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Abstract. We outline DLMedia, an ontology mediated multimedia information
retrieval system, which combines logic-based retrieval with multimedia feature-
based similarity retrieval. An ontology layer may be used to define (in terms of a
DLR-Lite like description logic) the relevant abstract concepts and relations of the
application domain, while a content-based multimedia retrieval system is used for
feature-based retrieval.

1 Introduction

Multimedia Information Retrieval (MIR) concerns the retrieval of those multimedia ob-
jects of a collection that are relevant to a user information need.

Here we outline DLMedia, an ontology mediated Multimedia Information Retrieval
(MIR) system , which combines logic-based retrieval with multimedia feature-based sim-
ilarity retrieval. An ontology layer may be used to define (in terms of a DLR-Lite like
description logic) the relevant abstract concepts and relations of the application domain,
while a content-based multimedia retrieval system is used for feature-based retrieval.

2 The Logic-based MIR Model in DLLMedia

Overall, DLMedia follows the Logic-based Multimedia Information Retrieval (LMIR)
model described in [9] (see [9] for an overview on LMIR literature. A recent work is also
e.g. [6]). Let us first roughly present (parts of) the LMIR model of [9]. In doing this, we
rely on Figure 1. The model has two layers addressing the multidimensional aspect of
multimedia objects 0 € O (e.g. objects o1 and 02 in Figure 1): that is, their form and
their semantics (or meaning). The form of a multimedia object is a collective name for
all its media dependent, typically automatically extracted features, like text index term
weights (object of type text), colour distribution, shape, texture, spatial relationships (ob-
ject of type image), mosaiced video-frame sequences and time relationships (object of
type video). On the other hand, the semantics (or meaning) of a multimedia object is a
collective name for those features that pertain to the slice of the real world being rep-
resented, which exists independently of the existence of a object referring to it. Unlike
form, the semantics of a multimedia object is thus media independent (typically, con-
structed manually perhaps with the assistance of some automatic tool). Therefore, we
have two layers, the object form layer and the object semantics layer. The former rep-
resents media dependent features of the objects, while the latter describes the semantic



media dependent properties media independent properties

. N/
Object features:
- color, shape, texture
- structure

~

Object Semantics Layer K

o \(S,noopy is a dog \\

Snoopy \‘ Birds and Dogs |
are animals

‘ Woodslocy |

T " Woodstock is a bird/
’ i 7
Object Form Layer PiAN e SRR

1
F(o1, Snoopy)=.8

02

Fig. 1. LMIR model layers and objects

properties of the slice of world the objects are about. The semantic entities (e.g., Snoopy,
Woodstock), which objects can be about are called semantic index terms (t € T). The
mapping of objects o € O to semantic entities t € T (e.g., “object o1 is about Snoopy”) is
called semantic annotation. According to the fuzzy information retrieval model (e.g. [2]),
semantic annotation can be formalized as a membership function F: O x T — [0, 1] de-
scribing the correlation between multimedia objects and semantic index terms. The value
F(o,t) indicates to which degree the multimedia object o deals with the semantic index
term ¢. Depending on the context, the function F' may be computed automatically (e.g.,
for text we may have [4], for images we may have an automated image annotation (clas-
sification) tool, as e.g. [5]).

Corresponding to the two dimensions of a document just introduced, there are three
categories of retrieval: one for each dimension (form-based retrieval and semantics-based
retrieval) and one concerning the combination of both of them. The retrieval of informa-
tion based on form addresses, of course, the syntactical properties of documents. For
instance, form-based retrieval methods automatically create the document representa-
tions to be used in retrieval by extracting low-level features from documents, such as the
number of occurrences of words in text, or color distributions in images. To the contrary,
semantics-based retrieval methods rely on a symbolic representation of the meaning of
documents, that is descriptions formulated in some suitable formal language. Typically,
meaning representations are constructed manually, perhaps with the assistance of some
automatic tool.

A data model for MIR not only needs both dimensions to be taken into account, but
also requires that each of them be tackled by means of the tools most appropriate to it,
and that these two sets of tools be integrated in a principled way. DLMedia’s data model
is based on logic in the sense that retrieval can be defined in terms of logical entailment
as defined in the next section.

3 The DLMedia query and representation language

For computational reasons the particular logic DLMedia adopt is based on a DLR-Lite [3]
like Description Logic (DL) [1]. The DL will be used in order to both define the relevant
abstract concepts and relations of the application domain, as well as to describe the in-
formation need of a user.

Our DL is enriched with build-in predicates allowing to address all three categories of
retrieval (form-based, semantic-based and their combination). To support query answer-
ing, the DLMedia system has a DLR-Lite like reasoning component and a (feature-based)



multimedia retrieval component. In the latter case, we rely on our multimedia retrieval
system MILOS !.

In order to support reasoning about form and content, DLMedia provides a logical
query and representation language, which closely resembles a fuzzy variant DLR-Lite [3,
12, 11] with fuzzy concrete domains [10].

The concrete predicates that we allow are not only relational predicates such as
(x < 1500) (e.g. x is less or equal than 1500), but also similarity predicates such as
(x simTxt'logic, image, retrieval’), which given a piece of text x returns the system’s
degree (in [0, 1]) of being = about the keywords "logic, image, retrieval’.

A fuzzy concrete domain (or simply fuzzy domain) is a pair (Ap, ®p), where Ap is an
interpretation domain and @y, is the set of fuzzy domain predicates d with a predefined
arity n and an interpretation d°: A%} — [0, 1]. An axiom is of the form (m > 1)

Ri,M...NRl, C Rr,

where Rl is a so-called left-hand relation and Rr is a right-hand relation with following
syntax (I > 1):

Rr — A|3i1,...,ix]R

Rl — A3, .., 4R | Jix, ..., k] R.(Cond; M ...M Cond)

Cond — ([i] <) | (M v) | ([Z > ) | ([i] > ) | ([l] =v) | ([ #v) |

([)] simTxt k1, ..., k) | ([i] simImgURN)
where A is an atomic concept, R is an n-ary relation with 1 < 41,45, ...,5 < n, 1 <
1 < n and v is a value of the concrete interpretation domain of the appropriate type. In-
formally, J[i1, . .., ix] R is the projection of the relation R on the columns i1, . . ., i, (the
order of the indexes matters). Hence, 3[i1, . . ., 45| R has arity k. 3[i1, . . ., ig] R.(Cond; M
.M Cond,) further restricts the projection 3[iy, ..., ;] R according to the conditions

specified in Coond;. For instance, ([i] < v) specifies that the values of the -th column
have to be less or equal than the value v, ([i] simTat’k; ... k.,) evaluates the degree
of being the text of the i-th column similar to the list of keywords k; ...k,, while
([{] simImgURN) returns the system’s degree of being the image identified by the i-th
column similar to the object o identified by the URN (Uniform Resource Name *). We fur-
ther assume that all Rl; and Rr in RI1T1...MRIL,, C Rr have the same arity. For instance
assume we have arelation Person(name, age, father_name, mother_name, gender)
then the following are axioms:

3[1, 2] Person C 3[1, 2]hasAge
/I constrains relation hasAge(name, age)
3[3, 1] Person C 3[1, 2|hasChild
/l constrains relation hasChild( father_name, name)
3[4, 1] Person C 3[1, 2]hasChild
/I constrains relation hasChild(mother_name, name)
3[3, 1] Person.(([2] > 18) M ([5] =" female’) C I[1, 2lhasAdult Daughter
/I constrains relation hasAdult Daughter( father_name, name)

Note that in the last axiom, we require that the age is greater or equal than 18 and the
gender is female. On the other hand examples axioms involving similarity predicates are,

[1[ImageDescr.([2] simImgurnl) C Child (1)

"http://milos.isti.cnr.it/
Zhttp://en.wikipedia.org/wiki/Uniform_Resource_Name



J[1)Title.([2] simTxt 'lion’) C Lion )

where urnl identifies the image in Figure 2. The former axiom (axiom 1) assumes that

we have an I'mageDescr relation, whose first column is the application specific image
identifier and the second column contains the image URN. Then, this axiom (informally)
states that an image similar to the image depicted in Figure 2 is about a Child (to a sys-
tem computed degree in [0, 1]).

Similarly, in axiom (2) we assume that an image is an-
notated with a metadata format, e.g. MPEG-7, the at-
tribute T'itle is seen as a binary relation, whose first
column is the identifier of the metadata record, and the . .
second column contains the title (piece of text) of the Fig. 2. Service Model
annotated image. Then, this axiom (informally) states that an image whose metadata
record contains an attribute 7itle which is about ’lion’ is about a Lion. The following
example

A[1]F C MultiMediaObject
3[2]F C SemanticIndexTerm
3[1, 2]F C 31, 2]IsAbout

gives some constraints on the semantic annotation function F'.

From a semantics point of view, DLMedia is based on fuzzy logic, both because the
the LMIR annotation model it is based on the fuzzy information retrieval model, as well
as each instance of atoms and relations may have a score, and, thus we have to define
how these scores are combined using the logical connectives of the language.

Given a fuzzy concrete domain (Ap, ®p), an interpretation T = (A,-T) consists of
a fixed infinite domain A, containing Ap, and an interpretation function -~ that maps
every atom A to a function AZ: A — [0, 1] and maps an n-ary predicate R to a function
RZ: A™ — [0,1] and constants to elements of A such that a” # b? if a#b (unique
name assumption). We assume to have one object for each constant, denoting exactly
that object. In other words, we have standard names, and we do not distinguish between
the alphabet of constants and the objects in A. Furthermore, we assume that the relations
have a typed signature and the interpretations have to agree on the relation’s type. For
instance, the second argument of the T'tle relation (see axiom 2) is of type String
and any interpretation function requires that the second argument of Title” is of type
String. To the easy of presentation, we omit the formalization of this aspect and leave
it at the intuitive level. In the following, we use c to denote an n-tuple of constants, and
cli1, ..., ix) to denote the i1, ..., i,-th components of c. For instance, (a, b, ¢, d)[3,1, 4]
is (¢, a, d). Let t be a so-called T-norm, which is a function used to combine the truth of
“conjunctive” expressions. > Then, - has to satisfy, for all ¢ € A* and n-ary relation R:

(El[il’ R Zk]R)I(C) = SUPcrean, c’i,...,ig]=c RI(C,)

(i1, ..., ik]R.(Condy ... 1 Condy))* (c) =
SUDe e An, e/fiy....ip )= R (), Condi* ('), ..., Cond* ()

3 ¢ has to be symmetric, associative, monotone in its arguments and ¢(x, 1) = x. Examples of
t-norms are: min(z,y), z - y, max(x +y — 1,0).



with ([i] < v)(e) = 1ifc’ [i] <w,and ([i] < v)%(c’) = 0 otherwise (and similarly for
the other comparison operators), while

([i] simTxt 'k, ..., k) (c') = simTat®('[i], ka, ..., kL) € [0,1]
([i] simImg URN)*(c') = simImg®(c'[i],URN) € [0,1] .

It is pretty clear that many other concrete predicates can be added as well.

Then, Z = R, M...MN R, T Rriffforallce A" t(Rl%(c),...,Rl;*(c)) <
Rr¥(c), where we assume that the arity of Rr and all RI; is n.

Concerning queries, a guery consists of a conjunctive query of the form

q(x) — Ri(z1) A ... ARy (z),

where q is an n-ary predicate, every R; is an n;-ary predicate, x is a vector of variables,

and every z; is a vector of constants, or variables. We call ¢(x) its head and Ry(z1) A

..., ARi(z;) its body. R;(z;) may also be a concrete unary predicate of the form (z <

v), (2 <), (z >v),(z >v),(z=v),(z #v),(zsimTxt'ky,... kL), (zsimImgURN),
where z is a variable, v is a value of the appropriate concrete domain, k; is a keyword

and U RN is an URN. Example queries are:

q(x) — Child(x)
/I find objects about a child (strictly speaking, find instances of C'hild)

q(z) + Creator Name(x,y) A (y =" paold’), Title(z, z), (2 simTxt "tour")
/I find images made by Paolo whose title is about "tour’

q(z) < ImageDescr(z,y) A (y simImgurn2)
/I find images similar to a given image identified by urn2

q(z) < ImageObject(x) N isAbout(z,y1) A Car(y1) A isAbout(z,y2) A Racing(ys2)
/I find image objects about cars racing

From a semantics point of view, an interpretation Z is a model of a rule r of form
q(x) — ¢(x,y), where ¢(x,y) is R1(z1) A ... A Ry(z;), denoted Z |= r, iff for all
ceA™
g'(c)> sup  ¢’(c,c),
c/€Ax--xA

where ¢7 (c,c’) is obtained from ¢(c, ¢’) by replacing every R; by RZ, and the T-norm
t is used to combine all the truth degrees RZ (c”) in ¢*(c, c’).

Finally, in DL-Media, we may also have so-called set of facts, i.e. a finite set of
instances of relations, i.e. a set of expressions of the form

(R(c1y..-y¢n),8),

where R is an n-ary predicate, every c; is a constant and s is the degree of truth (score) of
the fact. If s is omitted, as e.g. in traditional databases, then the truth degree 1 is assumed.
T E(R(e1,. .. cn),8) iff RI(cq,y. .. cn) > s.

For instance, related to Figure 1, we may have the facts

(F (o1, snoopy),0.8) (F(02,woodstock),0.6)
Dog(snoopy) Bird(woodstock) .



A DLMedia multimedia base K = (F, O) consists of a facts component F, and a axioms
component O. 7T |= K iff T is a model of each component of K. We say K entails R(c) to
degree s, denoted K = (R(c), s), iff for each model Z of K, it is true that RZ(c) > s. The
greatest lower bound of R(c) relative to K is glb(IC, R(c)) = sup{s | K = (R(c), s)}.

The basic inference problem that is of interest in DLMedia is the top-k retrieval
problem, formulated as follows. Given a multimedia base K and a query with head ¢(x),
retrieve k tuples (c, s) that instantiate the query predicate ¢ with maximal score, and rank
them in decreasing order relative to the score s, denoted

ansy (K, q) = Top,{(c,s) | s = glb(K,q(c))} .

From a reasoning point of view, the DLMedia system extends the DL-Lite/DLR-Lite
reasoning method [3] to the fuzzy case. The algorithm is a straightforward extension of
the one described in [12, 11]). Roughly, given a query q(x) < Ry(z1) A ... A Ri(z),

1. by considering O only, the user query q is reformulated into a set of conjunctive
queries (g, ©O). Informally, the basic idea is that the reformulation procedure closely
resembles a top-down resolution procedure for logic programming, where each ax-
iom is seen as a logic programming rule. For instance, given the query ¢(z) <« A(z)
and suppose that O contains the axioms B; = A and Bs C A, then we can refor-
mulate the query into two queries ¢(z) <« Bi(x) and ¢(z) <« Ba(x), exactly as it
happens for top-down resolution methods in logic programming;

2. the reformulated queries in (g, O) are evaluated over F only (which is solved by
accessing a top-k database engine [7] and a multimedia retrieval system), producing
the requested top-k answer set ansg (K, q) by applying the Disjunctive Threshold
Algorithm (DTA, see [12] for the details). For instance, for the previous query, the
answers will be the top-k answers of the union of the answers produced by all three
queries.

4 DLMedia at work

A preliminary prototype of the DLMedia system has been implemented. The architecture
is pretty similar to the QuOnto system #. The main interface is shown in Figure 3.

In the upper pane, the currently loaded ontology component O is shown. Below it
and to the right, the current query is shown (“find a child”, we also do not report here the
concrete syntax of the DLMedia DL).

So far, in DLMedia, given a query, it will be transformed, using the ontology, into
several queries (according to the query reformulation step described above) and then the
conjunctive queries are transformed into appropriate queries (this component is called
wrapper) in order to be submitted to the underlying database and multimedia engine. To
support the query rewriting phase, DLMedia allows also to write schema mapping rules,
which map e.g. a relation name R into the concrete name of a relational table of the
underlying database. The currently supported wrappers are for (of course other wrappers
can be plugged in as well.)

— the relational database system Postgres; >

*http://www.dis.uniromal.it/~quonto/.
Shttp://www.postgresql.org/
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Fig. 3. DLMedia main interface.

— the relational database system with text similarity MySQL; ¢ and
— our multimedia retrieval system Milos, which supports XML data.

For instance, the execution of the toy query shown in Figure 3 (“find a child”) produces
the ranked list of images shown in Figure 4.

5 Conclusions

In this work, we have outlined the DLMedia system, i.e. an ontology mediated multime-
dia retrieval system. Main features (so far) of DLMedia are that: (i) it uses a DLR-Lite(D)
like language as query and ontology representation language; (ii) it supports queries
about the form and content of multimedia data; and (iii) is scalable -though we did not
address it here, query answering in DLMedia is LogSpace-complete in data complexity.
The data complexity of DLMedia directly depends by the data complexity of the under-
lying database and multimedia retrieval engines.
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