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Abstract. The digital town hall of Twitter becomes a preferred medium
of communication for individuals and organizations across the globe.
Some of them reach audiences of millions, while others struggle to get
noticed. Given the impact of social media, the question remains more rel-
evant than ever: how to model the dynamics of attention in Twitter. Re-
searchers around the world turn to machine learning to predict the most
influential tweets and authors, navigating the volume, velocity, and vari-
ety of social big data, with many compromises. In this paper, we revisit
content popularity prediction on Twitter. We argue that strict align-
ment of data acquisition, storage and analysis algorithms is necessary to
avoid the common trade-offs between scalability, accuracy and privacy
compliance. We propose a new framework for the rapid acquisition of
large-scale datasets, high accuracy supervisory signal and multilanguage
sentiment prediction while respecting every privacy request applicable.
We then apply a novel gradient boosting framework to achieve state-
of-the-art results in virality ranking, already before including tweet’s
visual or propagation features. Our Gradient Boosted Regression Tree is
the first to offer explainable, strong ranking performance on benchmark
datasets. Since the analysis focused on features available early, the model
is immediately applicable to incoming tweets in 18 languages.

Keywords: Twitter · virality · privacy · sentiment · explainability ·
scalability · popularity

1 Introduction and motivation

”The role of the social and professional networks in the spread and ac-
ceptance of innovations, knowledge, business practices, products, behav-
ior, rumors, and memes, is a much-studied problem in social sciences,
marketing and economics. Online environments like Twitter, offer an
unprecedented opportunity to track such phenomena.” [2]
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The knowledge discovery process, however, is becoming even more tangled with
the arrival of social big data. 700 million tweets have been posted on the day
of writing this introduction. The volume, velocity, and variety of mostly un-
structured information even from a single social network are evolving at an
extremely fast pace. From an engineering and data science perspective, near
real-time analysis via online services and algorithms scalable in-memory are re-
quired, and demand substantial computational resources. Scientific endeavors to
date offer progress toward specific subtasks of social network analysis (SNA) yet
data collection and privacy compliance remain among the biggest challenges in
extracting knowledge [3]. Arguably the most significant among them is privacy
[34]. The social nature of nodes in these networks makes data subjective to many
privacy concerns and laws. The new European General Data Protection Regu-
lation (GDPR and ISO/IEC 27001) in force since May 25th, 2018 makes SNA
and black-box approaches (like deep neural networks) more difficult to use in
business, requiring the results to be retraceable (explainable) on demand [17].
In machine learning, explainable (compliant) real-time analysis is often at odds
with predictive accuracy. In social popularity prediction, some of the best re-
sults today are achieved using deep neural networks, difficult to interpret [37] or
data modalities time-consuming to acquire [12]. Modeling popularity relies on a
precise count of responses (subject to privacy requests, i.e., retweets in virality
prediction) which exposes them further. Accuracy in such studies depends on
processing documents no longer available, while privacy compliance requires re-
moving them. Ensuring accurate and explainable analysis via quality of the data
and methods, while respecting user privacy, remain conflicting goals and open
research issues individually. In this work we argue that significant advancement
in SNA requires avoiding such trade-offs and addressing all the above issues si-
multaneously. We draw inspiration from multiple disciplines, to challenge state
of the art in content virality prediction on Twitter. We propose a framework
which to the best of our knowledge, is the first one that satisfies the properties
of model preserving and privacy-compliant simultaneously. We use it to train a
scalable and explainable model, and are the first to achieve strong [9] ranking
performance on benchmark datasets.

2 Related work

2.1 Social big data analysis before GDPR

Social big data has become essential for various distributed services, applications,
and systems [31], enabling event detection [10], sentiment analysis [11], popu-
larity prediction [38], natural language processing, finding influential bloggers,
personalized recommendation [14], online advertising, viral marketing, opinion
leader detection etc. Computational and storage requirements of such applica-
tions have led to cloud scale reinvention of data storage and processing technolo-
gies. New tools are constantly emerging to replace the conventional non-effective
ones, and a hybrid of techniques [20,15] is now a requirement to extract value
from the social big data. [35] proposes a solution based on Hadoop technology
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and a Naive Bayes classification for sentiment analysis of tweets. The sentiment
analysis in performed in MapReduce layer and results stored in distributed NO-
SQL data-base. [18] uses Lucene indexing with full-text searching ability on top
of Hadoop for spectral clustering, to detect Twitter communities during the
Hurricane Sandy disaster. In our work we pursue close alignment of data acqui-
sition and analysis algorithms, with the strict constraints of storage and time,
to accommodate both user-generated content (UGC) and privacy requests, ar-
riving at high volume and velocity. Instead of perturbing or anonymizing the
data, sensitive or deleted information is permanently eliminated from storage
and subsequent analysis.

2.2 Content popularity prediction

Social network influence can be defined as the ability of a user to spread in-
formation in the network [32], with the retweet count assumed as a measure of
a tweets popularity. One common challenge for content-based popularity pre-
diction is the 140-character constraint imposed by Twitter, making it difficult
to identify and extract predictive features [5]. [36] showed that carefully crafted
wording of the message could help propagate the tweets better, but there’s much
more to UGC than the caption. [19,37] demonstrate social-oriented features were
the best performers to predict image popularity on Twitter. [25] utilized textual,
visual, and social cues to predict the image popularity on Flickr. [37] proposed a
joint-embedding neural network combining the same cues to rival state-of-the-art
methods. Recurrent and Deep Neural Networks advance feature extraction from
high-dimensional unstructured data (i.e., image attachments), however due to
low explainability also introduce a major drawback for critical decision-making
processes (with recent advances by [33]). In this study, we prioritize explainable
methods in application to structured data. [32,23,7] demonstrate relationships
between the number of followers of Twitter users and their influence on infor-
mation spreading. Ranking users by the number of followers is found to perform
similarly to PageRank [23]. [32] models the probability to be retweeted by a
power law function. [29] have used an explainable Random Forrest classifier to
predict a range of the logarithm of the retweets volume. He demonstrates the
predictive value of user features (e.g., count of followers), network features, and
the popularity of hashtags included. [4] provide a comparison of learning meth-
ods and features, regarding retweet prediction accuracy and feature importance.
They find Random Forests to achieve the best performance in binary classifica-
tion of retweetability and highlight the value of author features: number of times
the user is listed by other users, number of followers and the average number
of tweets posted per day. [28] uses recursive partitioning trees to achieve 0.682
classification accuracy on a large topical dataset, albeit using features unavail-
able early (favorites count) or anymore (local publication time) challenging both
scalability and reproducibility. [16] investigated the features of tweets contribut-
ing to retweetability and is the first to explore the impact of negative sentiment
in diffusion of news on Twitter. We follow [16] to consider affect in our model.
Substantial gains are seen when including network features extracted from the
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content graph formed by retweets, or relationship graph formed by ”friendships”.
The document level subgraphs to inform prediction are often acquired via real-
time monitoring of the diffusion process. [39] predicted the popularity of a tweet
through the time-series path of its retweets, using a Bayesian probabilistic model.
[37] uses preconditioned recurrent neural network to model the temporal diffu-
sion, and shows SOTA ranking performance of 0.366 on benchmark datasets. [1]
used temporal evolution patterns to predict the popularity of online UGC. [8]
use temporal and structural features to predict the cascades of photo shares on
Facebook. [41] model the retweeting cascades as a self-exciting point process. [12]
argues that determining the topic of interest of a user based on his past tweets
might boost predictive accuracy. [30] studied retweet network propagation trends
using conditional random fields, demonstrating gains in accuracy when consid-
ering social relationships and retweet history. Access to subgraphs on the author
or even document level is however strictly limited by social networks, thus lever-
aging tweets (early) performance, authors relationships, preferences or retweet
history is prohibitive for a scalable, near real-time prediction on a single tweet.

In this study we seek to maximize virality ranking performance. We follow
[37] to approach the problem as Poisson regression, and [16] to consider tweet
sentiment in prediction. However, in the contrast to prior work, we don’t sac-
rifice scalability or privacy compliance, nor rely on available retweet count for
ground truth.

3 Solution overview

Fig. 1. Solution overview, including data acquisition, storage and analysis components.
Cosmos DB gateway node GN orchestrates indexing of Twitters historical data to
partitions P, for simultaneous feature extraction by Spark worker nodes W, before
aggregation by master node MN for GPU accelerated predictive analysis.
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3.1 Data acquisition

We use Twitters Historical APIs to acquire datasets of tweets for training and
validation against other studies. In contrast to sampling Twitters x-hose, pre-
dominant in prior work, we apply Twitters PowerTrack search rules, to formu-
late and collect entire datasets retroactively. The documents are then stored in
a globally distributed NO-SQL database, hosted by Microsoft Azure. The data
remains online, exposed to every privacy request applicable.

3.2 Privacy compliant storage

Data analyzed in this study is publicly available during collection. Exactly how
much of it remains public, changes rapidly afterwards. Account removal, suspen-
sion, or deleting of a single tweet render affected content unavailable for analysis
in a privacy-compliant way. Users exercise their right to be forgotten at an un-
precedented rate. We consume an average of 4,000 of such requests per second
via Twitters Compliance Firehose API and apply to our storage simultaneously
with analysis. For perspective, the average rate of new tweets published today
is 8,000/s. To support this velocity and rapid feature extraction for dependent
analysis we choose Azure Cosmos DB as the persistent data store.

3.3 High accuracy labels

In the contrast to prior work, we do not rely on available retweet count for
training supervision. Twitter’s Engagement Totals API is called during data
collection, to retrieve the number of retweets and favorites ever registered for
the tweet (including those deleted shortly after). This enables our data collection
effort to focus on unique content only, reducing the document volume required
for the task (and proportional compliance responsibility) by more than half,
while ensuring 100% accuracy of the supervisory signal.

3.4 Sentiment analysis

To compute document sentiment, we adopt Text Analytics API from Microsoft
Cognitive Services [27], a collection of readily consumable ML algorithms in the
cloud. At the time of this study, the service supports 18 languages: English,
Spanish, Portuguese, French, German, Italian, Dutch, Norwegian, Swedish, Pol-
ish, Danish, Finnish, Russian, Greek, Turkish, Arabic, Japanese and Chinese.
The service is for-profit and continuously improving (changing) over time, which
might challenge reproduction. To address this, we share the score of each docu-
ment.

3.5 Compute

We conduct an in-memory analysis of entries no longer personally identifiable.
This prevents fragmentation of sensitive data outside of the central store ex-
posed to user privacy requests. Instead of anonymizing the datasets, sensitive
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or deleted information is eliminated from storage and future analysis as soon as
the request from the user is processed by the social media platform. We dedicate
an Apache Spark cluster to data preprocessing and analysis. Spark is efficient
at iterative computations and is thus well-suited for the development of large-
scale machine learning applications [26]. Communication performance between
Spark and our privacy-compliant Cosmos DB enables feature extraction at rates
exceeding 65,000 tweets per second. The resulting in-memory dataset is then ag-
gregated by the Spark master node, equipped with Tesla K80 GPUs (Graphics
Processing Units) for predictive analysis and model tuning. We choose Light-
GBM framework to train our Gradient Boosted Regression Tree and explain the
choice in the following section.

4 Data collection

We use the new framework to build multiple datasets across different time peri-
ods for training and evaluation of our models (Table 1)

Table 1. Datasets acquired

Dataset Timeframe Months Language w/images only Total Unique (acquired) Never retweeted

MBI [6] 2013.02-2013.03 2 English TRUE 2,724,764 1,319,288 1,042,411
T2015 [37] 2015.11-2016.04 6 English TRUE 9,025,826 2,804,153 2,106,475
T2016 [37] 2016.10-2015.12 3 English TRUE 8,469,016 2,736,600 2,088,377
T16-BIO 2015.06-2017.06 12 Multi (18x) FALSE 27,032,417 14,788,552 12,809,021

T2017-BIO 2017.01-2018-02 14 Multi (18x) FALSE 19,850,448 9,719,264 8,774,009

Benchmark datasets We acquire three benchmark datasets MBI, T2015 and
T2016 (with a total of 6,860,041 unique tweets) to enable comparison with the
work of [25,22,6,37]. The datasets match the same filters, as applied before (e.g.,
timeframe, language or presence of image attachment) yet result in higher vol-
ume. We follow [37,6] to split the tweets into 70% training, 10% validation, and
20% test sets respectively.

Twitter 2017 For the general multilanguage model, we have collected 10 million
unique tweets and used 9.7M of them for predictive analysis, after applying
privacy requests. The dataset has been downsampled from the entire Twitter
2017 volume to 18 languages supported by the sentiment scoring service, then
using Twitter PowerTracks sample and bio operators, to manage the volume
without sacrificing our models generalization capability over the full year.

4.1 Sentiment score and all-time totals

Retweet counts, favorite counts, and sentiment scores were collected for ca. 30
million unique tweets, simultaneously with applying privacy requests. It is worth
noting that 85% of unique tweets acquired had never been retweeted.
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4.2 Feature selection

Multiple features have been extracted from the rich Twitter metadata, to cap-
ture what is being said (content), by who (author), when (temporal) and how
(sentiment). Table 2 describes selected features and their Pearson correlation
coefficient with the logarithm of retweet count in T2017-BIO. Only the infor-
mation available at the time of acquisition or immediately after is considered,
to maximize the scalability of the solution. Specifically, we do not consider the
early performance of the tweet (i.e., retweet or favorite counts received) or image-
based features at this point.

Some authors (e.g., celebrities) receive more attention than others despite
low activity. We calculate the two author ratio features in an attempt to iso-
late such examples. Number of attachments (like hashtags, mentions, URLs,
images, symbols and videos) compete for viewers atten-tion with the original
140-character body of the tweet, and their total count is also considered. Fi-
nally, we log-transform selected author features (e.g. author’s favorite and listed
counts) due to power-law distribution [5].

Table 2. Feature summary

Modality Feature Type Pearson

(A) Author followersCount ordinal 0.205920
friendsCount ordinal 0.082779
accountAgeDays ordinal 0.020379
statusesCount ordinal -0.001455
actorFavoritesCount ordinal 0.029914
actorListedCount ordinal 0.221067
actorVerified categorical 0.202722

(C) Content attachmentsTotal ordinal 0.085333
mentionCount ordinal -0.006590
hashtagsCount ordinal 0.104335
mediaCount ordinal 0.147623
urlCount ordinal 0.082549
isQuote categorical 0.061915

(L) Language languageIndex categorical 0.005199
sentimentValue continuous 0.059863

(T) Temporal postedHour ordinal 0.016639
postedDay ordinal -0.000963
postedMonth ordinal -0.004129
postedDayTime categorical 0.016639
postedWeekDay categorical -0.001002

5 Methodology

We consider the problem of predicting the scale of retweet cascade for a given
tweet based on data modalities available immediately after its delivery. The
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author features are used together with the content, language, and temporal to
predict the number of future retweets. In this study, we assume the future retweet
count r of a tweet follows Poisson distribution:

P (R = r | λ) =
e−λλ−r

r!
(1)

where the latent variable λ ∈ R+ defines the mean and variance of the distri-
bution, and maximize the Poisson log-likelihood given a collection of N training
tuples of tweets ti and their retweet counts rgt,i

θ∗ = arg min
θ

1

N

∑
[rgt,i lnλ(ti) + λ(ti)] (2)

where θ contains all parameters of the proposed model.

5.1 Gradient Boosted Regression Tree

GBRT is a tree ensemble algorithm which builds one regression tree at a time
by fitting the residual of the trees that preceded it. With our twice-differentiable
loss function, denoted as:

LPoisson(rgt, t) = rgt lnλ(t) + λ(t) (3)

GBRT minimizes the loss function (regularization term omitted for simplicity):

L =

N∑
i=1

LPoisson(rgt,i, F (ti)) (4)

with a function estimation F(t) represented in an additive form:

F (t) =

T∑
m=1

fm(t) (5)

where each Fm(t) is a regression tree and T is the number of trees. GBRT learns
these regression trees in an incremental way: at m-stage, fixing the previous
m − 1 trees when learning the m-th trees. To construct the m-th tree, GBRT
minimizes the following loss:

Lm =

N∑
t=1

LPoisson(rgt,i, Fm−1(ti) + fm(ti)) (6)

where Fm−1 (t) =
∑m−1
k fk (t).

The optimization problem (6) can be solved by Taylor expansion of the loss
function:

Lm ≈ L̄m =

N∑
i=0

[LPoisson(rgt,i, Fm−1(ti)) +∇ifm(ti) +
∇2
i

2
f2m(ti)] (7)
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with the gradient and Hessian defined as:

∇i =
∂LPoisson(rgt,i, F (ti))

∂F (ti)
| F (ti) = Fm−1(ti)

∇2
i =

∂L2
Poisson(rgt,i, F (ti))

∂2F (ti)
| F (ti) = Fm−1(ti)

(8)

We train our GBRT by minimizing L̄m which is equivalent to minimizing:

min
f∈F

N∑
i=1

∇2
i

2
(fm(ti) +

∇i
∇2
i

)2 (9)

This approach is vulnerable to overdispersion and power-law distribution, char-
acterizing the retweet count. In extreme cases where Hessian is nearly zero (9)
approaches positive infinity. To safeguard the optimization, we cap each trees
weight estimation at 1.5 and follow [5] to use total retweet count as ground-truth
after log-transformation:

rgt = ln(rtotal + 1) (10)

5.2 Gradient Boosting Framework

LightGBM [21] implementation of GBDT is chosen for the task, due to dis-
tinctive techniques applicable. Experiments on multiple public datasets show
that Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB) can accelerate the training process by over 20 times while achieving almost
the same accuracy [21]. Most of all, LightGBM implements a novel histogram-
based algorithm to approximately find the best splits which is highly scalable on
GPUs [40]. The framework allows us to explore substantially larger hyperparam-
eter space during cross-validation. Finally, LightGBM offers good accuracy with
integer-encoded categorical features by applying [13] to find the optimal split
over categories. This often performs better than one-hot encoding and enables
treating more features as categorical while avoiding dimensionality explosion.

6 Experiments

We exercise gradient boosted Poisson regression in experiments organized by
datasets, to tune and compare our approach against recent state-of-the-art meth-
ods, before attempting to generalize the prediction across topics and cultures in
the multilingual extended timeframe study.

6.1 Evaluation metrics

We compute the Spearman Rho ranking coefficient, to measure our models abil-
ity to rank the content by expected popularity. Interpretation of this coefficient
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is domain specific, with guidelines for social/behavioral sciences proposed by [9].
SpearmanR from SciPy version 1.4.0 is used to ensure tie handling. We did not
find this concern expressed in prior work. The p-value for all reported Spearman
results is p < 0.001

Relative and absolute measures of fit: R2, and RMSE are chosen for optimiza-
tion, to penalize large error higher (i.e. when underestimating highly viral con-
tent or vice-versa). The mean-absolute-percentage-error (MAPE) is computed
due to popularity in previous studies [37], but not considered for tuning. We
dispute MAPEs value relative to above when fitting asymmetric, zero-inflated
distribution of the dependent variable (like retweet count). It is undefined for
the majority of examples (Table 1), which never receive a retweet and penalizes
errors for least retweeted higher.

6.2 Validation on benchmark datasets

We begin with evaluation of our multimodal GBRT against previous state-of-the-
art methods. For a fair comparison, we use Poisson regression on the joint author,
content and temporal features (ACT), before including sentiment (ACTL). Table
4 demonstrates that our proposed model achieves substantially higher ranking
performance, compared to other content-based methods, already before consid-
ering image and propagation modalities. Using more advanced feature repre-
sentations, sentiment score and high accuracy ground-truth, we outperform the
state-of-the-art by more than 37% on multiple datasets.

Table 3. Method performance on benchmark datasets.

Method SpearmanR MAPE
MBI T2015 T2016 MBI T2015 T2016

McParlene [25,37] 0.188 0.269 0.257 0.093 0.121 0.137
Khosla [22,37] 0.185 0.273 0.254 0.097 0.103 0.124
Cappallo [6,37] 0.189 0.265 0.258 0.089 0.095 0.119
Mazloom [24,37] 0.190 0.287 0.262 0.073 0.097 0.117
Wang [37] 0.229 0.358 0.350 0.057 0.084 0.103
Ours (ACT) 0.322 0.498 0.503 0.247 0.266 0.256
Ours (all) 0.323 0.499 0.504 0.247 0.266 0.255

R2 RMSE
MBI T2015 T2016 MBI T2015 T2016

Ours (ACT) 0.303 0.417 0.391 0.444 0.553 0.555

6.3 Multilingual, extended timeframe experiments

We apply our method to the new T2017-BIO dataset to generalize popular-
ity prediction across languages and time. Tweet t(A,C, T, L) includes content
descriptions C, language descriptions L and is rst issued by author A, at the
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time T. Table 4 summarizes contributions of these modalities individually and
in combination. The baseline model is trained on a single feature, most popular
in literature: the count of authors followers, notified about the tweet.

Table 4. Quantitative evaluation of A: actor, C: content, T: temporal, and L: language
features. SpearmanR, R squared: higher is better. RMSE, MAPE: lower is better

Features SpearmanR R2 RMSE MAPE

A 0.310 0.317 0.359 0.133
C 0.211 0.055 0.422 0.160
T 0.062 0.001 0.432 0.171
L 0.164 0.017 0.430 0.167

AC 0.356 0.396 0.337 0.121
AT 0.311 0.316 0.359 0.132
AL 0.324 0.320 0.358 0.130
CT 0.220 0.059 0.421 0.159
CL 0.269 0.076 0.417 0.154
TL 0.170 0.019 0.430 0.166

ATL 0.324 0.320 0.358 0.130
ACT 0.357 0.395 0.338 0.120
ACL 0.369 0.399 0.336 0.119

ACTL 0.369 0.402 0.336 0.118

Baseline 0.180 0.091 0.414 0.160

7 Discussion

When prioritizing social posts by expected popularity, model’s ranking perfor-
mance might precede metrics of overall fit. Interpretation of Spearman and R2

metrics is domain specific. For social/behavioral sciences, reaching 0.5 indicates
strong correlation [9]. The final study aimed to explore generalizability of our
method over an extended time-frame and 18 languages. The relative insignifi-
cance of the Temporal modality (Table 4) suggests low correlation between the
time of posting and the content popularity, thereby challenging the common
intuition, that posting at the time of audiences activity helps propagating the
content. We also find that content-based features alone have higher value for
expected popularity ranking than the number of followers. How many people
like you appears less important than what you have to say.

Non-linear advanced ML algorithms like deep neural networks and gradient
boosted decision trees are among the most successful methods used today. The
fact is often attributed to the inherent capability of discovering non-linear rela-
tionships between groups of features. It was not necessary in our study to com-
pute e.g., all cross-products to rival state-of-the-art, and at times we have noticed
a higher cumulative contribution of combined modalities over their individual
gains (Table 4). The size of the audience immediately exposed to the tweet, mea-
sured as the count of the authors followers, remains the single strongest predictor
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Fig. 2. Feature level importance

of tweet popularity when considered in isolation (Figure 2). The number of times
an author has been listed by others, followed others or favorited other content
are also among significant features, open to interpretation. Number of friends is
arguably related to the diversity of content the author is exposed to. We expect
the count of tweets favorited over time (i.e. age of account) to differentiate ac-
tive from passive consumers. Assuming the authors influence is measured by her
capacity to spread information in the social network [32], could the diversity of
content actively consumed over time maximize authors influence? We propose
this hypothesis for computational social science.

8 Conclusions and future work

In this paper, we have studied the problem of predicting tweet popularity under
scalability, explainability and privacy compliance constraints. Our method esti-
mates the potential reach of a tweet i.e. size of retweet cascades based on modal-
ities available immediately after document creation. We prove it is possible to
rival state-of-the-art results without compromising on explainability, scalability
or privacy compliance. Our Gradient Boosted Regression Tree, combining avail-
able modalities with sentiment score and high accuracy ground-truth achieves
state-of-the-art results on multiple datasets and is the first to achieve strong [9]
virality ranking performance. In the final round of experiments, we apply our
method to generalize prediction across extended time-frame in 18 languages and
explain the contribution of each modality.

Training the final model on NVidia Tesla K80 took 10 minutes. Computing
predictions for the 2 million unique tweets in the validation set, took another 45
seconds. Thats over 44,000 tweets scored per second, with a single GPU. Assum-
ing incoming tweets are already vectorized, the ACT model deployed on Tesla
K80 can cope with 5 (five) times todays Twitter volume and velocity. [37] take
up to 72 additional hours (after data collection) to acquire propagation features
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for the prediction. During that time, our model will have predicted popularity
for up to 11 billion tweets.

8.1 Applications

Our model is ready for production with immediate application to social media
monitoring. The proposed framework is extendable to other data modalities (e.g.
visual) and other methods (e.g. deep neural networks) Our privacy compliant
storage solution is immediately applicable to data collection and analysis from
other social networks exposing privacy signal (e.g. Tumblr and WordPress, with
privacy requests available as compliance interactions from DataSift). Our so-
lution to focus analysis on temporary in-memory samples, created ad-hoc for
every iteration, from a single central persistent storage to receive compliance
requests, is applicable to any social network sourced data. Our solution to rely
on dedicated APIs for high accuracy labels, instead of error prone counting or
crawling used in prior work, is immediately applicable to Instagram, Tumblr and
Facebook Pages. Our explainable GBRT approach is immediately applicable to
Instagram and Tumblr.
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