alt(P1) + Alt(P2)
• Alt(choice(P1, ..., Pn)) = Alt(P1) + ... + Alt(Pn)
• Alt(sequence(P1, ..., Pn)) = Alt(any-order(P1, ..., Pn))

= Alt(split(P1, ..., Pn)) = Alt(split+join(P1, ..., Pn))
= max(Alt(P1), ..., Alt(Pn))

• Alt(iterate(P )) = 0

Let us consider, for example, the HotelService, whose
root is a repeat-until composite process, illustrated
in Figure 2. Alt(chooseOperation) returns two, indeed,
chooseOperation has to be executed twice in order
to yield all the outputs producible by its children. Hence,
DataDep(HotelService) returns three profiles: H1, which
inputs {state, city} and produces {infoHotel},
H2, which inputs {hotel, beginDate, lastDate,
creditCard, contactInformation} and produces
{accomodationFee, hotelInvoice}, and H3, which
inputs {state, city, hotel, beginDate, lastDate,
creditCard, contactInformation} and produces
{infoHotel, accomodationFee, hotelInvoice}.

Note that DataDep is a recursive function and that
if an iterate process has an iterate-typed ances-
tor Q, DataDep first expands Q and then P . That
is why we set Alt(iterate(P )) = 0 in the pseudo-
code above. It is also worth observing that the defini-
tion of DataDep(iterate(P )) is suitable when P has
to be executed at least one (i.e., iterate instantiated as
repeat-until) as well as when P may be skipped (i.e.,
iterate instantiated as repeat-while). In the latter case,
the definition of DataDep(iterate(P )) has to be expanded
by adding a nop branch to the choice among all possible iterate
executions of P .

C. Building the hypergraph

After describing how data and service dependencies are
determined, we can introduce in this subsection the AddSer-
vice function, which updates the hypergraph whenever a new
service s is added to the registry.

Generally speaking, AddService firstly adds to the hyper-
graph the concepts defined in the ontologies employed by s
and next, it draws the hyperedges representing the subCon-
ceptOf relationships, the equivalentConceptOf relationships
and the intra-service dependencies between the newly added
ontology concepts. Note that AddService does not affect
the efficiency of the matching process, as the hypergraph
construction is completely query independent and can be pre-
computed off-line before query time.

The behaviour of AddService can be summarised by the
following pseudo-code, where sessionID is the session num-
ber assigned to AddService by the startSession method of
SemFiT.
1. AddService(hypergraph H = (V, E), service s, int sessionID)
2. forall ontology O /∈ getOntologies(sessionID) referred by s do
3. insertOntology(O, sessionID);
4. forall concept c in O do
5. Add c to V ;

6. forall concept a in searchParentsForConcept(O, c, sessionID) do
7. if a ∈ V then
8. if ∃(D, {a}, nil) ∈ E⊂ then D = D ∪ {c};
9. else Add ({c}, {a}, nil) ∈ E⊂ to E;

10. forall concept b in searchChildrenForConcept(O, c, sessionID) do
11. if b ∈ V then
12. if ∃(D, {c}, nil) ∈ E⊂ then D = D ∪ {b};
13. else Add ({b}, {c}, nil) ∈ E⊂ to E;
14. forall e, similarity in searchEquivalentsForConcept(c, O,
15. minSimilarity, sessionID) do
16. if e ∈ V then
17. Add ({c}, {e}, similarity) ∈ E≡ to E;
18. Add ({e}, {c}, similarity) ∈ E≡ to E;
19. forall pairs (In, On) in DataDep(Root(s)) do
20. Add(In, On, sn) ∈ ES to E;

For each ontology O employed by s (line 2), the AddSer-
vice inserts O (if not already present) into the Semantic Field
identified by sessionID (line 3). Next, for each concept c ∈ O
(line 4), it adds c to the hypergraph (line 5) and determines
the (possibly empty) sets of the parents and children of c
by invoking the searchParentsForConcept and searchChil-
drenForConcept methods of the SemFiT. Then, for each
parent a of c (line 6), AddService adds (if a ∈ V ) a E⊂
hyperedge (c, a, nil) to E (lines 7–9), while for each child
concept b of c (line 10), it inserts (if b ∈ V ) a E⊂ hyperedge
(b, c, nil) to E (lines 11–13). Next, it determines the (possible
empty) set of the equivalent concepts of c by invoking the
searchEquivalentsForConcept method of SemFiT, which
returns those concepts above a given similarity threshold, i.e.,
the minSimilarity parameter. For each equivalent concept e of
c (lines 14–15) AddService adds to E (if e ∈ V ) the two E≡
hyperedges (c, e, similarity) and (e, c, similarity) (lines 16–
18). Note that all the concepts in the ontologies employed by s
will be included in the hypergraph, independently of whether
they directly occur in the specification of (some process in) s.
Finally, AddService inserts to the hypergraph a ES hyperedge
(In, On, sn) for each intra-service dependency returned by
DataDep (namely, for each profile n of s) (lines 19–20).

D. Example

We present next an example which illustrates the behaviour
of the AddService function. Let us consider an empty reg-
istry where we want to add two OWL-S described services:
HotelService, which allows a client to search for and/or to
reserve hotels, and ConferenceService, which allows a client
to register to academic events. Their process models, which
employ three different ontologies (hotel, e-commerce and
event), are shown in Figure 2.

Let us consider first the HotelService. AddService in-
serts to the hypergraph all the concepts defined in the
hotel and e-commerce ontologies (the light gray and
dark gray ellipses in Figure 3) together with the subCon-
ceptOf and the equivalentConceptOf relationships returned by
SemFiT. Note, for example, the subConceptOf relationships
between hotel#city and hotel#physicalLocation,
and between e-commerce#creditCard and e-com-
merce#paymentMethods as well as the equivalentCon-
ceptOf relationships between e-commerce#invoice and
hotel#invoice. At this point, the AddService inserts also
the intra-service dependencies of HotelService computed by



Fig. 2. Process models of the HotelService and ConferenceService.

the DataDep function, i.e., the ES hyperedges H1, H2 and
H3 in Figure 3. Next, also ConferenceService is added to
the registry. AddService inserts to the hypergraph the con-
cepts defined in the event ontology, the subConceptOf and
equivalentConceptOf relationships computed by SemFiT, as
well as the intra-service dependencies of ConferenceService.
The resulting hypergraph is shown in Figure 3.

It is worth observing that some of the equivalentConceptOf
relationships found by SemFiT appear due to the similarity
between the syntax of the compared concepts (e-commer-
ce#invoice – hotel#invoice, hotel#physical-
Location – event#location and hotel#city – ev-
ent#city), while other mappings are the result of apply-
ing searches in wordNet (e.g., event#startDate – ho-
tel#beginDate and event#endDate – hotel#last-
Date). In this last case, the similarity does not derive from di-
rect synonyms in wordNet, but from the tokens that compose
the words. Finally, event#dateTime and hotel#date
are similar because of their syntax and their structure (both
have children that have same similarity).

III. THE DISCOVERY ALGORITHM

The discovery algorithm takes as input a client query
specifying the set of inputs and outputs of the desired service
(composition). As we will describe in Section IV, the formula-
tion of the query is eased by a suitable interface that displays
the available concepts with an expandable tree structure. Next,
the search algorithm explores the hypergraph, by performing
a depth-first visit, in order to discover the (compositions of)
services capable of satisfying the client request.

The discovery algorithm is synthesised by the following
recursive function QuerySolver which inputs five parameters:
the hypergraph H , the client query Q, the set composition
of the services selected so far (initially empty), the set
neededOutput of the outputs to be generated (initially the
query outputs), and the set availableOutput of the outputs
available (initially the query inputs).

In the pseudo-code listed below, Input(s) denotes the inputs
of the service s, that is, the set {i|∃(I,O, s) ∈ ES ∧ i ∈
I} as well as Output(s) denotes the outputs of s, namely

{o|∃(I,O, s) ∈ ES ∧ o ∈ O}. We also remind you that 7→
denotes the extended subConceptOf relationship.

1. QuerySolver(hypergraph H , query Q, set composition,
2. set neededOutput, set availableOutput)
3. if (neededOutput = ∅) then return composition
4. else
5. out = extract(neededOutput);
6. S = {s|out ∈ Output(s) ∨ (∃c ∈ Output(s)|c 7→ out)};
7. if (S = ∅) then fail
8. else
9. forall service s in S do

10. composition′ = composition ∪ {s};
11. availableOutput′ = availableOutput ∪ Output(s);
12. neededOutput′ = {x|x ∈ neededOutput ∪ Input(s)
13. ∧ @a ∈ availableOutput′ :
14. a = x ∨ a 7→ x};
15. QuerySolver(H, Q, composition′,
16. neededOutput′, availableOutput′);

If neededOutput = ∅, i.e., there are no outputs to be
generated, QuerySolver returns the set composition of the
services found (line 3), which satisfies the functional client
query. Otherwise (line 4) QuerySolver withdraws an output
out from the set neededOutput (line 5) and computes the set
S of the services which produce (a sub concept of) out (line 6).
If S is empty, that is, out cannot be generated by any registry-
published service, then QuerySolver fails (line 7) since the
query cannot be fulfilled. Otherwise (line 8) for each service s
which generates (a sub concept of) out (line 9), QuerySolver
adds s to composition (line 10), updates availableOutput by
adding the outputs of s (line 11), and updates neededOutput
by adding the inputs of s and by removing the concepts that
are now available (lines 12–14). Next, QuerySolver continues
recursively (lines 15–16).

The complexity of QuerySolver belongs to the NP space
as it determines all the possible solutions by visiting the hy-
pergraph non-deterministically. We have tested QuerySolver
on a small repository containing ten services only, as there are
few available SWSs on the Web as the SWS area is emerging
now. Anyway, the average reply-time of QuerySolver is 0.2
seconds. We imagine that in the future many SWSs will exist,
thus, we intend to improve efficiency by operating in the
following directions:

• to reduce the large number of services taken into account
by the QuerySolver by introducing a suitable service



Fig. 3. The hypergraph after registering HotelService and ConferenceService.

pre-selection phase (e.g., using UDDI to filter services not
belonging to certain service categories), and by selecting
services which produce a needed output with respect to
some heuristics (e.g., the number and/or on the quality
of the produced outputs) in order to consider the “most
promising” services only.

• to introduce caching and indexing techniques in order to
sensibly decrease the QuerySolver reply-time.

A. Example

Let us continue the example introduced in subsection II-
D. Consider now a client wishing to plan its participation in
an international conference by registering to the conference
and by booking his hotel accomodation, and receiving the
conference and hotel confirmations. The client query may be
composed by the following parameters:
• inputs – hotel#hotel, event#internationalConfe-
rence, e-commerce#creditCard, e-commerce#con-
tactInformation

• output – e-commerce#invoice, e-commerce#regi-
strationReceipt.

As one may note, neither HotelService nor Conference-
Service satisfies the given query by itself. Yet, the query can
be fulfilled by suitably composing the two available services.
QuerySolver takes as parameters the hypergraph depicted in
Figure 3, the query inputs (i.e., availableOutput) and the
query outputs (i.e., neededOutput), while composition is
an empty set. Suppose that QuerySolver withdraws e-com-
merce#invoice from neededOutput. QuerySolver cre-
ates two compositions, represented by the hyperedges {H2}
and {H3} respectively, as the profiles {H2} and {H3} of Ho-
telService both produce hotel#hotelInvoice, which is
a subConceptOf e-commerce#invoice (i.e., the former is
linked to the latter by means of E⊂ and E≡ hyperedges). Con-
sider composition {H2}. QuerySolver adds to neededOutput
hotel#beginDate and hotel#lastDate, since they
do not belong to the query inputs. Suppose that, at its

second invocation, QuerySolver withdraws e-commer-
ce#registrationReceipt from neededOutput, which
is produced by both the profiles C1 and C2 of Conference-
Service. QuerySolver creates then the following composi-
tions: {H2, C1} and {H2, C2}. While the first one fulfills
the query, as all the needed outputs are now available, the
second one fails, as e-commerce#bankAccount cannot
be produced by any registry-published service. When all
instances of QuerySolver terminate, the functional analyser
returns to the client two successful compositions: {H2, C1}
and {H3, C1}.

IV. IMPLEMENTATION

In this section we discuss the implementation of our dis-
covery system, that we named SAM for Service Aggregation
Matchmaking.

Fig. 4. The system architecture.

Figure 4 presents the high-level architecture of SAM.
AddService and QuerySolver are Java applications which
implement the AddService function (Subsection II-C) and
the discovery algorithm (Section III). AddService makes use
of the CMU OWL-S API3 for parsing OWL-S descriptions.

3http://www.daml.ri.cmu.edu/owlsapi/



AddService and QuerySolver both access the database, which
is the local repository where SAM stores service descriptions,
ontologies and the dependency hypergraph (Section II). A
JDBC-ODBC bridge allows the Java applications to access
the repository, implemented as a relational (MS Access, for
this first prototype) database. It is worth noting that we do
not introduce Java classes to represent ontologies, profiles,
concepts and dependencies in order to avoid loading in mem-
ory space-consuming Java objects. Indeed, AddService and
QuerySolver perform ontological reasoning and hypergraph
handling by means of database invocations. As described in
Subsections II-A and II-C, the Java Semantic Field Application
(i.e., SemFiT) supports AddService to process ontologies and
data dependencies.

Finally, we have provided SAM with a suitable Web in-
terface, which allows clients to submit a new service to the
system as well as to query the discovery algorithm. Figure 5
shows a screenshot of the system interface. In its left panel
the interface provides a tree view of the available ontologies
to help the client in specifying its query. The input and output
concepts selected by the client are shown in the query inputs
and query outputs panels on the right part of the interface.
By clicking on the Submit query button, the client queries
the discovery algorithm which returns the result in the bottom
panel of the interface. Moreover, the client can submit a new
service to the system by means of the Submit service button,
after providing the service URL.

AddService and QuerySolver are Java servlets which run on
Apache Tomcat. To develop the Web interface we employed
the Google Web Toolkit, which is a Java development frame-
work that allows to deploy AJAX applications and complex
Web interfaces by using the Java language. Google Web
Toolkit then translates the Java code to browser-compliant
JavaScript and HTML.

Figure 5 catches the Web interface as it appears af-
ter submitting the query described in Subsection III-A. In-
deed, the results panel lists the two successful composi-
tions which satisfy the example query. Note the result syn-
tax [S1(P11 , . . . , P1n1), . . . , Sn(Pn1 , . . . , Pnnn

)] where Si de-
notes the service name and Pi1 , . . . , Pini

denote the atomic
processes of the selected profile of Si.

V. RELATED WORK

The discovery of semantic Web services has been firstly
addressed by Paolucci et al. in [17], where they proposed an
algorithm performing a functionality matching between ser-
vice requests and service advertisements described as DAML-
S (the predecessor of OWL-S) service profiles. Yet, [17] does
not deal with different ontologies, nor it considers service
composition, which instead is the goal of [3], [12], [8].
These approaches discover compositions of OWL-S described
services by operating in the domain of hypergraphs, finite state
automata and interface automata, respectively. However, [3],
[12], [8] do not address the task of crossing ontologies.

In [2] Aversano et al. extended [17] by proposing a
composition-oriented discovery algorithm capable of coping

with different ontologies. Still, the ontology crossing task is
computed at query answering time, hence severely affecting
the efficiency of the discovery algorithm. An efficient match-
ing of semantic Web service capabilities is the goal of [13],
which achieves efficiency by pre-processing the available on-
tologies and by pre-classifying the registry-published services
before query time. Still, [13] does not address the discovery
of service compositions.

Moreover, it is worth mentioning the METEOR-S project
[19], whose objective is the realisation of a framework for
annotating, discovering and composing semantic Web services.
Yet, METEOR-S is a semi-automated approach requiring a
strong participation of the user, which is highly involved in
the process of semi-manually discovering and/or composing
services.

As composing services requires to cope with different
ontologies, several other works have been recently proposed
to address the issues of ontology merging and alignment. For
instance, it is worth mentioning [11], [15], which exploit the
knowledge provided by matching tools that find similarities
between concepts interpreted as lexical entries, [10], which
makes use of classes labels to compare the taxonomies of
two ontologies, and [20], which does not analyse the classes
properties, but takes into account the ontology instances to
related different classes. In order to achieve better results,
SemFiT developed a framework for ontology crossing which
takes advantages of different matching algorithms, as the
combination of simple matchers has demonstrated its viability
in several approaches such as the COMA Framework [9].

VI. CONCLUDING REMARKS

In this paper, we have presented a new fully-automated
matchmaking system for discovering (compositions of) OWL-
S semantic Web services capable of satisfying a given client
request. The proposed system is the first one – at the best
of our knowledge – that addresses three main issues of
the semantic service discovery domain, namely, composition-
oriented discovery, crossing different ontologies and efficiency.
We have also presented a first Web-accessible prototype of our
discovery system.

Our plan for future work includes the development of fresh
indexing and/or ranking techniques (as search engines do
for Web pages) in order to sensibly improve the efficiency
of our system. A second line of our future work is to
enhance our discovery system by employing a behavioural
analyser module, which analyses the behavioural information
advertised in the (OWL-S) service descriptions to determine
whether the candidate services (selected by the functional
analyser) can really be composed together and satisfy the
query without dead-locking, in the line of [5]. Finally, we plan
to extend SemFiT by employing other existing matching tools
to achieve better results for the ontology matching problem.
Our long-term goal is to develop a well-founded methodology
to support an efficient and fully-automated discovery and
composition of Web services.



Fig. 5. The Web interface of SAM.
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