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Abstract. Over the last decade, electron microscopy has improved up to
a point that generating high quality gigavoxel sized datasets only requires
a few hours. Automated image analysis, particularly image segmentation,
however, has not evolved at the same pace. Even though state-of-the-
art methods such as U-Net and DeepLab have improved segmentation
performance substantially, the required amount of labels remains too
expensive. Active learning is the subfield in machine learning that aims
to mitigate this burden by selecting the samples that require labeling in a
smart way. Many techniques have been proposed, particularly for image
classification, to increase the steepness of learning curves. In this work,
we extend these techniques to deep CNN based image segmentation.
Our experiments on three different electron microscopy datasets show
that active learning can improve segmentation quality by 10 to 15% in
terms of Jaccard score compared to standard randomized sampling.

Keywords: Electron microscopy · Image segmentation · Active learn-
ing.

1 Introduction

Semantic image segmentation, the task of assigning pixel-level object labels to
an image, is a fundamental task in many applications and one of the most chal-
lenging problems in generic computer vision. Particularly in biomedical imaging
such as electron microscopy (EM), where annotated data is very sparsely avail-
able and image data contains high resolution (≈ 5 nm3) and ultrastructural con-
tent. Even though the impressive advances that have been made so far [1,4,3],
state-of-the-art techniques mostly rely on large annotated datasets.

2 Active learning for image segmentation

This work focuses on active learning, a subdomain of machine learning that aims
to minimize supervision without sacrificing predictive accuracy. This is achieved
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Fig. 1. Learning curves for the discussed active learning approaches for two datasets.

by iteratively querying a batch of samples to a label providing oracle, adding
them to the train set and retraining the predictor. The challenge is to come up
with a smart selection criterion to query samples and maximize the steepness
of the training curve [6]. We employ state-of-the-art active learning approaches,
commonly used for classification, to image segmentation. Specifically, we com-
pare entropy-based, least confidence, k-means, BALD [2] and core set sampling
[5] as active learning methods and compare these to the random sampling base-
line. We illustrate on three EM datasets that the amount of annotated samples
can be reduced to a few hundreds to obtain close to fully supervised performance
with entropy, least confidence or BALD sampling (Figure 1 shows two use-cases).
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