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Abstract. Previous research has shown the benefits of group equivari-
ant convolutions for image recognition tasks. With this work we apply
group equivariance to the segmentation of photovoltaic (PV) panel instal-
lations in aerial photography to determine whether the benefits translate
to aerial photography segmentation. We create a custom annotation of
PV panel installations in two Dutch cities using open access aerial pho-
tography. We show that group equivariant versions of traditional and
residual convolutional neural networks indeed perform at least as well as
the traditional versions and provide better generalization.

1 Introduction

In the last decade, the number of photovoltaic (PV) installations on rooftops
has increased fast in The Netherlands [13]. For differing reasons, various public
and private parties are interested in knowing where PV installations are located.
With this work we aim to fulfill this data requirement by using a fully convolu-
tional network to segment aerial photography into regions that represent solar
panels and those that do not. This results in both the location and size of PV
installations.

We are specifically interested in the performance benefits of group equivariant
convolutions as proposed by Cohen and Welling [3]. These type of convolutions
constrain the network to converge with filters invariant to pre-defined symme-
tries.

This work makes the following novel contribution; we show that group equivari-
ant convolutions improve performance and generalization of fully convolutional
networks applied to aerial photography segmentation.

The remainder of this work is structured as follows. In Section 3 we first re-
iterate dilated and group equivariant convolutions and follow with a description
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of our models and the data that was used. In Section 4 we list our results and
interpretation thereof and end with a discussion and our conclusions in Section
5.

2 Related Work

2.1 Aerial Photography Segmentation

Image segmentation has already been widely been applied to aerial photography.
For example, [11] applied Fully Convolutional Networks (FCNs) segmentation
of the ISPRS Vaihingen and Potsdam datasets. The aerial photography was
segmented into various urban and suburban regions such as buildings, vegetation,
streets and vehicles. Additionally, Li et al. combined a larger version of U-Net
with residual learning to get very high accuracy on coastline segmentation to
separate land and sea [5,6].

2.2 PV Installation Segmentation

In [7], the authors used an architecture based on work by the Oxford Visual
Geometry Group (VGG) [12]. Using a sliding-window approach, they classified
41x41 pixel segments on the presence of solar panels true/false. To remain com-
putationally feasible, the sliding-window had a 5 pixel-stride, effectively creating
a mask of 1/25th the size of the original image. They then upscaled this image
to get a mask of the original size.

Next, the same research group proposed an architecture inspired by U-Net :
SegNet [10,2]. This architecture contains both a contracting segment and an ex-
pansive segment. The contracting segment is again inspired by VGG. Where the
contracting segment contains the traditional pooling and convolution layers, the
expansive segment contains upscaling and transposed convolution layers. This
way, the expansive path essentially mirrors the contracting path. Additionally,
skip-connections are used to transfer low-level local features through the net-
work. At the end of the network, 1x1 convolutions are used to make per-pixel
classifications.

3 Methods

3.1 Convolutions

Dilated Convolutions The networks used in this network are based on the
Context Network defined in [14]. This network is a feed-forward convolutional
neural network that uses dilated convolutions. While for normal convolutions, all
elements in the filter are placed on the image sampling grid with translations of
1 along each axis, for dilated convolutions the translation is larger.
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Concretely, given an n by m input with c channels X ∈ Rc×n×m, and a convo-
lution weight tensor for an x by y filter w ∈ Rc×x×y, the output of the dilated
convolution operation Y = X ∗w given dilation factor d ∈ Z, d ≤ 1 is defined in
Equation 1. Note that a dilated convolution with d = 1 is equal to the regular
(non-dilated) convolution operation. See Figure 1 for a visual representation of
the dilated convolution operation.

Y c,i,j =
∑
a

∑
b

wc,a,bXc,i+d·a′,j+d·b′ (1)

(a) dilation=1 (b) dilation=2

Fig. 1: Visualization of dilated
convolution operation. The blue
segment represents image sam-
pling grid, the green segment
represents output of the convo-
lution weights. Note the larger
receptive area for the dilated
convolution with the same num-
ber of filters. Visualizations
from [4].

Group Equivariant Convolutions Reg-
ular convolutional layers learn multiple in-
stances of the same filter in different poses
leading to less general and thus overfitted fil-
terbanks. Cohen and Welling describe group
equivariant convolutions to combat this short-
coming [3]. Given a symmetry group, a single
filter is expanded into a group of filters con-
taining each possible pose in the symmetry
group. The expanded filterbank is applied in
the forward pass with the regular convolution
operation. In the backward pass, the backpro-
pogated errors are collapsed using the inverse
symmetry operation. This combines the error
from each filter pose and results in training all
filter poses as a single filter. For a detailed de-
scription of symmetry groups and correspond-
ing proofs we refer the reader to the work of
Cohen and Welling. In this work, we use the
symmetry group of 90◦ point-wise rotations.

3.2 Models

Our networks operate as illustrated in Figure
2. Given an RGB image that is normalized to a mean of 0.5 and standard de-
viation on all channels. The output is an grayscale image with the per-pixel
likelihood that a PV is present. A per-model optimized threshold is applied to
convert the likelihoods to classifications which are used to compute model per-
formance.

Our baselines are the context network as described by Yu and Kolton (see Table
1) with 20 channels and 64 channels, which we call FCN20 and FCN64. The larger
version is trained to rule out the possibility of an information bottleneck. Addi-
tionally, we train versions of both networks with residual blocks which we call
ResFCN20 and ResFCN64. Each network has an additional 1x1 2D-convolution
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Fig. 2: Our PV panel installation segmentation model structure. The
input of the network is an RGB image. The image is fed through 7 convolution
layers with 3x3 kernels, followed by a convolution layer with 1x1 kernels. Finally,
an additional convolution layer with 1x1 kernels is applied with Softmax activa-
tion. All other convolution layers use ReLU activation. Table 1 lists the details
of the non-classfication layers.

layer with softmax activation to make the final pixel-wise classification. We then
compare each of the described networks to their group equivariant counterpart:
GFCN5, GFCN16, ResGFCN5 and ResGFCN16. See Table 2 for an overview of the
networks.

Each group equivariant network has 1/4th of the filters of the non-equivariant
one as our focus is on the generalization of convolution filters and symmetry
group P4 contains 4 symmetry instances. That way, the amount of output fea-
tures created by each layer and used by the next layer stays identical, allowing us
to truly consider the benefit of standardization of filters. It should be noted that
this results in a lower amount of trainable parameters for the group equivariant
versions of the networks.

Layer 1 2 3 4 5 6 7 8

Kernel Size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3×3 1 × 1

Dilation 1 1 2 4 8 16 1 1

Receptive Field 3 × 3 5 × 5 9 × 9 17 × 17 33 × 33 65 × 65 67 × 67 67 × 67

Output Channels C C C C C C C C

Table 1: The Context Network as defined by Yu and Koltun. C is either 20 or
64.

3.3 Data

We created a custom dataset based on open access aerial photography of The
Netherlands[9]. The photography, collected in 2017, has a ground-level resolu-
tion of 25 × 25cm per pixel. A non-exhaustive annotation with 3,192 polygons
indicating photovoltaic panel installation locations was created by a single an-
notator for two cities; Nijmegen and Tilburg.
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Network Filters Channels Residuals Group Equivariance Trainable Parameters

FCN20 20 20 7 7 23,862
ResFCN20 20 20 3 7 24,024
FCN64 64 64 7 7 231,172
ResFCN64 64 64 3 7 231,686
GFCN5 5 20 7 3 5,997
ResGFCN5 5 20 3 3 6,039
GFCN16 16 64 7 3 59,906
ResGFCN16 16 64 3 3 58,036

Table 2: Comparison of the FCN architectures.

From the polygons we created masks of 128 × 128 pixels (32 × 32 meters at
ground level). The corresponding photography cutouts were pre-padded such
that the output mask had had full context despite the representation shrinkage
due to convolution applications. This resulted in input images of 194×194 pixels
(48.5×48.5 meters at ground level) See Figure 3 for an input/output image-pair.

3.4 Training

(a) Input sample ex-
ample.

(b) The correspond-
ing mask.

Fig. 3: On the left is an input image for
the network, on the right is the corre-
sponding ground-truth mask. The pur-
ple rectangle in the mask image indi-
cates the actual 128× 128 size. A green
rectangle has been added to the input
image to indicate the same area. The im-
agery outside the green rectangle is the
pre-padding.

Using a Stochastic Gradient Descent
optimizer with momentum of 0.9,
we trained the networks to mini-
mize cross entropy loss. We applied
class weighting to the loss in order
to compensate for the imbalance be-
tween PV pixels and non-PV pix-
els. Each network was trained for 490
epochs with learning rate 10−2 and
10 epochs with learning rate 10−3 for
fine-tuning.

Two types of data augmentation
were used to artificially enlarge our
dataset; (1) we randomly rotate be-
tween −45◦ and 45◦ and (2) applied
a horizontal flip with 50% probabil-
ity. The rotation interval was chosen
as anything additional rotation would
fit in the domain of one of the point-
wise 90◦ rotation symmetries, render-
ing any rotation outside the interval
redundant.
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3.5 Evaluation

We measure the accuracy of our models using the recall, precision, F1, intersec-
tion of union and DICE coefficient metrics. The network state corresponding to
the lowest loss was used for performance evaluation.

4 Results

4.1 Performance

The performance of the networks is listed in Table 3. Comparing FCN20 and
GFCN5, we see GFCN5 performs better than FCN20 on both the train set and
testset, albeit only a few percent. An increase in performance is in line with
the findings of Cohen and Welling, though they saw a larger increase. We also
see similar performance for GFCN16 compared to FCN64 on both sets. Although
the former showed higher performance when including less-significant decimals,
without multiple runs to test for significance we cannot conclude which performs
better.

For the residual networks, the effect is less apparent. Comparing of ResFCN20

and ResGFCN5 shows an opposite effect for precision, F1, DICE and IoU on
both sets; where we see better performance for the network not using group
equivariance. Only the recall is scored higher by ResGFCN5. The comparison of
ResGFCN16 and ResFCN64 shows a slightly better fit for ResGFCN16 on the test-
set but on trainset. Like the comparison of GFCN16 and FCN64; the difference
between ResGFCN16 and ResFCN64 is only small.

Model Set Precision Recall F1 DICE IoU

FCN20
train 0.502 0.967 0.658 0.955 0.494
test 0.510 0.977 0.668 0.953 0.504

ResFCN20
train 0.501 0.973 0.658 0.955 0.494
test 0.477 0.941 0.628 0.947 0.462

FCN64
train 0.542 0.980 0.696 0.961 0.537
test 0.550 0.987 0.704 0.960 0.550

ResFCN64
train 0.523 0.987 0.681 0.959 0.520
test 0.506 0.972 0.663 0.953 0.497

GFCN5
train 0.522 0.959 0.674 0.958 0.511
test 0.524 0.965 0.676 0.955 0.514

ResGFCN5
train 0.442 0.976 0.602 0.944 0.437
test 0.458 0.978 0.618 0.943 0.453

GFCN16
train 0.545 0.981 0.698 0.962 0.540
test 0.550 0.987 0.705 0.960 0.546

ResGFCN16
train 0.518 0.983 0.676 0.958 0.513
test 0.517 0.952 0.668 0.955 0.505

Table 3: Performance metrics on both train and test set for all trained models.
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Model ∆ Precision (%) ∆ Recall (%) ∆ F1 (%) ∆DICE (%) ∆IoU (%)

FCN20 0.008 (+1.6) 0.009 (+1.0) 0.009 (+1.4) -0.002 (-0.2) 0.010 (+2.1)
ResFCN20 0.024 (+5.13) 0.032 (+3.43) 0.030 (+4.71) 0.008 (+0.84) 0.032 (+6.88)
FCN64 0.008 (+1.4) 0.007 (+0.7) 0.008 (+1.2) -0.002 (-0.2) 0.009 (+1.8)
ResFCN64 0.017 (+3.44) 0.015 (+1.59) 0.018 (+2.77) 0.006 (+0.64) 0.022 (+4.34)
GFCN5 0.002 (+0.3) 0.006 (+0.7) 0.003 (+0.4) -0.003 (-0.3) 0.003 (+0.7)
GFCN16 0.005 (+0.9) 0.007 (+0.7) 0.006 (+0.9) -0.002(-0.2) 0.007(+1.3)
ResGFCN5 -0.015 (-3.31) -0.002 (-0.17) -0.016 (-2.57) 0.001 (+0.08) -0.015 (+3.38)
ResGFCN16 0.001 (+0.11) 0.031 (+4.24) 0.008 (+1.19) 0.003 (+0.33) 0.009 (+1.74)

Table 4: Difference between train and test scores as listed in Table 3. Positive
numbers indicate higher score on trainset, negative numbers indicate higher score
on testset.

By using group equivariant convolutions, one would expect a more general-
ized model. We therefore also list the differences in performance between the
train and test sets in Table 4.
We generally see lower relative differences between train and test scores for group
equivariant networks than traditional networks. However, for the non-residual
versions, the improvement in generalization (i.e. lower relative difference between
train and test performance) is negligible. For the residual networks, the improve-
ment in generalisation by using group equivariant networks is higher.

Additionally, residual networks appear to perform less well and generalise less
well than non-residual networks. Both of these observations are surprising as we
see no reason for group equivariance and residual learning to conflict. Indeed,
due to the nature of residual learning, we would have expected at least equal
performance. Additional experiments are required to determine whether resid-
ual learning and group equivariance conflict, whether residual learning is not
suitable for this specific task or whether the sub-par performance of residual
learning in our experiments is caused by properties of our dataset.

4.2 Filters

First Layer Weights By visualizing the filters in the first convolutional layer
of the small non-residual networks, we can see some interesting effects. Figure
4 visualizes the weights of the first layer of FCN20 and GFCN5 in the first row.
First of all, we observe in both the group equivariant network as well as in the
traditional convolutional network, edge and corner contrast detecting filters. Ad-
ditionally, we observe the existence of multiple similar filters in multiple poses
in the traditional network, in some cases with counterparts in the group equiv-
ariant network. However, we do not always see all 4 poses of a filter in the non
group-equivariant network.

Most interestingly however, the filters of the group equivariant network do not
only respond to intensity contrasts, but also to color contrasts. For example, the
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(a) GFCN5 positive
weights

(b) FCN20 positive
weights

(c) GFCN5 negative
weights

(d) FCN20 negative
weights

(e) GFCN16 positive
weights

(f) FCN64 positive
weights

(g) GFCN16 negative
weights

(h) FCN64 negative
weights

Fig. 4: Visualization the weights of the first convolutional layer. Top row: GFCN5
and FCN20. Bottom row: GFCN16 and FCN64. In (a), (b), (e) and (f) we see the
positive weights. In (c), (d), (g) and (h) we see the negative weights.

group of filters marked with yellow respond strongly to a bright-red to dim-blue
diagonal contrast and the group of filters marked with red respond strongly to
a bright-purple to dim-green horizontal and vertical contrast.

Similarly, the filters of the first layer of GFCN16 and FCN64 are visualized in
the same Figure in the bottom row. We see the phenomena observed in the
small versions also in the large version. Additionally, variations of most of the
filters in GFCN5 are also visible in GFCN16. However, in contrast to our obser-
vations of the smaller networks, FCN64 appear to have some filters with both
intensity and color contrasts but also contains filters that respond to color yet
without an apparent structure.

Finally, although we see clear, structural contrasts in both intensity and color
in the group equivariant networks, a large number of filters in the traditional
networks does not exhibit this clear structure. Consequently, this makes the
interpretation of filters harder. Additionally, we see that filters in group equiv-
ariant networks are more distinct compared to filters in traditional networks.
Given the these observations, it is surprising that the difference in performance
between group equivariant networks and traditional networks is as small as it is.
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(a) GFCN5 positive
pre-activation out-
put

(b) FCN20 positive
pre-activation out-
put

(c) GFCN5 negative
pre-activation out-
put

(d) FCN20 negative
pre-activation out-
put

(e) GFCN16 positive
pre-activation out-
put

(f) FCN64 positive
pre-activation out-
put

(g) GFCN16 negative
pre-activation out-
put

(h) FCN64 negative
pre-activation out-
put

Fig. 5: Visualization the pre-activation output of the 8th convolutional layer of
GFCN5, FCN20, GFCN16 and FCN64. In (a), (b), (e) and (f) we see positive outputs.
In (c), (d), (g) and (h) we see negative outputs. The blue regions contain features
that seem to inhibit PV panel installations presence.

Eighth Layer Pre-Activation Output We visualize the last feature-layer
before the activation function has been applied in Figure 5.

In Figure 4e, in the top row we see five rows of almost equivalent shapes for
GFCN5 whereas we see more variation in the filters of FCN20 in Figure 4b, al-
though the variation is mostly in intensity. However, if we look at the inhibiting
parts of the layer output in Figures 4c and 4d, we see something different. Most
of the filters in FCN20 show little inhibition. Furthermore, we some differentiation
in the first, second, third and fifth rows of GFCN5 features in the misclassified
regions around the PV installations.

Similarly, the bottom row of Figure 5 is a visualization of the output of layer 8
in GFCN16 and FCN64. While we see similar patterns to Figure 5 for the smaller
networks, we also see a few additional features in GFCN16 which seem to be
absent in FCN64. Specifically, the features with blue outlines appear to mostly
inhibit near the boundaries between PV and non-PV segments. However, due to
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the use of the ReLU activation function, this inhibition is erased after activation.

Finally, in both both rows of Figure 5 we see features that appear to indicate
the presence of PV panel installations.

5 Conclusion

The results show group equivariant networks slightly outperform traditional con-
volutional networks on both accuracy and generalization. In contrast to the work
of Cohen and Welling, the performance increase is less pronounced. Additionally,
this work keeps the amount of information after each layer constant instead of
the number of trainable parameters. The group equivariant networks are there-
fore constrained in learning ability compared to the traditional convolutional
networks. Had the amount of trainable parameters been kept constant instead,
the group equivariant networks would likely have performed better, increasing
the performance difference. Even with this bias towards the traditional networks,
they are outperformed.

Furthermore, the addition of residual blocks decreased performance. It is not
directly clear why this is the case. Additional research would be required to
determine the cause.

As feature representations become more abstract, abstraction of symmetry
might become less useful. An ablation test, where one or more layers at the end
of the network are trained without group equivariance, is required to determine
what the gain in performance is of group equivariance at layers representing
abstract features.

Additionally, as the dataset was annotated by a single annotator the dataset
is lacking in quality. By either switching to the dataset in [1] or by using multiple
annotators to increase the quality, we expect to see increased performance.

We feel potential improvements and avenues for future research lie in im-
proved usage of local information. Either through U-Net like skip-connections or
through the addition of Conditional Random Fields such as proposed by [8].

We showed group equivariant convolutions improve segmentation of photo-
voltaic panels in aerial photography compared to regular convolution. Although
our experiment favors regular convolutions, our models still outperform them.

Code Code and other used digital resources are available at:
https://gitlab.socsci.ru.nl/l.bokkers/thesis
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