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Abstract

The results of data mining endeavors are majorly driven

by data quality. Throughout these deployments, serious

show-stopper problems are still unresolved, such as: data

collection ambiguities, data imbalance, hidden biases in

data, the lack of domain information, and data incomplete-

ness. This paper is based on the premise that context can

aid in mitigating these issues. In a traditional data science

lifecycle, context is not considered. Context-driven Data

Science Lifecycle (C-DSL); the main contribution of this

paper, is developed to address these challenges. Two case

studies (using datasets from sports events) are developed to

test C-DSL. Results from both case studies are evaluated

using common data mining metrics such as: coefficient

of determination (R2) and confusion matrices. The work

presented in this paper aims to re-define the lifecycle and

introduce tangible improvements to its outcomes.

Keywords – Context, Data Mining, Missing Values,

Outliers, Data Imbalance

1 Introduction and Motivation.

Historically, most research in AI has been focused on
improving the algorithm. In the last decade or so
however, the focus has shifted to data - big data.
Ample amounts of data reshaped AI and renewed
its promise and premise. As more machine learning
models are deployed across multiple domains [1] [2],
new challenges are rising. For instance, the relevance,
data types, data quality, and completeness of inputs to
a model (dependent variables), effect the significance
and ‘goodness’ of the outputs (independent variables).
But how can that be optimized? In the presented
method, context is defined and injected into the process
to obtain insights that are more relevant and domain-
specific. However, in most cases, it is highly challenging
to define what context is. Context is infinite [3], and
so data that could be collected to define a complete
context is also potentially infinite. For instance, in the
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sports studies presented, there is an infinite amount
of information that could be collected and used for
contextual awareness. For example, context can consist
of data about the weather on the day of the competition,
or the type of car that the athlete owns, or their
country’s birth rate, or the type of shoes worn by them
during the competition, or whether the athlete had eggs
or cereal for breakfast that day! The point is, the
amount and variety of data that could be collected to
define the context of the event under study is infinite,
which makes the scope of this challenge very difficult to
capture.

In data collection, and given that any data could
be collected (theoretically), then the four Vs of big
data (velocity, variety, veracity, and volume) are not
representative of the real challenge within the lifecycle
of data science; but the main (or first) challenge to
be addressed is: what data should be collected for
the problem at hand? In the studies presented in
this manuscript, multiple categorical data columns,
coefficients, and correlations are evaluated to define
a context, multiple approaches are explored, and the
results are evaluated statistically and by comparing
them to actual results.

The major challenge found throughout the process
was the quality of the data (outliers, bias, and incom-
pleteness). As Niels Bohr famously stated: “Prediction
is very difficult, especially if it’s about the future”. The
challenge exacerbates however, when the future predic-
tion is an outlier. For instance, winning a gold medal or
a medal at all is an outlier, very few athletes win medals
at the Olympics - one per sport. Same thing applies for
most sports events, there is only one winner of the super
bowl, one winner of the World Cup, and that winner is
the outlier. Contrary to that, if an athlete is histori-
cally a winner of medals, for that athlete, not winning a
medal becomes an outlier (not the contrary). Therefore,
locating outliers depends on the scope, and the subset of
the universal dataset that is used. Adding more data to
help define context is also dependent on the scope, goals,
and the information available in the dataset. Even if we
are looking at the same problem, same machine learn-



ing model, the slicing and dicing of data is constantly
effecting what context consists of. Therefore, if con-
text is that dynamic, then how can it be captured in
a data science lifecycle? This paper examines that no-
tion and provides solutions to it using a Context-driven
Data Science Lifecycle (C-DSL). The paper is organized
as follows: next section discusses the literature review
for context, data bias, and data incompleteness. After-
wards, C-DSL is introduced along with the two experi-
mental studies, and in the final section, conclusions and
future research plans are presented.

2 Related Works in Contextual Management.

As discussed prior, context plays a pivotal role in deci-
sion making as it can change the meaning of concepts
present in a dataset. The context within a dataset can
be extracted and represented as features [4]. Features
in general fall into three categories: primary features,
irrelevant features, and contextual features. Primary
features are the traditional ones which are pertinent to
a particular domain. Irrelevant features are features
which are not helpful and can be safely removed, while
contextual features are the ones to pay attention to.
That categorization helps in eliminating irrelevant data
but doesn’t help in clearly defining context. Another
promising method that aimed to solve this challenge,
is called the Recognition and Exploitation of Contex-
tual Clues via Incremental Meta-Learning [5], which is
a two-level learning model in which a Bayesian classifier
is used for context classification, and meta algorithms
are used to detect contextual changes.

Another method: context-sensitive feature selec-
tion [6] described a process that out performs tradi-
tional feature selection such as forward sequential se-
lection and backward sequential selection. Dominogos’s
method uses a clustering-based approach to select lo-
cally relevant features. Additionally, Bergadano et al.
[7] introduced a two-tier contextual classification adjust-
ment method called POISEDON. The first tier captures
the basic properties of context, and the second tier cap-
tures property modifications and context dependencies.
Context injections however, have been more successful
when they are applied to specific domains. For exam-
ple, adding context to data has significantly improved
the accuracy of algorithms for solving Natural Language
Processing (NLP) problems. Dinh et al. [8] added con-
text to correct wrongly tagged words. In their paper,
the authors have combined the output from the clas-
sifier with a set of words manually labeled with con-
text. A transformation based learning algorithm was
used to generate new rules for the classifier. The au-
thors claimed that this method increased the contextual
accuracy of their application by 4.8%.

Another example used context for software testing.
Context-Driven Testing (CDT), utilizes context to re-
duce the number of test cases and improve on the vali-
dation and verification of software systems. The authors
of the paper reported very significant improvements in
time and quality of testing results due to context [9].

The issue of deriving context from data however,
is even more challenging, for instance, Mary-Anne
Williams [10] pointed out that data science algorithms
without realizing their context could have an opacity
problem. This can cause models to be racist or sexist
(for example). It is often observed that Google trans-
lator refers to women as ‘he said’ or ‘he wrote’ when
translating from Spanish to English. This finding was
also verified by Google Inc. Another opacity example is
a word embedding algorithm which classifies European
names as pleasant and African American names as un-
pleasant [11]. If a reductionist approach is considered,
adding or removing data can surely redefine context, it
is observed however, that most real-world data science
projects use incomplete data [12] [13]. Data incomplete-
ness occurs within one of the following categorizations:
1) Missing Completely at Random (MCAR), 2) Miss-
ing at Random (MAR), and 3) Missing not at Random
(MNAR). MAR depends on the observed data, but not
on unobserved data while MCAR depends neither on
observed data nor unobserved data [14] [15]. There are
various methods to handle missing data issues which
includes listwise or pairwise detections, multiple impu-
tation, mean/ median/ mode imputation, regression im-
putation, as well as learning without handling missing
data [12].

All the aforementioned works were challenged with
the quality of the data. For example, several types of
bias can occur in any phase of the data science lifecycle
or while extracting context. Bias can begin during
data collection, data cleaning, modeling, or any other
phase. Biases which arise in the data are independent of
the sample size or statistical significance, and they can
directly affect the context of the results or the model.
They also affect the association between variables, and
in extreme cases, they can even reflect the opposite of
a true association or correlation [16].

Based on reviewing multiple works in data science,
the most commonly observed bias is class imbalance due
to covariate shifts. Class imbalance is represented by
the unequal ratio of categories which can occur due to
changes in the distribution of data (covariate shifts).
Class imbalance depends on four factors: 1) degree
of class imbalance 2) the complexity of the concept
represented by the data 3) the overall size of the training
size and 4) the type of classifier [17]. Datasets with
imbalance create difficulties in information retrieval,



filtering tasks, and knowledge representation [18] [19].
In this paper, context is extracted by deploying a

variety of statistical methods: data imputation, creation
of a generic coefficient, adding data columns (such as:
host country, sport, GDP, height, weight, and age),
weighted modeling, and mitigation of bias. The details
about the method (main contribution of this paper) and
techniques used are presented in the next section.

3 Context-Driven Data Science Lifecycle.

C-DSL has five main steps (Figure 1). Those five
steps are represented in two experiments (Olympics
medal predictions and the UEFA Champions League
winners and losers). In the first step, data cleaning and
wrangling are performed. In the literature [22], [23],
[24] it is indicated that data cleaning helps to build
robust and more reliable models. Data wrangling is
considered one of the most expensive phases in the data
science lifecycle. During that phase, multiple decisions
are taken, that includes: eliminating subsets of data,
filtering, and aggregation. In the second step of C-DSL,
context is injected. For experiment 1, that is done by
adding details like year, host city, sport, name of athlete,
country of the athlete, medal type (gold, silver, and
bronze) and athlete’s demographical data.

Figure 1: C-DSL

For experiment 2, context is injected by collecting,
cleaning and generating sentiment scores from social
media text (tweets). For step 3, Data imputation,
bias removal, and outlier detection are performed for
the first experiment (explained in great details in the
next section). In the fourth step of C-DSL, prediction
models are built for experiment 1, while a coefficient
is created for experiment 2 and used for predictions.
In the final step of C-DSL context is evaluated using
confusion matrices, and model quality measure such as

R-squared; and performance of the models is compared
with actual results of the sports events. C-DSL is
meant with the continuous fine-tuning of data until
a certain ‘contextual’ sweet spot is achieved. The
proposed combination of statistical methods are tools
that are used to reach that contextual understanding of
the dataset, and be able to then predict based on that.

In the Olympics experiment, outliers and bias in
data lead to results that are barely better than the
conventional process, but in the second experiment
(Champions League), and after understanding context
due to data imputation and inference, a coefficient
is proven very successful in predicting the results of
a tournament with very high accuracy. In the next
section, an in-depth explanation of the implementation
of C-DSL for both experiments is presented.

4 Experimental Work.

This section aims to test and evaluate the method
presented in this paper, and present the detailed process
followed to define it.

4.1 Experiment #1 (Olympics Predictions):
Data Preparation and Statistical Deployments.
In this experiment, an application of sports predictions
has been developed using summer Olympics data
between years 1896 and 2016. Two datasets are
pulled from Kaggle.com. The first dataset has 31,165
observations, and the second dataset consists of more
than 200,000 observations. The datasets can be found
here – https://exchangelabsgmu-my.sharepoint.

com/:f:/g/personal/akulkar8_masonlive_

gmu_edu/EuY3SFjeQl5EpNfK8P4ZUi0BcWFN-

pcUBRUpTvwuKgWmMg.
In the conventional data preparation step, winter

data is filtered out (the aim is to predict next summer
Olympics medal counts by country and sport). Summer
data is then checked for missing values. Information
on some athletes was missing, such as: Age, Height,
and Weight. A function from the R “mice” package
“md.pattern()” is used for getting insights into the
patterns of missing data. Additionally, it is for example
observed that 1,888,464 athletes didn’t win any medals;
that is represented by nulls in the medals’ column.
Nulls are then replaced by “No medal”, because some
models in R choke when dealing with null values.
The missing values (count: 114,900) are then imputed
using the Multivariate Imputation by Chained Equation
(MICE) technique [20]. After that, columns such as
Sport, Gender, Age, Height, and Weight are used as
context. This operation is performed by Predictive
Mean Matching (PMM) method in R using the “mice()”
function. Fifty iterations of imputations were required
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to create all the missing data - approximately 15 hours
to complete the entire process.

Outlier detection is then performed, using Local
Outlier Factor (LOF). It is a density-based outlier detec-
tion technique [21]. The main reason for choosing this
method is the type of variables in the dataset. In out-
lier detection it is essential to convert categorical vari-
ables into numerical variables. In addition to that the
numerical variables are scaled using the “scale()” func-
tion. Initially, there are 5 columns (Sport, Gender, Age,
Height, and Weight) in the data but after performing
scaling and encoding of values in categories, fifty three
representative columns are created (as iterative combi-
nations of these columns). The function “lofactor()” is
used with “k = 5” for outlier detection. In the func-
tion, k denotes the number of nearest neighbors that
represent the locality used for estimating the density.

Afterwards, model selection was deployed; regres-
sion and random forests are used for this experiment. In
the first part, a simple linear regression model is built in
R using the “lm()” function. Further, predictions per
sport per country are developed using multiple linear
regression. For that purpose, six different weight sce-
narios are used, and the models are tweaked to enforce
more significance on recent years. For random forests,
classification is based on the type of the medal (gold, sil-
ver, bronze, and no medal), Sport, Gender, Age, Height,
and Weight of the athlete. To perform the classifica-
tion, medals are encoded by numbers (“Gold = 1”, “Sil-
ver=2”, “Bronze=3” and “No medal=4”), and then the
model is trained on the entire dataset from 1896 to 2012
(using “randomForest” and “ranger” packages in R).
The results of this experiment were not very convincing
(presented in experimental results), although much bet-
ter than conventional predictions. This experiment re-
flected the importance of tuning the value of k, creating
a coefficient, and the criticality of inference, something
that is deployed in the second experiment.

4.2 Experiment #2 (Text Mining for Context):
Setup and Coefficient Creation. In this experi-
ment, social media data are collected to be the main
driver for Context. In sports, it is safe to assume that
the fans of a sports team can reflect or influence the
team’s status, and maybe even help in predicting the
outcomes of that team. This study calculates sentiment
scores for text relevant to the Champions League (a Eu-
ropean Clubs Soccer Championship), and uses that as
the context of a team to help predict whether the team
will perform well in next stages or not. The sentiment
score for each post or tweet is normalized on a -7 to +13
scale. The R “tm” package is used to scan through the
tweets and assign scores based on a set of predefined

words. Once all the tweets have scores, a coefficient is
created: Average Team Sentiment Score (ATSS). It is
defined as: (Sum of Sentiment score of all tweets at the
team level) / (Count of tweets at the team level).

Figure 2: Sentiments of tweets and counts of tweets per
team

The idea of the coefficient is to represent the
team’s popularity and the sentiments of its fans. This
study was deployed for eight teams: Barcelona, Real
Madrid, Juventus, Bayern Munich, Borussia Dortmund,
Galatasaray, and Paris Saint Germain. Figure 2 shows
a data visualization that illustrates the results of senti-
ments tweets. It shows a sample of all tweets and their
sentiment values. Red is a negative sentiment, green
is a positive sentiment, and blue is neutral. The main
takeaway from Figure 2 is to visualize the distribution of
sentiments from the tweets on all the different teams. It
can be observed from the heat map that most of the sen-
timents are neutral (blue), while the pie chart indicates
that Barcelona F.C. has the highest number tweets.

Figure 3: Sentiment score heat map by country



Additionally, Figure 3 shows the sentiments when
aggregated to the country level. For example, tweets
from China and Russia about the tournament are
negative on average, and ones from USA and Canada are
positive on average, while Europe varies. The results for
both experiments 1 and 2 are presented in the following
subsection.

4.3 Experimental Results: Olympics Predic-
tions. After deploying C-DSL steps, the predictions for
the first experiment were acceptable, certainly better
than without deploying context, however, not very sat-
isfactory. The bar plot in Figure 4 the actual number of
medals (blue bar on the left) and orange color (on the
right) indicates predicted number of medals through C-
DSL.

Figure 4: Actual and predicted number of medals

The observed adjusted R2 value for the simple linear
regression model is 0.5488. It can be easily observed
that for Japan, Canada, Brazil, New Zealand, and the
UK the actual number of medals and predicted number
of medals are very close, and potentially useful for
decision making. In the second round, after applying
weights for predicting number of medals per sport,
for top 5 countries, it is observed that all the models
are predicting better number of medals for: USA,
China, Russia, and Germany, and that is reflective
of actual results. In the case of the UK, all the
models were close to the actual number of medals (90%
accuracy). In Table 1, the best results from C-DSL are
presented. Results from C-DSL are much better than
the conventional regression process. Furthermore, Table
2 shows results compared to actual events (confusion
matrix). The model is able to predict 13 correct records
for (1 Gold), 3 correct records for (2 Silver) and 9 correct
records for (3 Bronze).

The overall accuracy of the random forests model is
83.96%, which usually reflects high accuracy, however,
due to data imbalance (which could be also considered

Country Sport Actual Conventional C-DSL
USA Gymnastics 12 18 14
UK Gymnastics 7 11 7
UK Kayaking 4 6 5
UK Athletics 7 8 6
UK Sailing 3 5 4
UK Boxing 3 4 3
UK Taekwondo 3 3 2
UK Triathlon 3 3 2
UK Tennis 1 4 2
UK Shooting 2 5 2
China Table

Tennis
6 5 6

China Athletics 6 8 7
China Taekwondo 2 3 3
China Boxing 4 4 4
Russia Wrestling 9 9 9
Germany Kayaking 7 7 7
Germany Shooting 4 6 5
Germany Equestrian 6 7 8

Table 1: Selected results for different sports for top 5
countries

Reference/Actual

Prediction

1 2 3 4
1 13 6 6 73
2 9 3 10 61
3 5 12 9 63
4 638 634 678 11468

Table 2: Confusion matrix for predictions

as an outlier issue), the results in Table 2 are potentially
a result of a model that is underfitting. The claim made
in this scenario is that context can be used as a pointer
to such unclear data lifecycle dilemmas.

4.4 Experimental Results: Text Mining for
Context. After calculating the sentiments and the
activities for all tweets, an aggregation of ATSS (the
coefficient) for every team is created. The coefficient
reflects the ATSS for every team, as well as the count
of tweets per team (i.e. interest and hype surrounding
that team). The results from this experiment are
very successful (more than Experiment 1). When the
coefficient-by-team is sorted (as Figure 5 shows), the
highest two teams are the teams that reached the final
game in that tournament. Followed by the other two
semi-finalists, and then followed by teams in the quarter
finals, that result indicates how contextual awareness of
the tournament (through data from fans for instance),



can provide predictions with high statistical confidence.
The predictions for this study are much more in-

dicative of actual events than when compared to the
UEFA ranking of those teams for instance, or expec-
tations based on stars playing for them, or any other
conventional method. It is important to note however
that these results are not tested across multiple types
of tournaments, rather only for one year (2013). That
is due to the availability of the data, this work however
is certainly ongoing, and we aim to deploy the same
method for multiple tournaments. In 2013, Bayern Mu-
nich won the tournament, and teams such as Barcelona
and Paris Saint Germain unexpectedly lost. C-DSL,
based on contextual understanding of the fans, the hype,
social media attention, and collective knowledge is able
to predict the winner. The work presented in both ex-
periments has potential for improvements, and is still
undergoing, conclusions and next steps are presented in
the next section.

Figure 5: Team coefficient very indicative of actual
results

Figure 6: Actual results of 2012-13 UEFA Champions
League [25]

5 Conclusions and Next Steps.

In this paper, a Context-driven Data Science Lifecy-
cle (C-DSL) is introduced and tested for applications
of sport predictions. It can be concluded from the re-
sults that context plays a crucial role for prediction.
In addition to that, based on our experiments, tech-

niques for data imputation, bias, and outlier detection
have a significant influence in C-DSL. Two experiments
are performed, they utilize C-DSL steps slightly differ-
ently, and they have different success rates. However,
both experiments are successful in providing better out-
comes than the conventional data science lifecycle. The
method presented in this paper is deemed to be very
specific to certain types of data sets, and certain data
mining problems. The experiments presented illustrate
it as a punctual solution to a broad problem, however,
C-DSL could be generalized to many other types of data
sets. For future steps, we aim to do the following: 1.
Develop a tool that automates the process of C-DSL, 2.
Experiment with more types of sports events, 3. Rede-
fine C-DSL to create a more unified and generic process
that applies to all types of datasets, 4. Identify other
data sets that have a variety of data types and test
them through C-DSL, 5. Deploy C-DSL for upcoming
summer sports tournaments and compare the results to
media and experts predictions.
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