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ABSTRACT
A single relevant document can be viewed as a long query for ad
hoc retrieval, or a tiny training set for supervised learning. We
tested techniques for QBD (query by document), with an eye to-
ward their eventual use in active learning of text classifiers in a legal
context. Richness (prevalence of relevant documents) varies widely
in our tasks of interest. We used 658 categories from the RCV1-v2
collection to study the impact of richness on QBD variants sup-
ported by Elasticsearch. BM25 weighting on full query documents
dominated other methods. However, its absolute and relative effec-
tiveness depended strongly on richness, raising broader questions
about common test collection practices. We ported Elasticsearch’s
version of BM25 to the machine learning package scikit-learn and
we discuss some lessons learned about the replicability of retrieval
results.

KEYWORDS
ranked retrieval, text classification, prototype classifiers, nearest
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1 INTRODUCTION
Having a relevant item in hand, and desiring to find others, is a
common information access task. A Query By Document (QBD)
functionality, sometimes referred to as More Like This, Related
Documents, Similar Documents, or Recommendations is common
in both standalone search software and as search functionality in
other applications [21].

Our interest in QBD, however, comes from another direction. In
legal applications such as electronic discovery and corporate inves-
tigations, active learning [26] is used for both supervised learning of
text classifiers and formachine learning-supported interactive anno-
tation of datasets (finite population annotation or FPA) [5, 6, 9, 48].
Iterative relevance feedback (training on top-ranked documents)
[40] is the most widely used version of active learning. This holds
particularly for FPA in the law, where iterative relevance feedback
is sometimes known as Continuous Active Learning or CAL1 [10].
1Grossman and Cormack have filed trademark applications for these terms.
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When, as is common, the first training batch consists only of
a single positive example, many supervised learning algorithms
either have trivial behavior (memorizing the example) or fail com-
pletely. While the second and later rounds of iterative training may
compensate for inadequacies in the first round, this will not happen
if a dissatisfied user abandons the process after seeing the first
round ranking. QBD provides a plausible alternative to supervised
learning on the first round.

One challenge in our applications of interest, however, is rich-
ness, i.e., the proportion of responsive documents in the collection.
For electronic discovery in litigation contexts, richness for respon-
sive documents routinely ranges from 50% or more, to well below
1%. For investigatory searches (such as for insider threats, sexual
harrassment, or fraud) richness can be arbitrarily low. Yet there has
been no systematic research into the impact of richness on QBD,
and rather little on ad retrieval. This paper addresses that gap.

2 PRIORWORK
Query By Example (QBE) capabilities have been explored for a
range of data types, including text (see below), database records
[52], voice [25], music [12], images [30], and video [23]. We use
the term Query By Document (QBD) in discussing QBE where the
query is an entire document [49].

Early work on QBD for text treated it as relevance feedback
[1, 46]. QBD is more difficult, however, since relevance feedback
has available both a query and at least one sample document [49].
The query terms provide both additional content and a form of
regularization, which is particularly critical with small training sets
[33]. QBD is likewise more difficult than ad hoc retrieval. Even
when consisting of user-selected terms, verbose queries typically
provide poorer effectiveness than shorter ones [7, 16]. QBD involves
not just verbose queries, but ones that have not benefited from user
term selection.

We distinguish QBD from near-duplicate detection [8], plagia-
rism detection [29], and related tasks. While some of the same
techniques are used, in QBD the goal is retrieval of documents
with related meaning, not just documents that have an edit-based
historical connection.

The largest body of QBD research is in evaluation campaigns for
the patent domain. Both patent applications and patent documents
are used as queries to search patents, technical articles, and portions
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thereof [13, 31, 34, 44]. This literature almost uniformly assumes
that query reformulation (particularly query reduction by dropping
most terms) is necessary [44]. The same assumption is found in
most non-patent QBD work [49].

Only a few studies used full documents, or at least sections, as
queries [14, 47]. Of these, only one, to our knowledge, compared
basic retrieval models, finding BM25 dominated other methods [14].
Query reduction has obvious benefits for efficiency in querying an
inverted file retrieval system. However, no such efficiency benefit
exists with typical machine learning software architectures, moti-
vating us to look at full document querying more systematically.

3 RICHNESS, RETRIEVAL, AND QBD
Past research on ad hoc retrieval, including QBD, has in two ways
assumed a narrow range of richness values.

First, many ad hoc retrieval algorithms make modeling assump-
tions that imply low richness. Probabilistic retrieval methods, in-
cluding BM25, derive inverse document frequency (IDF) weights
from the assumption that the collection contains no relevant docu-
ments [11, 35, 36]. Many language modeling retrieval approaches
treat a query as generated by single draw from a mixture distribu-
tion over documents [51]. This is equivalent to assuming that there
is a single relevant document in the collection.

Second, a narrow range of richness values is usually imposed
in test collection construction. Queries with too low or too high
richness are typically discarded, and no more than a few thousand
documents are assessed for queries [18]. Richness of documents
coded relevant is thus forced to fall in a narrow range, while the
actual richness with respect to the simulated user need typically
remains unknown. The patent collections used in QBD studies have
a similar problem, given their use of patent citations (which are
deliberatedly bounded and incomplete) as ground truth.

The one exception is test collections produced for research on
electronic discovery in the law. Some of these collections have pur-
portedly complete relevance judgments [15] or stratified samples
that allow rough estimates of richness [22]. Further some topics
have relatively high richness. The number of such topics in these
collections is quite small, however, and no studies of the impact of
richness in these collections has been made.

The situation is very different in supervised learning. Commonly
available test data sets for machine learning vary widely in class
imbalance (richness in the binary case), and the impact of class
imbalance on classification has been the subject of much research
[20, 24]. The impact of class imbalance on common supervised
learning algorithms is despite the fact that most of these methods
treat the two classes (in a binary problem) symmetrically. Onemight
expect the degree of class imbalance, i.e. richness, to have an even
stronger effect on ad hoc retrieval methods since these methods do
make assumptions about richness and asymmetry.

The possible importance of richness was anticipated in some
very early work on ad hoc retrieval. Salton studied the impact of
generality (what we call richness here) on precision, finding that
precision decreased with generality [41, 42]. These results, how-
ever, were based on either (a) comparing different collections of
documents, or (b) altering the definition of relevance (e.g. number
of agreeing assesors) on a single collection. Both these approaches

introduce conflating factors that make interpreting Salton’s results
unclear. Further, the collections used were tiny by modern stan-
dards (at most 1400 documents), and richness variations were not
large (at most a factor of 7). Lewis and Tong drew on Salton’s results
in studying the impact of text classification components on infor-
mation extraction systems, but did not examine ad hoc retrieval
[27].

As a terminological matter, Robertson defined "generality" to
have the same meaning we give "richness" here [37]. The term
generality, however, has been used ambiguously in the information
retrieval literature, however, and is more commonly used to refer
to breadth of meaning. We therefore use the term richness, which
has emerged in e-discovery.

4 METHODS
Our interests in QBD, the impact of richness, and in adapting ad
hoc retrieval methods for supervised learning were reflected in our
methodological choices.

4.1 Dataset
Our experiments used the RCV1-v2 text categorization test collec-
tion [28]. The collection contains 804,414 documents that have been
completely assessed for 823 categories from three groups (Topics,
Industries, and Regions). We used the 658 categories with 25 or
more relevant documents.

As QBD queries for each category, we selected 25 documents by
simple random sampling from that category’s positive examples.
The definition of relevance for each query was membership in the
category, and thus richness was simply the proportion of the collec-
tion labeled with that category. Document vectors were prepared
using the original XML version of each document2. We extracted
text from the title, headline, dateline, and text subelements, concate-
nating them (separated by whitespace) for input to tokenization
(discussed below).

No stop words, stemming, phrase formation, or other linguistic
preprocessing was used. This reflected our interest in applying QBD
techniques in machine learning systems that may not include a
broad range of text analysis options.

4.2 Software
We present ad hoc retrieval results produced using two open source
software packages. One was Elasticsearch, a distributed search
engine built on top of Lucene. We used version 6.2.2 which incor-
porates Lucene 7.2.1. Our second set of results was produced using
version 0.19.1 of scikit-learn, an open source package for machine
learning, along with our modifications to that code.

Some care was required to compare results from these two sys-
tems. Supervised learning software is designed to apply a model to
every object of interest (documents for us). Every documents gets
a score, but the system is silent on ranking and tiebreaking. Search
software, on the other hand, guarantees a ranking (total order) for
retrieved documents, using implicit tiebreaking when scores are
tied. However, only a subset of documents may get scores, and even
fewer may be retrieved and ranked.

2http://trec.nist.gov/data/reuters/reuters.html
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To allow comparison, we forced Elasticsearch to retrieve all
documents that had any term in common with a query, by setting
the index.max_result_window to a number that is larger than the
size of collection. We output the resulting scores and document IDs,
then assigned a score of 0 to all unretrieved documents. For scikit-
learn, we took the dot product of each document vector with the
query vector, thus producing a score (possibly 0) for each document.
Then for both Elasticsearch and scikit-learn runs, all documents
were sorted on score, with ties broken using the MD5 hash of the
document ID. Elasticsearch’s implicit tiebreaking was not used. The
total orderings were input to our evaluation routines.

Experiment framework and scripts are published on Github3 for
replicability.

4.3 Evaluation
A single run applied an ad hoc retrieval algorithm on a QBD query
to produce a total ordering of the collection. Since the query itself
is a document in the collection, we used residual collection evalu-
ation [17], omitting the query document from the ranking before
evaluation. Thus each query is evaluated on a collection of 804,413
documents from which only itself is omitted.

We chose residual precision@ rank k (P@k), for values of k from
1 to 20, as the primary effectiveness measure. This reflects the use of
QBD in interactive systems, including iterative relevance feeedback
approaches to active learning, where the top of the ranking is of
primary concern. We also computed residual R-precision, i.e., P@k
where k is one less than the number of relevant documents for that
category. The latter measures the ability of a method to achieve
high recall with QBD.

Our interest was less in any particular query document, than
in the overall difficulty of QBD on that category. Therefore, for
each value of k, we averaged the P@k values across the 25 query
documents for each category to get a category-level average.

Then to summarize the impact of richness on effectiveness, we
further took the mean of category-level average effectiveness across
groups of categories with similar richness. These richness bins were
formed by rounding the logarithm (base 2) of richness to the nearest
integer, and grouping together all categories that rounded to the
same integer. The frequencies of our categories ranged from 0.465
(bin number -1) to our enforced lower cutoff of 25/804414 = 0.00003
(bin number -15). To ensure a minimum of 50 categories per bin,
bins -1 to -6 were combined into a single bin, as were bins -14 and
-15.

5 ELASTICSEARCH EXPERIMENTS
Elasticsearch is widely used, open source, and provides explicit
support for QBD. It was therefore a natural choice for our first
experiments.

5.1 Retrieval Methods
Elasticsearch supports QBD through its More Like This (MLT) op-
tion. MLT converts a query document to a disjunctive (OR) query
using (by default) up to 25 terms from the query document. Also
by default, a term must occur at least twice in the query document
to be selected, and must occur in at least five documents in the
3https://github.com/eugene-yang/DESIRES18-QBD-Experiments

USA: U.S. weekly cash lumber review - April 4.
U.S. weekly cash lumber review - April 4.
Random Lengths Gross List Cash Lumber Prices Quotes: (2x4
Std&Btr) WEEKLY MIDWEEK PREV WK YR AGO Inland
Hem-Fir 450 440 435 - Southern Pine Westside 470 470 470 -
Western Spruce-Pine-Fir 390 383 372 - Framing Lumber
Composite 441 - 432 354 COMMENT - Trading started the
week on a fairly active note and then picked up steam when
it became clear there was no Canadian "wall of wood"
waiting to cross the border at the start of a new quota
shipments year on April 1, Random Lengths said. Prices
slanted upward, with momentum gaining toward week’s end.
Apart from a nasty snowstorm in the Northeast, improving
weather across the country boosted outbound shipments
from dealer yards. Many buyers expressed surprise, and a
little frustration, with how quickly mills cleaned up floor
stock and extended order files to mid-April or beyond. While
dealers stuck mostly to highly specified truckload purchases,
wholesalers and distributors showed more willingness to own
wood. Secondaries who took small long positions turned
them fairly quickly as some dealers scrambled to cover needs
they had delayed purchasing earlier. The need for stock put a
premium on prompt shipments, favoring distribution yards
and reloads. ...

Figure 1: A Portion of a Sample Query Document

collection (including the query document). Terms that satisfy these
criteria are ranked by TFxIDF value (see description of vector space
retrieval below) and by default the top 25 are selected. We retained
all default settings in our experiments.

For comparison, we also formed disjunctive queries from query
documents by taking the OR of all terms in the query, and executed
those queries using the Simple Query String (SQS) option. The
only difference between the MLT and SQS runs were that the SQS
runs used all terms in the query document, while MLT runs uses
a subset of those terms. Figure 1 shows of a portion of one RCV1-
v2 document. The corresponding full document retrieves 803,940
documents when a disjunctive query is formed from all terms, but
only 204 documents when MLT is used to produce a reduced query.

MLT and SQS queries both support ranking the retrieved docu-
ments using any of several ad hoc retrieval methods. We tried one
version each of Okapi BM25 probabilistic retrieval [38, 39], vector
space retrieval [43], and language model based retrieval [45, 50, 51].

For BM25 a document is a vector of saturated TF weights pro-
duced by a function that incorporates document length normal-
ization [36]. We used the default Elasticsearch values of b=0.75
and k1=1.2 for the BM25 parameters. A BM25 query is a vector
of probabilistic-style IDF weights, optionally multiplied by within
query weights [36]. Elasticsearch uses raw query term frequency
weighting by default and we retained that.

For VSM retrieval, document vectors are produced by multiply-
ing a TF (within document term frequency) component and an
IDF component for each term, and then normalizing for document
length. We used raw term frequency, the smoothed IDF version
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provided by Elasticsearch (Section 6.2), and L2 document length
normalization. L2 normalization (also known as cosine normaliza-
tion in information retrieval) divides the TFxIDF weights by the
square root of the sum of their squares, giving a Euclidean (L2)
norm of 1.0 for all document vectors. This is the classic retrieval
model in Elasticsearch.

For LM based retrieval we used Dirichlet smoothing with µ =
2000, the default value from Elasticsearch.4

5.2 Results and Discussion
Table 1 shows the macroaveraged P@5 and R-Precision values for
the retrieval models and query variants in Elasticsearch.

For every richness bin and retrieval model, queries based on a
subset of terms (Elasticsearch MLT) were no better (and usually
worse) than using all terms from the QBD document in the query.
This contradicts assumptions in the QBD literature that query re-
duction is critical for good effectiveness. Admittedly, the query
reduction method implemented in Elasticsearch is less sophisti-
cated than some proposed in the research literature, and may be
motivated more by its impact on efficiency than on effectiveness.
That said, Elasticsearch is widely used, often with defaults unexam-
ined and unchanged.

Both VSMand LM retrieval are based on a notions of query/document
similarity, with the latter treating documents as probability distribu-
tions from which the query might be generated. A view of retrieval
as similarity might seem natural for QBD, and even more so in our
simulated setting where query documents are selected at random
rather than by a user with intention.

It is notable, therefore, that Elasticsearch’s BM25 default model
dominates its VSM and LM default models for almost all richness
conditions and both query forms. There have been numerous pub-
lished language model variants, and it is plausible that one would
do better than BM25 on our dataset, and on QBD in general. But our
results, at least, cut against simplistic notions that QBD is simply
similarity matching.

Our most striking result was the sharp, nearly monotonic decline
in absolute effectiveness with declining richness for all retrieval
models and both query types. The monotonic decrease in effective-
ness appears not only for the recall-oriented R-precision metric,
but even for P@5 (and all choices of P@k for k = 1 to 20).

Figure 2 shows a scatter plot of richness vs P@20 for BM25
similarity using the full disjunctive (SQS) query on all 658 cate-
gories. The plot shows the strong correlation between richness
and effectiveness, though also a substantial category-to-category
variation.

The Pearson (linear) correlation between the base 2 logarithm of
richness and residual P@20 is 0.58.5 For comparison, the maximum
Pearson correlation of 22 query effectiveness prediction methods
studied by Hauff, Hiemstra, and de Jong was 0.52 across a set of
datasets [19]. Richness with respect to a query is of course not
known in operational settings, so richness is not a practical pre-
retrieval effectiveness prediction cue. What this comparison does

4https://www.elastic.co/blog/language-models-in-elasticsearch
5We used P@20 instead of P@5 for increased granularity in the figure, but correlations
are similar at all depths.

Figure 2: Relationship between category richness and mean
(over 25 QBD queries) of Precision@20 for 658 RCV1 cate-
gories. Retrieval uses a disjunction over all terms in a query
document with ranking by Elasticsearch’s implementation
of the BM25 retrieval model. Pearson correlation is r = 0.58.

show is the power of richness as a confounding factor in study-
ing effectiveness, compared to other query characteristics that are
commonly viewed as important.

Most IR researchers and practitioners would agree that low rich-
ness makes retrieval more difficult. Yet, the routine success of web
search engines at very low richness tasks has perhaps led to a cer-
tain complacency. It is notable that overviews of the TREC HARD
track (which focused on retrieval for difficult ad hoc queries) do not
even mention richness as a contributor to low effectiveness[2–4].

Richness also affects relative effectiveness, though less strongly.
The rank ordering of the six methods is largely the same across
richness bins. However, the relative difference between the best
and worst P@5 scores for the six methods increases from 6% for
the highest richness bin to 15% for the lowest richness bin. Thus,
as richness decreases the choice of retrieval method becomes more
consequential. This has obvious implications for trading off cost
versus complexity in operational systems.

We focused on P@5 in our analysis to reflect our interest in QBD
for interactive interfaces. Five documents is close to the maximum
within which a user can immediately perceive the presence of
relevant documents. The P@k results for all depths from 1 to 20
follow a similar pattern, however, with relative differences being
more stable across richness bins as k increases. The R-precision
results, which correspond to P@k for k equal to the number of
documents, are a limiting case.
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Table 1: QBD effectiveness for 6 adhoc retrieval variants. Effectiveness was averaged first across
25 random QBD queries per category, and then across categories falling in the same richness bin.
Binning was on a logarithmic (base 2) scale, from 2−6 (and above) to 2−14 (and below).

Richness Bin and Number of Categories in Bin
≥ -6 -7 -8 -9 -10 -11 -12 -13 ≤ -14

Query Model 86 54 78 70 90 81 85 59 55

Pr
ec
is
io
n
@

5

MLT BM25 0.81 0.67 0.66 0.60 0.58 0.52 0.47 0.47 0.35
MLT LM 0.77 0.63 0.62 0.56 0.54 0.49 0.44 0.45 0.33
MLT VSM 0.80 0.63 0.63 0.58 0.55 0.50 0.43 0.45 0.31
SQS BM25 0.81 0.67 0.67 0.61 0.61 0.54 0.50 0.50 0.37
SQS LM 0.78 0.64 0.64 0.58 0.58 0.51 0.47 0.47 0.35
SQS VSM 0.80 0.65 0.66 0.60 0.58 0.53 0.48 0.48 0.35

R-
Pr
ec
is
io
n

MLT BM25 0.28 0.18 0.19 0.17 0.14 0.14 0.12 0.16 0.15
MLT LM 0.26 0.16 0.18 0.16 0.14 0.14 0.12 0.16 0.14
MLT VSM 0.26 0.15 0.17 0.16 0.13 0.13 0.11 0.15 0.13
SQS BM25 0.31 0.18 0.20 0.18 0.14 0.14 0.13 0.17 0.16
SQS LM 0.29 0.17 0.18 0.17 0.15 0.14 0.13 0.17 0.14
SQS VSM 0.31 0.16 0.18 0.18 0.15 0.14 0.13 0.16 0.15

Are the differences discussed here statistically significant? Claims
of statistical significance in ad hoc retrieval experiments are typ-
ically based on the problematic assumption that the queries in a
test collection are a random sample from some population. Outside
of query log studies, this is always false. It is particularly false for
the RCV1-v2 categories, which are part of a single indexing system.
Thus, despite the fact that each value in Table 1 is based on more
than 1000 data points, we eschew such claims. We believe convinc-
ing evidence for analyses such as ours requires replication across
different datasets and different experiment designs.

5.3 Comparison with LYRL2004 Results
The 2004 paper by Lewis, Yang, Rose, and Li introducing the RCV1-
v2 collection includes graphs showing that text classification ef-
fectiveness generally increases with increasing category richness
[28]. That analysis, however, was based on classifiers produced
by applying supervised learning to a training set of 23,149 docu-
ments. Category richness strongly affected the number of positive
examples present for a given category within that fixed training
set.

Thus the RCV1-v2 results conflated the quality of the training
data available for a category with the difficulty of the classification
task for that category. In contrast, our results are based on making
exactly the same amount of data (one positive document) available
for each run on each category.

The impact of richness was also obscured in the RCV1-v2 paper
by its focus on binary text classifiers evaluated by F1 (harmonic
mean of recall and precision). For categories with high richness,
large values of F1 can be achieved simply by classifying all test
examples as positive. For RCV1-v2, the highest richness category
would get an F1 score of 0.635 under this strategy [28]. Even random
classification of documents will produce a nontrivial value of F1
for high richness categories. This lower bounding of effectiveness

for trivial approaches reflects the fact that richness is, for practical
purposes, a floor on precision [37, 42].

Our experimental design was not immune to this generality
effect [42], but minimized it to the extent possible. We ensured
that effectiveness values in the full range from 0.0 to 1.0 were
logically possible for all queries, categories, and measures. Thus
neither absolute nor relative effects of richness result from ceiling or
floor effects. Our use of ranking-based effectiveness measure means
there is no analogue to a trivial system that treats all examples as
relevant. For the highest frequency category, a trivial system that
randomly ordered documents would have an expected precision of
0.465 for the most frequent category. However, for most categories
the expected precision of such a system would be well below 0.01.

6 REIMPLEMENTATION IN SCIKIT-LEARN
A major impetus for our work is the hope of using QBD meth-
ods to improve first round effectiveness for active learning of text
classifiers. As a first step, we reimplemented Elasticsearch’s BM25
variant in scikit-learn, a machine learning toolkit.

We first created a matrix of raw term frequency values using
CountVectorizer from scikit-learn6. We then extended an existing
BM25 implementation7 and created BM25 query and document
vectors intended to be identical to those from Elasticsearch.

The first two lines of Table 2 compare the Elasticsearch BM25
results using all query document terms to those from our first scikit-
learn implementation. To our surprse, the Elasticsearch results were
notably different, and often better.

6http://scikit-learn.org/stable/modules/generated/
sklearn.feature_extraction.text.CountVectorizer.html
7 https://github.com/scikit-learn/scikit-learn/pull/6973
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Table 2: Compring effectiveness of Elasticsearch’s BM25 retrieval on full document queries versus a
converging set of implementations in scikit-learn. Effectiveness computed as in Table 1.

Richness Bin and Number of Categories in Bin
≥ -6 -7 -8 -9 -10 -11 -12 -13 ≤ -14

86 54 78 70 90 81 85 59 55

Pr
ec
is
io
n
@

5

Elasticsearch: Simple Query String 0.81 0.67 0.67 0.61 0.61 0.54 0.50 0.50 0.37
Original Result: With IDF and Raw QTF 0.81 0.67 0.69 0.63 0.58 0.53 0.48 0.46 0.36
Same Param. 0.81 0.67 0.67 0.60 0.59 0.53 0.48 0.48 0.35
Same Param. + Sklearn IDF Smoothing 0.81 0.67 0.67 0.60 0.59 0.53 0.48 0.48 0.35
Same Param. + ES IDF Smoothing 0.81 0.68 0.68 0.61 0.61 0.54 0.50 0.50 0.37
Same Param. + ES IDF Smoothing + Token 0.81 0.68 0.68 0.61 0.61 0.55 0.50 0.50 0.37

R-
Pr
ec
is
io
n

Elasticsearch: Simple Query String 0.31 0.18 0.20 0.18 0.14 0.14 0.13 0.17 0.16
Original Result: With IDF and Raw QTF 0.30 0.17 0.18 0.18 0.14 0.14 0.12 0.15 0.15
Same Param. 0.30 0.16 0.17 0.17 0.14 0.13 0.12 0.16 0.14
Same Param. + Sklearn IDF Smoothing 0.30 0.16 0.17 0.17 0.14 0.13 0.12 0.16 0.14
Same Param. + ES IDF Smoothing 0.32 0.18 0.19 0.18 0.15 0.15 0.14 0.17 0.16
Same Param. + ES IDF Smoothing + Token 0.32 0.18 0.19 0.18 0.15 0.15 0.13 0.17 0.16

6.1 Parameters
We noticed that Elasticsearch used b=0.75 and k1=1.2 for as their
defaults, but b=0.75 and k1=2.0 were defaults in the BM25 imple-
mentation we built on. We changed our values in scikit-learn to the
the Elasticsearch ones, with results shown in the row marked with
“Same Param.”. Our results were closer to those of Elasticsearch
in most richness bins, but diverged slightly more in the lowest
richness bin.

6.2 IDF
The standard definition of IDF weighting [36] is:

log
N

nj

where N is the number of documents in the collection, and nj is
the number of documents that term j occurs in. Logarithms base 2,
e , and 10 are all commonly used with IDF, with the choice having
no effect in typical TFxIDF term weighting applications.

The scikit-learn BM25 implementation that served as the start-
ing point for our scikit-learn work used scikit-learn’s built-in IDF
weighting, which is controlled by the boolean flag -smooth_idf.8
Our original scikit-learn BM25 had IDF smoothing turned off. We
tried a run (row: “Same Param. + Sklearn IDF Smoothing”) with
IDF smoothing turned on, and the results were closer to but not
identical to those of Elasticsearch.

Disabling -smooth_idf in scikit-learn uses this version of IDF:

1 + ln
N

nj

while enabling the option uses this version:

1 + ln
N + 1
nj + 1

8http://scikit-learn.org/stable/modules/generated/
sklearn.feature_extraction.text.TfidfVectorizer.html

Neither of these is the standard definition of IDF weighting. Nor
is either what the above scikit-learn documentation states is the
"textbook" definition:

log
N

nj + 1

in what appears to be a typographical error.
Elasticsearch implements yet a fifth version, the one suggested

by the probabilistic derivation of BM25 [36]:

ln
N − nj + 0.5
nj + 0.5

We added this variant to our scikit-learn implementation, and
got the results shown in row Same Param. + ES IDF Smoothing.

6.3 Tokenization
At this point we had very similar effectiveness from the two im-
plementations, but decided to shoot for an exact replication. The
tokenizer in scikit-learn separates a character string into words at
boundaries between Unicode word and non-word characters by
applying regular expressions. Elaticsearch tokenizes text by apply-
ing the Unicode Text Segmentation algorithm specified in Unicode
Standard Annex #299.

We therefore extracted the tokens and raw TF values for each
document from Elasticsearch via the Term Vector API. We used this
data to create a raw TF matrix in scikit-learn, and created BM25
query and document vectors as above. Surprisingly, the results,
marked “Same Param. + ES IDF Smoothing + Token”, still differed
slightly from the Elasticsearch results.

6.4 Document Length
At this point we had identical raw TF vectors and identical weight-
ing formulas. Yet when we examined individual document scores

9http://unicode.org/reports/tr29/
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from corresponding runs, many were slightly different. Using Elas-
ticsearch’s explain API10 uncovered the difference.

Elasticsearch inherits from Lucene a lossy compression of docu-
ment lengths11. All document lengths from 0 to 2,013,265,944 are
compressed into 7 bits using a coding table12. Elasticsearch’s BM25
implementation uses these approximate lengths. We verified for
individual documents that correcting for this removes the last differ-
ence between the Elasticsearch and scikit-learn scores. (We chose
not to implement this quirky scheme in our scikit-learn code.)

7 FUTUREWORK
Querying with documents lives intriguingly at the intersection of
ad hoc retrieval and supervised learning. Our results suggest that
QBD using ad hoc retrieval workhorse BM25 is a solid approach.
BM25 can be viewed as Naive Bayes combined with negative blind
feedback [36]; so our results reinforce the usefulness of generative
models with tiny training sets [32]. We plan next to compare the
downstream effects on active learning of using BM25 on the first
round and to test schemes for transitioning from BM25 to discrim-
inative supervised learning when enough training data has been
accumulated. The fact that Naive Bayes and logistic regression can
be viewed as, respectively, generative and discriminative variants
of the same model [32] may provide useful for this purpose.

The strong impact of richness on absolute and relative effec-
tiveness is intriguing and cries out for study on multiple datasets.
Immediate questions are 1) whether the effect is an artifact of using
random examples as simulated QBD queries or of using text cate-
gorization topics as simulated user interests; 2) whether it carries
beyond QBD to ad hoc retrieval with short queries; and 3) whether
it is a function of simple frequency, topical generality, or both. Some
of these factors can be explored with existing datasets, but others
may require new test collection work.

8 CONCLUSION
Our interest in QBD was sparked by the problem of supervised
learning on tiny training sets. However, using a document as a
query is also a widely supported information access tool and, to our
mind, an understudied one. BM25 weighting turns out to be an effec-
tive approach, and its origins in supervised learning (naive Bayes)
suggest interesting approaches for kicking off active learning.

The assumption in the QBD literature that query pruning is
crucial was not borne out by our work. Indeed, taken literally,
pruning cannot actually be necessary. One can always achieve the
same effect by sufficiently small weights, and this perhaps is a
more natural perspective in supervised learning contexts. To the
extent that pruning is desirable for efficiency reasons in inverted
file retrieval, this perhaps should be treated as a query optimization
issue, not a modeling one.

The efforts required to replicate the results of an open source
search engine using an open source machine learning toolkit was a
reminder of the range of factors that impact the effectiveness of text
processing systems. Our experience provides yet more evidence

10https://www.elastic.co/guide/en/elasticsearch/reference/current/search-
explain.html
11https://github.com/elastic/elasticsearch/issues/24620
12https://issues.apache.org/jira/browse/LUCENE-7730

that care is needed in interpreting small differences in published
retrieval results, and that ongoing attention is needed to replicability
in IR research.

Finally, the overwhelming impact of richness on effectiveness
in our experiments was both intriguing and unsettling. Suppose
such an effect were to hold not just for our simulation using a text
categorization data set, but also for widely used ad hoc retrieval
test collections. This would raise the possibility that the outcomes
of many past experiments on ad hoc retrieval were predestined by
test collection design choices.

Further, we would have no way to tell if this were true. With
the exception of some work in e-discovery, all major public test
collections have at least partially decoupled true richness for ac-
tual topical richness, and left topical richness unknown and not
measurable after the fact. We suggest that organizers of future IR
evaluations consider explicit control and measurement of richness
in test collection creation.
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