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ABSTRACT
In the Internet of Things (IoT) era, various nodes generate vast
quantities of records, and data processing solutions consist of a
number of activities/tasks that can be executed at the Edge of the
network or on the Cloud. Their management at the Edge of the net-
work may limit the time required to complete responses and return
the final result/analytic to end users or applications. Also IoT nodes
can perform a restricted amount of functionality over the contex-
tual information gathered, owing to their restricted computational
and resource capacities. Whether tasks are assigned to an Edge or a
Cloud is based on a number of factors such as: tasks’ constraints, the
load of nodes, and energy capacity. We propose a greedy heuristic
algorithm to allocate tasks between the available resources while
minimizing the execution time. The allocation algorithm considers
factors such as the deadline associated with each task, location, and
budget constraint. We evaluate the proposed work using iFogSim
considering two use case studies. The performance analysis shows
that the proposed algorithm has minimized cost, execution time,
control loop delay, networking, and Cloud energy consumption
compared to the Cloud-only approach.
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) are integrated systems that aim to
bring physical entities together with the all-present computing and
networking systems [2]. An important concept in close association
with CPS is the Internet of Things (IoT), which promotes the use
of emerging technologies and architectures for large-scale appli-
cations to define and virtualize physical objects [2]. The IoT is a
revolutionary technology that provides a completely linked "intelli-
gent" universe, accelerating the 4th industrial revolution in which
millions of things are linked with each other on the globe [4]. These
items share information and services to define, track, and handle
the physical environment, enabling different applications e.g. smart
cities, agriculture, and health care applications to transform our
lifestyle and enhance both quality of life and human civilization.
However, the large-scale realization of IoT services is restricted by

the constraints of IoT devices (integrated with everyday objects
such as cars, utility parts, and sensors) and their limitations in
computing resources, memory capability, power, and bandwidth.

Many of these problems could be solved by using Cloud-Assisted
Things or Cloud of Things (CoT) technology as it provides large-
scale and on-demand computing resources for managing, storing,
processing, and sharing IoT information and services [4] [5]. How-
ever, with the increasing number of applications, and their time-
sensitive nature, Cloud-based solutions are not enough and mostly
suffer from latency due to the centralized nature of Cloud data
centers, which are mostly located at a far distance from the data
sources. Therefore, utilizing Edge resources while benefiting from
the Cloud whenever it is required, is essential for time-sensitive
applications, and for overcoming the problems associated with
centralized control. However, there are a number of challenges to
consider such as maximizing the utilization of Edge resources while
considering the limitations of their computation capabilities. Also
there is a possibility that some of the tasks can be time-sensitive
and it is therefore crucial to be allocated and executed immediately.
Executing forthcoming tasks requires proper task allocation and
scheduling which satisfies the requirement of all the tasks while
maintaining the SLA (service level agreement).

There are certain challenges that need to be considered while
making the allocation and scheduling decisions. The main chal-
lenges are given below.

(1) The uncertainty of the data-in rate: The IoT captures data
from the physical environment, which is dynamic in na-
ture. For example, in camera-based applications that capture
people passing by a certain point, the number of pictures
taken varies for many reasons (e.g., rush hours vs peak hours,
weekdays vs weekends, or if there are certain events nearby).
Therefore, it is essential to rerun the algorithm to reschedule
the activities whenever the data-in rate exceeds the prede-
fined data-in rate.

(2) The conflict between objectives: To minimize the cost, it is
better to deploy the activities on Edge resources; however, in
some cases, deploying activities on Edge resources affects the
throughput of an application and it will suffer from resource
bottlenecks due to the limited processing capabilities.
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To address these challenges while making the allocation, we
propose a layered-based algorithm that identifies and minimizes
the global bottleneck, i.e., minimizing the processing time and the
cost as well as maximizing the utilization of resource computation at
the Edge layer. The main contributions of this work are summarized
as follows:

• We consider a task placement approach based on cooper-
ation between the Edge and Cloud that supports service
decentralization, leveraging context-aware information such
as location and available computing and storage capacities of
Edge resources. The placement approach considers deadline
constraints associated with each task as a way to emphasize
utilizing Edge resources and a budget constraint at applica-
tion level. This maximizes the utilization of Edge resources
and minimizes latency, energy consumption, and cost.

• We conduct a performance analysis with various case studies
using iFogSim1 to reveal the effectiveness of the proposed ap-
proach in terms of maximizing the utilization of Fog devices
while reducing latency, energy consumption, and network
load.

2 SLA- AND CONTEXT-AWARE APPROACH
FOR IOT ACTIVITY PLACEMENT ACROSS
CLOUD AND EDGE

In this approach, we consider IoT applications, whichmostly consist
of a set of activities, some of which requires high bandwidth and low
computation. They can be performed on one of the resources at the
Edge of the network, while if an activity requires more computation,
then it can be offloaded to the Cloud. In the case where there is
more than one activity, selecting which one to deploy at the Edge or
the Cloud level can be based on different criteria (e.g., cost, distance,
location, processing time). Our aim is to provide a solution that
distributes the workflow activities in such order that optimize both
consumer requirements and utilizes computation capabilities at the
Edge, meanwhile aiming to avoid any SLA violation.

2.1 Problem Definition and Modeling
In IoT applications, task/activity placement is the problem of al-
locating tasks/activities to a set of processors (resources) that are
distributed across layers (Edge and Cloud). The input to the task
placement controller is an activity graph and a processor graph,
and the output is a placement plan that maps each activity to a
suitable processor/resource. Whether the resources are located at
the Edge or the Cloud is based on each task/activity’s computation
and communication requirements.

2.1.1 Multi-layer Computing Architecture for IoT. This section presents
the proposed multi-layer architecture for IoT. It also describes the
task placement information and the necessary concepts related to
the proposed scheme. Figure 1 denotes the three main layers as
described below:

1The iFogSim is an open source toolkit for modeling and simulating
resource management approaches for IoT, Edge and Fog Computing
https://github.com/Cloudslab/iFogSim

• IoT devices: the layer consists of devices with sensing and
actuating purposes. It also has internet connection capability
for transferring the data to Edge or Cloud.

• Edge Computing layer: this includes the upper layer of the
IoT devices which provides lightweight computation. Re-
sources in this layer are distributed to cover different re-
gions. In other words, resources can be clustered by the
region which covers the IoT devices within that region to
connect and transfer data.

• Cloud Layer: It is the centralized layer where heavy compu-
tation/storage processes can be delegated.

Figure 1: Tasks dependencies example for an IoT application

2.1.2 Task Graph: A task graph is represented by a directed acyclic
graph (DAG),TG = (T ,E)where the set of nodesT = {t1, t2, t3, ..., tn }
represent n tasks. Between tasks, there is a set of edges belongs to E
which represents the data dependency between nodes. For example,
tasks t1 and t2 are connected by e1,2. In another word, between any
ti and tj , there is ei, j belongs to E. Thus, we can define Edges and
Tasks as follow:

∀(ti ∧ tj ∈ T ), ∃ ei, j = (ti , tj ) ∈ E

Consider T represents a task which is defined as T = {Tid , ReqP-
Capcty, deadline, region, level}.Tid represents the task Id,ReqPCapcty
represents requested processing capacity, deadline represents the
deadline constraint of a single task while reдion reveals the re-
gion/location where this task is preferable to be deployed. Finally
level is used to denote how many hops this task is far from the
starting point which in our case is sensing events.2

Each ei, j can be defined as ei, j = ( SrcID, DisID, dataTransfer-
eRate, TupleProcessingReq, TupleLentgth) where SrcID represent
the source task id (ti node); DisID represents the destination task
id (tj node); dataTransfereRate expresses the data transfer rate
between ti and tj , TupleProcessingReq represent the processing
requirement of coming tuples, and TupleLength represents the total
length of the tuple.

Each task has one or more predecessors unless it is a start task as
well as successors (one ormore) unless if it is a finish task (see Figure
2 which depicts the start and finish tasks). Any task starts only after

2Within the text, we used tasks, workflow activities and intermodules interchangeably
for the same meaning.
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all its predecessor tasks have completed, so its earliest start time is
equal to the maximum finish time of all of its predecessors.

Figure 2: Tasks dependencies example for an IoT application

2.1.3 Processor Graph. Consider the presented topology in Figure
3. A processor graph is represented by a DAG, PG = (P ,D), where
the set of nodes P = p1,p2,p3, ...,pn represents n processors, a
processor belongs to P can be a Cloud or an Edge resource. Between
processors, there is a link distanced that connects them, for example,
processors p1 and p2 are connected by d1,2, so there is a set of links
di, j between any pi and pj belongs to P and di, j belongs to D. We
can define the distance links and processors as follows:

∀pi ∧ pj ∈ P , ∃ di, j = (pi ,pj ) ∈ D

Cloud Resource

GW1 GW2

p1 p2 p3

p7

p9

d 1,7 d 3,7

d 7,9

dev1 dev2 dev4 dev5 dev6dev3

Figure 3: Tasks dependencies example for an IoT application

Each processor pi can be defined aspi =(pCapctyi ,upLnkLatencyi ,
pmLoadi ). pCapctyi is considered to hold processing capacity of pi ,
communication bandwidth is upLnkLatencyi and pmLoadi is the
current PM load.

2.1.4 Objectives. The objective is to propose a placement mech-
anism which aims to maximize the utilization of Edge resource
as well as minimizing the cost and latency of an IoT application.
In this work, the main information considered for task/workflow
activity placement is as follows:

• Network Topology: available resources and their computa-
tion capabilities.

• Location of initiated requests or consumed services.
• Service Type: data storing and data filtering are services that
require different computation/storage capabilities, therefore,
approximate size of data (e.g. required Million Instructions
Per Second (MIPS) required by an activity/task).

• Level of activity: number of hops that separate a task/activity
from its starting point, in our case from the IoT devices that
generate the data. It is essential to denote the dependency
between tasks that helps to avoid assigning a task to the
resource on the level lower than their predecessor, as well
as to allow parallel processing for tasks that are within the
same level.

• Quality of Service: knowing in advance the constraints on
the offered services plays a role in selecting the type and
layer of resource. In our work we considered minimizing
the end-to-end response time by considering the deadline
constraint for each involved task/activity.

To express our objective in maximizing the utilization of Edge
resources, Each Task ti can be deployed on RCloud or on REdдe ,
however, deploying ti on a Cloud resource or Edge resource is a
binary variable. If ti is deployed on Cloud, then 1 is assigned to
TiRCloud while 0 to TiREdдe and vice versa.

Each task is processed on either Edge or Cloud resources, thus,
we try to maximize assigning tasks to Edge resources whenever it
is appropriate which we represent mathematically as :

Maximize
i=n∑
i=0

TiREdдe (1)

The processing time of a taski on a pj is calculated as given in
equation 2.

TExec (ti ,p
′
j ) =

α tipj fti (zi )

p′j
+ upLnkLatencypj (2)

Here, fti (zi ) represents computation requirement for task ti and
zi represents data into task ti and α tipj represent number of current
modules running concurrently with ti on node p′j .

To calculate the CPU requirement for upcoming data/tuples for
task ti is given in equation 3 for each edge has ti as its distention(i.e
DisID for edge e is ti ). Where DTR represents the data transfer rate
of an edge e and TPR represents the required processing capacity
for each transferred tuple by edge e.

edдee=y∑
edдee=0

DTR ×TPR ∀ edдe e has DisID = ti (3)

The total cost of of running ti over node pj is sum of memory
cost memCostT i , communication cost commCostT i , storage cost
storдCostT i and node cost nodeCostT i as given in equation 4. Each
of these costs are explained in equation 5 - 8 respectively.

Cost(Ti ) =memCostT i + commCostT i + storдCostT i + nodeCostT i
(4)

memCostT i =
fti (zi )

pi
memoryCostUnit (5)

commCostT i = sizeDataIn ∗ commCostUnit (6)

storдCostT i = DataToStore ∗ StoraдeCostUnit (7)

nodeCostT i = TiExec ∗ NodeCost (8)
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2.1.5 Proposed Algorithm. In the following section, we present
the proposed algorithm for placing intermoduls among available
resources with considering the following objectives and constraints:

Offline Integer Programming Formulation. Here we aim to min-
imize the cost of deploying intermodules on available resources
and and the end to end response time. For the offline version of the
intermodules placement problem, integer programming formula-
tions are derived. These formulations are used to devise limits on
the suggested approach. The main objective aims at minimizing
the execution time while considering other constraints such as
cost/budget constant. Table 1 summarizes the notations used in our
formulation. Our main decision variables, denoted as xi j is defined
as follows:

obj = Minimize
i=n∑
i=0

Timetaski (9)

subject to

xi j ∈ 0, 1,∀i = 0, 1, ...,n;∀j = 0, 1, ...,m (10a)
i=n∑
i=0

CostTi <= CostConstraint (10b)

i=n∑
i=0

TiREdдe >
i=n∑
i=0

TiRCloud (10c)∑
i,level=l

ti j <= 1 (10d)

k=predecessorListSize∑
k=0,i, j

tk jt ier <= ti jt ier (10e)

Constraint 1 enforces the binary nature of xi j . Constraints 2
ensures that the cost of the deployment plan will not exceed the
cost/budget limit. Constraints 3 ensures that number of assigned
intermodules to Edge resources is greater than the number of as-
signed intermodules to Cloud resources. Constraint 4 ensures that
no two intermodules from the same level are assigned to the same
resource. Constraint 5, for all predecessors of a ti ti that has re-
quired processing capacity more than ti itself, constraint 5 ensures
that no intermodule ti is assigned to a resource that is located in a
tier lower than any of its predecessors.

In Algorithm 1, the Tasks and resources graphs are inputs. Line
6,7 and 8 are defining the associated level of each intermodules
which calculated based on number of hops between the intermod-
ule and the source of captured interesting event. Line 10 to 12
are to calculate the corresponding execution time of deploying ti
on resource pj and then sort all resources based on their execu-
tion time. Starting with the least execution time do the constraints
checking starting from Line 14 till 28: it check if pj resource has
predecessors to check that no predecessor of an intermodule ti ,
is assigned to a resource that allocated in a layer higher than the
current checked pj . If there is a resource pj , that has one of ti ’s pre-
decessor deployed on OR there is no predecessor of ti are deployed
on a resource with layer above the current pj , then do checking on
the associated constraints with the interemodule ti by calling check-
ConstraintsConsistencyFunction (Line 21). If there is no resource pj

Table 1: Notations for the Offline Integer formulations and
symbols used in the algorithm

Notations Meanings
ti task/activity/intermodules i
pj a resource with processor pj
ei j dependency edge between two tasks

ti and tj
li j Link between two resources Pi and Pj
bwi j bandwidth of link li j
zi j data size transferred

over edge dependency ei j
disi j distance between Pi and Pj
di j Link delay of link li j between Pi and Pj
picapacity Computation capacity of resources Pi
ReqPCapcty Represents requested processing capacity
level Reflects how many hops this task is

far from the starting point
ei, j Edge between ti and tj task nodes
SrcID Represent the source id
DisID Represents the destination id
dataTrans f ereRate Expresses data transfer rate

between ti and tj
TupleProcessinдReq Represent processing requirement

of the tuples
TupleLentдth Represents the length of tuples
pCapctyi Holds processing capacity of pi in MIPS
upLnkLatencyi Up Link Latency of pi
pLoadi Current CPU load of pi
TupleLentдth Represents the length of tuples
TiREdдe Task ti is running on Edge resource
TiRCloud Task ti is running on Cloud resource
TimeConstraintti j Time constraint of runing ti
Timeti j Execution Time of running

ti on resource pj
ti jt ier Reflects the tier of resource pj that run ti
predecessorListSize predecessors of ti with ReqPCapcty

less than ti ’s
SortedResorces Sort resources based on their

execution time of task ti
in ascending order

that matches the requirements and considered constraints then as-
sign ti to Cloud resource. In checkConstraintsConsistencyFunction
t checks that a resource pj can sustain the intermodule within its
deadline constraint, not exceeding the budget and it is not running
other tasks that have the same level as the coming intermodule and
it is within the same region. If searching all resources within the
same region does not satisfy the constraints, then check the other
regions, if there is none then return false. If false is returned, then
the task is assigned to Cloud resource if the cost constraint is not
violated.
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Algorithm 1: SLA aware algorithm for application modules
placement cross layers
1 Input: TG=(T,E) ; PG=(P,D)
2 region =-1
3 found= false
4 Output: a mapped applications modules to available resources
5 Objectives:Minimize Cost and Minimize Application latency
6 foreach ti in TG do
7 define a deadline d constraint
8 assign a level value to ti
9 foreach resource pj in PG do

10 calculate Timeti j
11 add(SortedResorces, pj )
12 end
13 foreach resource pj in SortedResorces do
14 if ti has a predecessor then
15 foreach tk in predecessor list of ti do
16 if tk is already assigned to a PG resource then
17 pl = the PG resource that tk is assigned to
18 if pl level is greater than pj level then
19 break
20 else
21 call checkConstraintsConsistencyFunction

if checkConstraintsConsistencyFunction
then

22 assign ti to pj update list of assigned
modules of pj Found= true

23 else
24 continue
25 end
26 end
27 end
28 end
29 if not found then
30 Calculate the Cost of executing ti on Cloud as in Eq. 4
31 if TotalCost+=cost of executing ti on a Cloud resource is

less than budget then
32 update TotalCost
33 assign ti to a cloud resource
34 else
35 Log The Cost exceeds the allowed Budget and break
36 end
37 end

2.2 Time Complexity Analysis
We solved this problem as a context-aware approach, therefore,
if the intermodule does not have predecessors, then in best case
scenario, first search attempt returns a resource that matches the
requirement for each intermodule, thus the time complexity is θ (n),
where n represents number of intermodules. However, in worst
case scenario when finding a resource that matches intermodules’
constraints and performing it for each intermodule ti , this requires
checking all m resources in the resource list. Therefore, the time

Algorithm 2: Checking Budget Constraints Consistency after
mapping tasks to resources
1 checkConstraintsConsistencyFunction
2 if region==-1 then
3 if ti r eдion == pj r eдion then
4 if that pj does not have tasks from the same level of ti

then
5 Calculate the Execution Time of ti on pj by

applying Equation 2
6 if the requested CPU Less than available CPU then
7 //Check if the resource can sustain the place

module check if the time is less than or equal
to the associated deadline with ti then

8 return true
9 else

10 change the region value from -1 to another region
not the same as region of ti return false

11 end
12 else
13 Go To line 4
14 end

complexity is θ (nm) where m represent number of IoT devices (e.g.,
mobile) in the available resources in PG. Cases where an intermod-
ule ti has predecessors requires more time to avoid assigning an
intermodule to a resource in a layer lower than its predecessors’s
resource. Thus we perform a checking step that iterates all of an
intermodule’s predecessors. As a result, in best case scenario, when
an intermodules has only one predecessor and finds a resource
that matches intermodules’ constraints from the first attempt, the
time complexity is θ (n)θ (1) and considering only the upper bound
means time complexity equals to θ (n). In worst case scenario, when
an intermodule ti has k predecessors and finding a resource that
matches intermodules’ constraints leads to checking all available m
resources. In this case, time complexity can be calculated as θ (nmK),
so time complexity can be in worst case scenario: θ (nm)+θ (nmK) ,
however, since k, which represents number of predecessors of an
intermodule, is less than total number of intermodules n, therefore
the Time complexity is θ (nm).

3 EVALUATION
To evaluate our proposed algorithm we run it using the iFogSim
simulator. It simulates IoT applications where it can enable ap-
plication modules to be allocated and scheduled among Fog and
Cloud resources. There is a number of simulators for IoT, how-
ever, we chose iFogSim due to the fact that it is built based on
CloudSim, which is popular among researchers for testing various
strategies/algorithms. Furthermore, iFogSim has been used by a
considerable number of published works such as [7], [6] and [1].

3.1 Use Case Studies
For evaluation purpose, we consider the following use case scenario:

3.1.1 Remote Health Monitoring Service (RHMS) Case Study 1. Con-
sider a Remote Health Monitoring Service (RHMS) where patients
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(elderly people, people with long term treatments,...) can subscribe
to be monitored on a daily basis. Data is collected and filtered and if
there is an interested pattern or event that match a threshold value,
then data can be analysed on a small scale if it is related to a specific
patient, however, in cases that require comparing coming data with
historical data, or in cases that same events come from different
subscribers such as fever signs, then the scenario can be considered
as a large scale data analysis task that needs high computational
power. Most interesting analysis results are then stored.

In this use case, the following workflow activities; data collec-
tion, data filtering, small-scale real-time data analysis, large-scale
real-time data analysis, and storing data are considered as tasks
t1, t2, t3, t4, t5. There are sensors, attached to patients, hand-wrist,
camera video for some patients and mobile accelerometers to cap-
ture activity patterns. They are connected to a smart phone as a
gateway which is then connected to WiFi gateway. The WiFi gate-
way is connected to an Internet Service Provider, which in turn is
connected to a Cloud datacenter. Description of intermodule of this
case study is depicted in Table 2.

Table 2: Description of intermodule edges of Case Study 1

Tuple Type CPU Length[MIPS] N/W Length
Sensor 2500 500
COLLECTED_DATA 2500 500
FILTERED_DATA 1000 1000
ANALYSED_RESULT1 5000 2000
ANALYSED_RESULT2 10000 2000
COMMANDS 28 100

3.1.2 Intelligent Surveillance Case Study 2. Intelligent Surveillance
application comprises five main processing modules: Motion De-
tector, Object Detector, Object Tracker, PTZ Control, and User
Interface. This case study is one of the case studies mentioned in
[3]. We have used it because we are planning to compare our results
with the Edge-ward module placement algorithm presented in [3].
For more details of the case study and the algorithm, readers are
advised to refer to [3]. A description of the intermodule of this case
study is depicted in Table 5.

3.2 Physical network
For the case study, we have considered a physical topology with
different types of Fog devices. Table 3 and Table 4 present the
configuration of the used topology. This configuration is the same
for both case studies, except the number of Fog devices. Case study
1 consists of four areas and each area has four fog devices; Case
study 2 consists of two areas and each area has four fog devices.

Table 3: Associated Latency of network links

Source Destination Latency [ms]
IoT device Smart Phone 1
smart phone WiFi Gatway 2
WiFi Gatway ISP Gatway 2
ISP Gatway Cloud datacenter 100

Table 4: Configuration Description of Fog Devices

Device Type CPU [GHz] RAM [GB] Power [W]
Smart Phone 1.6 1 87.53(M) 82.44(I)
WiFi Gatway 3 4 107.339(M) 83.433(I)
ISP Gatway 3 4 107.339(M) 83.433(I)
Cloud VM 3 4 107.339(M) 83.433(I)

3.3 Performance Evaluation Results
3.3.1 Analysis of Case Study1. We applied the proposed algorithm
for Case Study 1 and compared the performance result with placing
the intermodules on Cloud. Execution Time, Energy Consumption,
Network Usage and Cost are the metrics that are Captured simulat-
ing the application and applying the proposed approach to place its
intermodules using iFogSim. The following subsections compare
the results of applying the proposed approach with applying the
Cloud only approach when considering configurations listed in 2.

Execution Time. The overall execution time for Case Study 1
recorded less time when applying the proposed approach for task
placement against the Cloud only approach. Figure 4.
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Figure 4: Time Execution of Case Study1

Networking Usage. As can be noted in Figure 5, there is not
much difference in network usage, however, the proposed approach
reflects slightly more network usage at the Edge and this is probably
because of allocating most intermodules to the Edge resources.

Network	on	Cloud Network	on	Edge Network	on	Mobile
Cloud 0.099 163.076 3.1984
Proposed 0.099 173.5073 3.1984
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Figure 5: Networking Usage of Case Study1
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Energy Consumption. In general, the Cloud-only approach as
depicted in Figure 6 recorded a higher level of energy consumption
on both Cloud and mobile layers compare with the proposed ap-
proach and on Edge layer, there is a slightly difference between both
approaches which might have the same reason which is because
the propose approach allocates more intermodules on Edge rather
than Cloud.

Energy	on	Cloud Energy	on	Edge Energy	on	Mobile
Cloud 15.13206392 4.171665 13.62222746
Proposed 13.53368436 4.230683148 13.21738922
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Figure 6: Energy Consumption of Case Study1

Cloud Cost. Figure 7 depicts the cost of implementing case study
1 when applying the Cloud-only approach, and our proposed ap-
proach. Cloud cost is higher with the cloud-only approach, while
our approach is five times less costly than the Cloud-only approach
because it only allocates "storing data" to the Cloud while the rest
of deployed tasks are allocated to Edge resources.

Cloud Proposed
Cost	on	Cloud 25690.02014 3029.449143
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Figure 7: Cloud Cost of Case Study1

3.3.2 Analysis of Case Study2. We applied the proposed algorithm
for case study 2 and compared the performance result with placing
the intermodules on Cloud only as well as with the Edge-ward
placement algorithm proposed in [3]. Execution Time, Control loop
Latency, Energy Consumption, Network Usage and Cost are the
metrics that have been Captured. The following sections describes
the comparison results.

Execution Time. Execution time of all three approaches: Cloud-
only, Edge-ward placement and our proposed placement approaches
are reflected in Figure 8. Edge-ward placement has the highest level

of time execution and the proposed approach has the least execution
time.

Cloud Edge-ward		 Proposed	
Execution	Time 2528 2930 868
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Figure 8: Time Execution of Case Study2

Networking Usage. Networking usage is described for the three
tiers: IoT devices (mobiles), Edge resources (WiFi Gateways) and
Cloud. Edge-ward placement reflects the least network usage among
all proposed approaches for network usage on Edge and mobile
tiers. The proposed approach has recorded no network usage on
Cloud, but has recorded high level of network usage on the Edge tier.
This seems to be because of placing intermodules on different Edge
resources since it considered parallel processing for independent
tasks as well as following a greedy approach might affect the overall
optimality of resource allocation mechanism.

Cloud Edge-ward		 Proposed	
Network	on	Cloud 0.099 0 0
Network	on	Edge 326.0964 16.4832 1038.61192
Network	on	Mobile 6.3968 0.3232 56.7716
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Figure 9: Networking Usage of Case Study2

Energy Consumption. Figure 10, shows the energy consumption
for the three approaches; the Cloud-only approach demonstrates the
highest value for energy consumption on the Cloud tier, however,
on Edge and mobile/IoT devices all approaches reflect a similar level
of energy consumption with a slightly low level for the proposed
approach on mobile layer.
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Cloud Edge-ward	Placement	
Algorithm

Proposed

Energy	on	Cloud 14.28120236 13.34970988 13.32
Energy	on	Edge 2.502999 2.502999 2.563966048
Energy	on	Mobile 6.68893349 6.945115755 6.606916686
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Figure 10: Energy Consumption of Case Study2

Cloud Cost. Figure 11 shows the Cloud cost. Since the proposed
approach placed all tasks on Edge, therefore Cloud cost is none
while Edge-ward placement approach reflect lower cost than Cloud
approach.

Cloud Edge-ward		 Proposed	
Cost	on	Cloud 13627.17267 421.2034006 0
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Figure 11: Cloud Cost of Case Study2

4 DISCUSSION
We have applied our heuristic algorithm to decentralize task place-
ment in a cooperative way between Edge and Cloud resources. We
have considered an RHMS as Case Study and compared it with the
Cloud-only approach (an approach where tasks are placed only on
the Cloud). The proposed approach demonstrates lower execution
time, control loop, cost, network usage and energy consumption.
Furthermore, we considered comparing our approach with a built-
in use case in iFogSim. Thus we compared the results with the
Edge-ward placement algorithm applied to Case Study 2. In general
our proposed approach shows better results, as has been presented
in the previous section.

5 RELATEDWORK
Ref [7] offers a new, multi-layered, IoT-based fog computing archi-
tecture. In particular, it has developed a service placement mecha-
nism that optimizes service decentralization in the fog landscape
by using context-aware information like location, response time
and service resource consumption. The approach is being used in
an optimal way to increase the efficiency of IoT services in terms
of response time, energy and cost reduction. However, this work
considers tasks to be independent, and deadline constraints to be
at application level only (i.e., there is no deadline constraints for

each task involved). Ref [6] iFogStor seeks to take advantage of
Fog nodes’ heterogeneity and location to reduce the overall latency
of storage and data retrieval in the fog. They have formulated the
data placement problem as a GAP ( Generalized Assignment Prob-
lem) and proposed two solutions: 1) an exact solution using integer
programming and 2) a geographically based solution to decrease
solving time. However, its focus is related to storing data at the
Edge to ease data retrieving. In Ref [1] the authors propose an
infrastructure and IoT application model as well as a placement
approach taking into account the power consumption of a system
and minimizing delay violations using a Discrete Particles Swarm
Optimization (DPSO) algorithm. iFogSim simulator is used to eval-
uate the proposed approach. However, the authors of this approach
consider the effect of their algorithm on energy consumption and
delay only. Ref [4] suggests a smart decision-making system to
assign tasks locally. The remaining tasks in the network or the Fog
/ Cloud are transferred to peer nodes. However, their approach only
allows for task processing to be executed in sequential order (there
is no parallel execution capability).

.

6 CONCLUSION AND FUTUREWORK
Due to the limited computational and resource capabilities of IoT
nodes, tasks can be allocated to Edge or Cloud resources taking into
account a number of possibilities such as: task constraints, node
load and computing capability. We suggested a heuristic algorithm
for allocating tasks among the available resources. The allocation
algorithm takes into account factors such as related time limits for
each task, location, and budget constraints. We utilized iFogSim
to evaluate the proposed approach for two use-case studies. The
performance analysis demonstrates that the suggested algorithm
has minimized costs, execution time, control loop delay, networking
and cloud power usage compared to cloud-only and edge-ward
positioning methods. For Future work, we will carry an evaluation
of the proposed approach on real systems.
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