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ABSTRACT
In this paper we study and compare several approaches to detect
floods and evidence for passability of roads by conventional means
in Twitter. We focus on tweets containing both visual information (a
picture shared by the user) and metadata, a combination of text and
related extra information intrinsic to the Twitter API. This work
has been done in the context of the MediaEval 2018 Multimedia
Satellite Task.

1 INTRODUCTION
Social media are becoming, year by year, ever more popular and
used for sharing people daily activities. This massive adoption
brought to a large availability of contents, such as texts and pictures,
in the most varied sectors, making the social media a great source of
information. The large availability of data is precious for extracting
knowledge and it lays the basis for several applications. One of
them falls in the context of emergency management related to
natural disasters, in which computer vision and machine learning
techniques are investigated [2, 3, 11, 16] to extract key information
and help first responders in their activities.

In this work we focus on analyzing social media posts in order to
extract valuable information about roads affected by flood. In more
detail, we propose a multi-modal deep learning network which pro-
cesses flood-related social media pictures and related metadata (e.g.,
Twitter, Flickr, YFCC100M), both to provide (a) evidence of roads
and (b) whether they are also passable. The approach presented in
this paper takes his inspiration (and it wants to be an extension)
from the work [10] proposed in the MediaEval challenge held in
2017.

2 RELATEDWORKS
Recent literature approaches leverage on satellite [8, 12, 15] or
ground acquisitions [5] to identify flood events. Other works focus
more on urban elements detection such as roads [6, 9]. To the best
of our knowledge there are no existing works to determine road
passability evidence during flood events.

3 DATA
The dataset used in this work was distributed by MediaEval 2018
Multimedia Satellite Task [1, 4]. It consists of 5820 Twitter images
with its related metadata, from which ∼36% of the images present
flooded regions with evidence of roads. Only the images belonging
to the earlier class are considered for the second task evaluation:
among them, the ∼45% present passable roads. Furthermore, for
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each image, metadata is available. Metadata is a set of informa-
tion concerning the tweet itself and the user who wrote it. For
instance, the text message and the respective language, the number
of retweets and likes, the number of replies, the coordinates (and
whether it is geo-located) and the user’s followers number are only
a subset of properties associated to a tweet.

4 APPROACH
To properly deal with heterogeneous data, we opted for a "divide-
et-impera" approach: we created a model for each kind of data.
In detail we developed: (i) a classification model using only the
metadata information, (ii) three classification models using only
the images, (iii) a model which combines the metadata and the
visual information. In this section we will briefly describe the three
different systems.

4.1 Metadata only
We processed metadata (i) filtering out properties not available
in the whole dataset, (ii) studying the correlation among the re-
maining ones and selecting the most relevant ones. As a result
we kept the text written by the user, the language in which the
tweet was originally written, the number of retweets and the num-
ber of persons who had favourited the tweet. As a pre-processing
step we have translated all texts to English, removed emojis, urls
and special characters; then we used lemmatization and tokeniza-
tion techniques. We represented the text features using a word
embedding initialized with Glove [7]. After that, we normalized
between 0 and 1 the number of retweets and the number of times
the tweet was favourited. Then, we binarized the original language
information by assigning 0 to English and 1 to any other language.
Finally, we defined a neural network composed by a bidirectional
Long Short-Term Memory (LSTM) network. The result of the LSTM
has been concatenated to the normalized extra fields and passed
through a two parallel fully-connected (FC) layers with a softmax
classifier, one per task.
Both tasks have been trained in parallel. Initially, we set all the
images which had no evidence of flood as having no passability
issues either. However, this strategy introduced a big imbalance
to an already imbalanced dataset which made the training more
difficult, so we finally decided to use only the images containing
evidence of flood to train the passability classifier, while still doing
the training in parallel.

4.2 Visual Information only
As a pre-processing step for the images we applied several data
augmentation techniques: image rotation, width and height shifts,
horizontal flip and zoom. We designed two different systems to
process the images, which we will compare.
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Table 1: F-Score (%) evaluated on the test set for the two sub-tasks. Firstly, it is computed on a subset of 50 tweets from the
training set and manually annotated by 4 persons. Then, it is computed on the test set for each developed approach: Metadata-
only Approach (MA), Visual Approach 1 (VA1, Double-Ended Classifier with Compact Loss), Visual Approach 2 (VA2, Network
Stacking with average aggregation), Visual Approach 3 (VA3, Network Stacking with average and voting aggregation).

Approach \ Data EVIDENCE [%] PASSABILITY [%]
Metadata Images Meta + Imgs Metadata Images Meta + Imgs

Human annotation 51.48 87.32 - 18.18 47.71 -
Metadata only [MA] 43.88 - - 19.3 - -

Image only [VA1, VA2, VA3] - 85.6 86.43 87.79 - - 24.09 67.13 68.38 -
Metadata and Image [VA1+MA] - - 83.12 - - 28.34

Double-ended classifier with compact loss: We used the In-
ception V3 [14] network pre-trained on ImageNet with two FC
layers and a softmax classifier at the end. Each end of the network
was trained for each task. These tasks can be subsumed as two
separate One-class classification problems, in which the single class
is the flood event for the first case, its passability condition for the
second one. We took inspiration from [13] and we customized the
InceptionV3 optimization function, as: д̂ = maxд D(д(t))+λC(д(t)),
where: (a) д is the deep feature representation for the training data
t , (b) λ is a positive constant, (c) D is the Descriptive loss function
(within this approach, we used the cross-entropy) and (d) C is the
Compactness loss function, which evaluates the batch intra-class
deep feature distance to derive objects from the same class.

Network staking: We used 9 state-of-the art networks (Incep-
tionV3, Xception, VGG16, VGG19, InceptionResNetV2, MobileNet,
DenseNet121, DenseNet201, NASNetLarge) all of them pre-trained
on ImageNet. They were separately trained for both problems in 5
different train-validation folds, which generated 90 networks (45
per task). The output of each network is a number between 0 and 1
which represents the probability of the picture containing evidence
of roads in flooded regions and evidence of passable roads, respec-
tively. Being n the number of networks and pi the probability of the
picture corresponding to class 1, we define p as the average of pi for
all 1 ≤ i ≤ n. We define votinд(p1, ...,pn ) = |{i/pi > 0.5, 1 ≤ i ≤
n}|, where |.| is the set cardinality. We used two different methods
to aggregate the results from the networks: (i) Average aggregation:
pred(p1, ...,pn ) = (p > 0.5), (ii) Average and voting aggregation:

pred(p1, ...,pn ) =


1 if

(
p > 0.5 and votinд(p1, ...,pn ) > n

2 − 2
)
or(

p > 0.45 and votinд(p1, ...,pn ) ≥ n
2
)
,

0 otherwise.

4.3 Metadata and Visual Information
To combine the metadata and the images, we merged theMetadata-
only and the Double-ended classifier with compact loss approaches.
The two networks were taken without their respective double-
ended fully-connected (FC) layers and merged with two newer FC
layers (one per task) with a softmax classifier.

5 RESULTS
To get a first idea of the upper-bound for our task we asked 4 per-
sons to do the task on a subset of 50 images, the results are given
in Table 1. In the subsequent rows we have included the results
for the 5 different approaches introduced in this paper. As it can

be seen, our approach for flood evidence classification using meta-
data obtains very poor results but close to the results obtained by
human annotators, which means that the metadata was not very
discriminative for this task. Since the error is cumulative, the results
of both the humans and the metadata classifier drop significantly
for the passability detection, being the F-score again very close to
one another. All the image classification approaches achieve sim-
ilar results on the first task, while the network stacking achieves
a small improvement with respect to the double-ended classifier
with compact-loss network. Furthermore, the aggregation of the net-
works using average and voting slightly improves the aggregation
compared to using only the average. However, there is a big gap
between the performance of the double-ended classifier with com-
pact loss and the network stacking approaches. When we decided
to use the same network body to perform both tasks we thought
that since the tasks were very related, one task could benefit from
the others knowledge. However, since one task was more difficult
than the other, the double-ended network seems to have specialized
on the easy task while leaving aside the difficult task. It is also re-
markable that the network stacking algorithms achieve significant
better results than the human annotators, probably because: (i) road
passability is subjective in several cases and (ii) while the network
learnt over the whole training set, the human annotators were not
given any examples about the task.
Finally, combining metadata with images does not provide much
improvement or it even worsens the results due to the lack of dis-
criminative features in the metadata.

6 CONCLUSIONS
In this paper we studied several approaches to perform flood and
road passability detection. We proposed several approaches to deal
with textual and visual information. According to our tests, we
discovered that when a network tries to accomplish several tasks
with different difficulties, even if they are related, it focuses on one
of them (presumably the simplest one), achieving good performance
in one case, but bad in the latter one.
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