
Extensional Reasoning

Timothy L. Hinrichs and Michael R. Genesereth
Stanford University

{thinrich,genesereth}@cs.stanford.edu

Abstract

Relational databases have had great industrial success in computer science, their
power evidenced by theoretical analysis and widespread adoption. Often, automated
theorem provers do not take advantage of database query engines and therefore
do not routinely leverage that source of power. Extensional Reasoning is a novel
approach to automated theorem proving where the system automatically translates
a logical entailment query into a query about a database system so that the answers
to the two queries are the same. This paper discusses the framework for Extensional
Reasoning, describes algorithms that enable a theorem prover to leverage the power
of the database in the case of axiomatically complete theories, and discusses theory
resolution for handling incomplete theories.

1 Introduction

Relational database systems have been built to answer questions about enormous amounts
of data, yet it is rare today for a theorem prover (Cyc’s inference engine [MG03] a notable
exception) to exploit those systems when confronted with large theories. Extensional
Reasoning (ER) is an approach to automated theorem proving where the system trans-
forms a logical entailment query into a database (a set of extensionally defined tables),
a set of view definitions (a set of intensionally defined tables), and a database query.

For example, the map coloring problem is often stated as follows: given a map and a
set of colors, paint each region of the map so that no two adjacent regions are the same
color. One very natural way to encode this problem (according to the introductory logic
students at Stanford who offer up this formulation year after year) centers around the
following constraints.

color(x, y) ⇒ region(x) ∧ hue(y)
color(x, y) ∧ adj(x, z) ⇒ ¬color(z, y)

These constraints are the same regardless the map and the colors, i.e. regardless the
definitions for region, hue, and adj; moreover, the definitions for these three predicates
are often complete. For example, for the graph illustrated in Fig. 1, we would have the
following definitions.

region(x) ⇔ (x = r1 ∨ x = r2 ∨ x = r3)
hue(x) ⇔ (x = red ∨ x = blue)
adj(x, y) ⇔ ((x = r1 ∧ y = r2) ∨ (x = r2 ∧ y = r3))

Query: next(x, y) ∧ next(y, z)

Database:
next

red blue
blue red

Figure 1: A 3-node graph and its corresponding database query

It so happens that the database formulation of this problem studied in, for example,
[McC82] is quite different from the one above and is shown in Fig. 1. Given a table,
next, that contains all the possible pairs of adjacent colors, the query for the three
region graph would be

next(x, y) ∧ next(y, z)

where x represents the hue for r1, y the hue for r2, and z the hue for r3.
The key difference between the formulations is that the database version entails all

the valid colorings, whereas the classical version is only consistent with each valid col-
oring individually. In Extensional Reasoning, the transformation from one formulation
into the other happens automatically.

A relational database corresponds to a special kind of logical theory—one that is
axiomatically complete. Such theories are rare, and even when the theory is complete,
recognizing that fact and constructing the appropriate database is nontrivial. Since
the logical formulation of map coloring comprises an incomplete theory, to transform
it into the database formulation we must first complete it. Because theory-completion
in the context of Extensional Reasoning is performed solely for the sake of efficiency, a
theory must be completed so that any entailment query about the original theory can
be transformed into an entailment query about the completed theory where the answers
to the queries are the same, another nontrivial problem.

Sometimes the work is worth the effort. A database can sometimes solve the database
version of the query orders of magnitude faster than traditional techniques solve the
classical version; moreover, the cost of a database query is bounded (polynomial in
the size of the data and exponential in the size of the query), making the performance
more predictable, sometimes an important feature from the users’ perspective. These
benefits appear to have several causes. First, the portion of the logical theory that is
represented extensionally can be indexed very efficiently both for lookup and retrieval.
Second, negation is treated with Negation as Failure, which can cause large reductions
in the search space. Finally, if there is a solution to a problem, the candidates can be
checked one at a time, which is in contrast to the theorem proving environment where
disjunctive answers would require checking each subset of possible answers.

While we hope Extensional Reasoning will eventually be applied to a wide variety
of logics, for the time being we have elected to focus on theories in a decidable logic,
placing the issue of efficiency front and center. The particular logic we are studying
is a fragment of first-order logic that is a perennial problem in the theorem proving
community: it includes the domain closure axiom, which guarantees decidability while
allowing arbitrary quantification. This logic, to which the example above belongs, allows

us to avoid issues of undecidability at this early stage in the development of Extensional
Reasoning, while at the same time giving us the opportunity to make progress on an
important class of problems.

Orthogonal to the choice of logic, Extensional Reasoning could be applied in a variety
of settings that differ in the way efficiency is measured. Our work thus far measures
efficiency the same way the theorem proving community does. Once the machine has
been given a premise set and a query the clock starts; the clock stops once the machine
returns an answer. We do not amortize reformulation costs over multiple queries, and
we do not assume the premises or query have ever been seen before or will ever be seen
again.

The bulk of this paper examines Extensional Reasoning in the case of complete
theories and introduces algorithms for recognizing completeness and transforming a
complete theory into a database system. For incomplete theories, some results on theory
resolution are introduced. Further work on the incomplete case can be found in a
companion paper [HG07]. Our technical contributions occur in the sections on Complete
theories (3) and Incomplete theories (4). The necessary background is given in Sect. 2.

2 Background

In our investigations of Extensional Reasoning thus far, the logic we have considered is
function-free first-order logic with equality, unique names axioms (UNA), and a domain
closure axiom (DCA). The UNA state that every pair of distinct object constants in
the vocabulary is unequal. The DCA states that every object in the universe must be
one of the object constants in the vocabulary. Together, the UNA and DCA ensure
that the only models that satisfy a given set of sentences are the Herbrand models
of those sentences, and because the language is function-free, every such model has a
finite universe. We call this logic Finite Herbrand Logic (FHL). It is noteworthy that
entailment in FHL is decidable.

Besides the existence of UNA and a DCA, the definitions for FHL are the same as
those for function-free first-order logic with equality. Terms and sentences are defined as
usual. We say a sentence is closed whenever it has no free variables, and open whenever
it has at least one free variable. The definition for a model is the usual one, but because
all the models of FHL are isomorphic to finite Herbrand models, it is often convenient
to treat a model as a set of ground atoms. When we do that, satisfaction is defined as
follows.

Definition 1 (FHL Satisfaction). The definition for the satisfaction of closed sen-
tences, where the model M is represented as a set of ground atoms, is as follows.

|=M s = t if and only if s and t are syntactically identical.

|=M p(t1, . . . , tn) if and only if p(t1, . . . , tn) ∈M

|=M ¬ψ if and only if 6|=M ψ

|=M ψ1 ∧ ψ2 if and only if |=M ψ1 and |=M ψ2

|=M ∀x.ψ(x) if and only if |=M ψ(a) for every object constant a.

An open sentence ψ(x1, . . . , xn) with free variables x1, . . . , xn is satisfied by M if and
only if ∀x1 . . . xn.ψ(x1, . . . , xn) is satisfied by M according to the above definition.

A set of sentences in FHL constitutes an incomplete theory whenever there is more
than one Herbrand model that satisfies it. A set of sentences in FHL constitutes a
complete theory whenever there is at most one Herbrand model that satisfies it. Logical
entailment is defined as usual: ∆ |= φ in FHL if and only if every model that satisfies
∆ also satisfies φ.

The language used in this paper for representing database systems is nonrecursive
datalog with negation, denoted datalog¬ , which is equivalent in expressive power to
relational algebra and SQL. This particular language has been chosen because it is well-
understood and because some of the algorithms for processing it are very similar to
algorithms for processing classical logic, which allows for relatively clean comparisons.

A datalog¬ system consists of (1) a set of tables, named using the Extensional
Database predicates (EDB predicates) and (2) a set of datalog rules whose heads use
the Intensional Database predicates (IDB predicates). The EDB predicates and IDB
predicates are disjoint. A datalog rule is an implication, where :− is used in place of
⇐.

h :− b1 ∧ · · · ∧ bn
h, the head of the rule, is an atomic sentence. Each bi is a literal, and the conjunction
of bis is called the body of the rule. Every rule must be safe: every variable that
occurs in the head or in a negative literal must occur in a positive literal in the body.
Collectively, the rule set must be non-recursive, which can be defined in terms of the
rules’ dependency graph. The dependency graph for a rule set consists of one node per
predicate and an edge from u to v exactly when there is a rule with u in the head and
v in the body, labelled with ¬ if v occurs in a negative literal. To be nonrecursive, the
dependency graph for a rule set must be acyclic.

A model for a datalog¬ system is the same as that for FHL: a set of ground atoms.
We use the standard stratified semantics. A consequence of these definitions is that
every datalog¬ system is satisfied by exactly one Herbrand model, or more precisely,
a database system is a representation of a single model. A database query is true
exactly when the query is true in that model, written Γ ∪ Λ |= φ, where Γ consists
of the extensional tables and Λ the view definitions. When confusion may arise, we
will subscript |= with FHL and D to indicate the semantics for FHL and datalog¬ ,
respectively.

Because every datalog¬ system represents a single model, the logical theory corre-
sponding to a database system is one that is axiomatically complete.

Definition 2 (Axiomatic Completeness). A satisfiable set of sentences ∆ is ax-
iomatically complete with respect to language L if and only if for every closed sentence
s in L, either ∆ |= s or ∆ |= ¬s. ∆ is complete with respect to vocabulary V if and only
if it is complete with respect to the set of all first-order sentences that can be formed
from V .

3 Complete Theories

A satisfiable set of sentences in Finite Herbrand Logic can always be transformed into
datalog¬ while preserving logical equivalence if those sentences constitute a complete
theory. In this section, we discuss algorithms for recognizing that a set of sentences is
complete and algorithms for transforming such a sentence set into a datalog¬ system.

3.1 Recognizing Complete Theories

In Finite Herbrand Logic, a satisfiable, complete theory is satisfied by exactly one Her-
brand model—by exactly one set of ground literals. Entailment in FHL is decidable
because there is a fixed, finite bound on the size of the universe. Consequently, checking
whether a satisfiable FHL theory is complete is decidable. For each ground atom a in
the language (of which there are finitely many), check whether ∆ entails a or ∆ entails
¬a. If for some a, neither is entailed, the theory is incomplete; otherwise, the theory is
complete.

This decision algorithm relies on entailment queries to determine whether the the-
ory is complete, but entailment is the very problem Extensional Reasoning is meant to
confront. For this reason we developed an alternate algorithm that has more of a syn-
tactic flavor—one that performs some inexpensive tests that are sufficient for ensuring
completeness.

Complete theories have been studied in the nonmonotonic reasoning literature. Pred-
icate completion, for example, was one of the early techniques used to define the seman-
tics of Negation as Failure in Logic Programming [Llo84]. When applied to a set of
nonrecursive rules, predicate completion produces a set of nonrecursive biconditional
sentences, e.g.

p(x) ⇔ (q(x) ∧ r(x)) (1)
q(x) ⇔ (x = a ∨ x = b)
r(x) ⇔ (x = e ∨ x = f)

With some small caveats, a nonrecursive set of biconditional definitions is guaranteed
to comprise a complete theory.

Definition 3 (Biconditional Definition). A biconditional definition is a sentence of
the form r(x) ⇔ φ(x), where r is a relation constant, x is a sequence of non-repeating
variables, and φ(x) is a sentence with free variables x.

Definition 4 (Nonrecursive biconditional definitions). A set of biconditional def-
initions ∆ is nonrecursive if and only if the dependency graph 〈V,E〉 is acyclic.

V : the set of predicates in ∆

E : 〈u, v〉 is a directed edge if and only if there is a biconditional in ∆ with u in the
head and v in the body.

Theorem 1 (Biconditional Completeness). Suppose ∆ is a finite set of nonrecur-
sive, biconditional definitions in FHL, where there is exactly one definition for each
predicate in ∆ and no definition for =. ∆ is complete.

In this paper we examine algorithms that attempt to reformulate a sentence set into
a logically-equivalent set of nonrecursive biconditional definitions. Though incomplete,
these algorithms run in low-order polynomial time, making them practical for certain
classes of theories. These algorithms perform the recognition task by partitioning the
sentence set and examining each partition individually. If each partition can be writ-
ten as a single biconditional then by the way the partitions are chosen, the theory is
guaranteed to be complete.

To partition the sentences, we ask the following question. Suppose the sentence set
were originally written as nonrecursive, biconditional definitions. Further suppose that
each definition were then rewritten independently of all the others without introducing
any additional predicates while preserving logical equivalence. For each predicate p,
how do we find all those sentences that were produced from the biconditional definition
for p?

For example, the following set of clauses were produced by converting the nonrecur-
sive, biconditional definitions for p, q, and r in Formula 1 into clausal form.

p(x) ∨ ¬q(x) ∨ ¬r(x)
¬p(x) ∨ q(x)
¬p(x) ∨ r(x)
q(x) ∨ x 6= a
q(x) ∨ x 6= b
¬q(x) ∨ x = a ∨ x = b
r(x) ∨ x 6= e
r(x) ∨ x 6= f
¬r(x) ∨ x = e ∨ x = f

How does one determine which clause came from which definition?
Because the original biconditionals were nonrecursive, there must be at least one of

them whose body is expressed entirely in terms of equality; call each such biconditional
a base table definition. All those clauses that contain one predicate besides equality
must have originated in base table definitions. Within that set of clauses, all those that
constrain the same predicate must have come from the definition for that predicate.

In the example above, applying this observation selects two sets of sentences.

q(x) ∨ x 6= a
q(x) ∨ x 6= b
¬q(x) ∨ x = a ∨ x = b

and

r(x) ∨ x 6= e
r(x) ∨ x 6= f
¬r(x) ∨ x = e ∨ x = f

The first is the set of sentences that came from the definition for q, and the second
is the set of sentences that came from the definition for r.

The partitioning algorithm recurses on the remaining sentences, this time looking for
sentences with a single predicate besides = and the base table predicates. At iteration i,

the sentences that originated from definitions for predicates p1, . . . , pj have been found
and the algorithm looks for sentences with a single predicate besides {p1, . . . , pj ,=}.
This is a variation on the context-free grammar (CFG) marking algorithm: when the
partition is found for predicate p, all occurrences of p in the remaining sentences are
marked, and when a sentence has all but one of its predicates marked, it is added to the
partition corresponding to the remaining predicate.

In the example, the remaining sentences are

p(x) ∨ ¬q(x) ∨ ¬r(x)
¬p(x) ∨ q(x)
¬p(x) ∨ r(x)

and since each contains one predicate, p, besides the predicates {q, r,=}, all of these
sentences are grouped into the partition corresponding to the biconditional for p.

Alg. 1 embodies the approach outlined here. Each recursive call selects all those
sentences with the same unmarked predicate p and calls reformulate-to-bicond on
those sentences. If they entail a biconditional for p, that biconditional is deemed to be
the definition for p, and the algorithm recurses. If no such biconditional is entailed, the
algorithm finds a different unmarked predicate and tries again. If there is no bicondi-
tional entailed for any of the unmarked predicates, the theory is incomplete.

Algorithm 1 to-biconds(∆, basepreds)

1: sents := {〈p, d〉|d ∈ ∆ and p 6∈ basepreds and Preds[d] is p plus a subset of basepreds}
2: preds := {p|〈p, d〉 ∈ sents}
3: bicond := NIL
4: for all p ∈ preds do
5: partition := {d|〈p, d〉 ∈ sents}
6: bicond := reformulate-to-bicond(partition, p)
7: pred := p
8: when bicond then exit for all
9: end for

10: when not(bicond) then return NIL
11: remaining := ∆− partition
12: when remaining = ∅ then return cons(bicond,NIL)
13: rest := to-biconds(remaining, basepreds ∪ {pred})
14: when rest then return cons(bicond, rest)
15: return NIL

to-biconds runs in O(n2(m + r)), where n is the number of predicates in ∆, m
is the size of ∆, and r is the cost of reformulate-to-bicond. Under the conditions
mentioned above, to-biconds is sound and complete as long as reformulate-to-
bicond is sound and complete.

Theorem 2 (Soundness of TO-BICONDS). Under the conditions listed below, if
to-biconds(∆, {=}) returns the non-NIL Γ, then Γ is a set of nonrecursive bicondition-
als with one definition per predicate in ∆ besides equality and ∆ is logically equivalent
to Γ.

• ∆ is a satisfiable sentence set in FHL

• reformulate-to-bicond is sound, i.e. if reformulate-to-bicond(Σ, p) re-
turns p(x) ⇔ φ(x) then the result is a biconditional definition for p entailed by
Σ.

Theorem 3 (Completeness of TO-BICONDS). Under the conditions listed below,
if ∆ is a complete theory in FHL then to-biconds(∆, {=}) does not return NIL.

• ∆ is a satisfiable, nonempty sentence set that can be partitioned into sets so that
there is one set per relation constant in ∆ besides equality: Sr1 , . . . , Srn.

• ∆ is logically equivalent to a set of nonrecursive biconditionals with one definition
per relation constant besides equality: {βr1 , . . . , βrn}

• βri is logically equivalent to Sri and Preds[βri] = Preds[Sri], for every i

• reformulate-to-bicond is complete, i.e. if Σ entails some nonrecursive bicon-
ditional definition p(x) ⇔ φ(x) then reformulate-to-bicond(Σ, p) returns an
equivalent biconditional definition for p; otherwise, it returns NIL.

to-biconds relies on reformulate-to-bicond, an algorithm for checking whether
a given set of sentences entails a biconditional definition. There are many such algo-
rithms, which form a spectrum of inexpensive syntactic checks to expensive semantic
checks. Our approach lies closer to the inexpensive end of the spectrum: it attempts
to rewrite the sentences of a partition into sufficient conditions for p, p(x) ⇐ φ(x),
and necessary conditions for p, p(x) ⇒ ψ(x). It then tests whether φ(x) and ψ(x) are
logically equivalent, and again there is a spectrum of algorithms for checking logical
equivalence.

To finish the example, the sentences of the last partition can be written as

p(x) ⇐ (q(x) ∧ r(x))
p(x) ⇒ (q(x) ∧ r(x))

Clearly there is a biconditional definition entailed by these two impications; likewise
for the other partitions in the example. Notice that because of the way the partitions
were constructed, the resulting set of biconditionals must be nonrecursive.

p(x) ⇔ (q(x) ∧ r(x))
q(x) ⇔ (x = a ∨ x = b)
r(x) ⇔ (x = e ∨ x = f)

3.2 Translating Complete Theories into Datalog

One of the benefits of the recognition algorithm described in the last section is that when
successful, the algorithm produces a formulation of the theory, a set of nonrecursive
biconditionals, that is amenable to translation into datalog¬ ; that transformation is the
subject of this section.

The translation takes place in two steps. First, the set of nonrecursive biconditional
definitions is partitioned into the portion that is turned into data (extensional tables)

and the portion that is turned into views (intensional tables). Second, the extensional
portion is converted into explicit tables and the intensional portion is converted into
datalog¬ view definitions.

The approach reported in this paper for partitioning the set of biconditionals is a
simple one. As mentioned in the last section, every set of biconditional definitions must
include at least one definition whose body is expressed entirely in terms of equality.
Our partitioning algorithm assigns all such definitions to the extensional portion of the
theory and all the remaining definitions to the intensional portion. More sophisticated
partitioning algorithms are the subject of future work.

Regardless of what algorithm is used to split the set of biconditional definitions
into the extensional and the intensional portions, the algorithms for transforming those
biconditionals into datalog¬ are fairly straightforward.

Turning a biconditional definition into a datalog¬ view definition can be performed
using a typical recursive walk of the sentence and a post-processing step at the end.
The walk turns ∀ into ¬∃¬; it introduces new predicates when negation and ∃ are
encountered; boolean connectives are treated as usual. We demonstrate by showing a
step-by-step transformation of r(x) ⇔ ∀y.(¬p(y) ∨ q(x, y)).

r(x) ⇔ ∀y.(¬p(y) ∨ q(x, y))
r(x) :− ∀y.(¬p(y) ∨ q(x, y)) (⇔ turned into :−)
r(x) :− ¬∃y.¬(¬p(y) ∨ q(x, y)) (∀ turned into ¬∃¬)
r(x) :− ¬∃y.(p(y) ∧ ¬q(x, y)) (¬ pushed through)
(1) r(x) :− not(newreln(x)) (new predicate invented)
where newreln(x) ⇔ ∃y.(p(y) ∧ ¬q(x, y))
newreln(x) :− ∃y.p(y) ∧ ¬q(x, y) (⇔ turned into :−)
(2)newreln(x) :− p(y) ∧ ¬q(x, y) (drop ∃)

The result is two rules (1) and (2), one for r and one for newreln. Notice that
neither rule is safe—there are variables in negative literals that do not occur in positive
literals. To be valid datalog¬ , safety must be ensured. To achieve this, we introduce
a new predicate univ that is true of all the object constants in the vocabulary, i.e. all
the objects in the universe. Then we add univ(x) for every variable x that is not safe
in some rule. The result is shown below.

r(x) :− not(newreln(x)) ∧ univ(x)
newreln(x) :− p(y) ∧ not(q(x, y)) ∧ univ(x)

Because the biconditional definitions are nonrecursive, the algorithm illustrated
above, which we will refer to as views-to-datalog, is guaranteed to produce a set
of safe, stratified datalog¬ rules. The algorithm used for converting the body of the rule
will convert any sentence into datalog¬ ; it will be called sentence-to-datalog.

views-to-datalog can also be used to convert a biconditional into a table of data.
Suppose we convert all the biconditionals, both those destined to become data and those
destined to become views, into datalog¬ views using views-to-datalog, treating = as
an uninterpreted predicate. We can then add in a table for =, which has one row per
element in the universe. Then we can materialize a table by constructing the appropriate
datalog¬ query and running it through a standard deductive database engine. In the
case of very large theories, here again, we are relying on database algorithms to do what

they do best—manipulate large amounts of data. We will refer to the algorithm for
converting a biconditional into an extensional table with the name materialize.

The partitioning algorithm, the algorithm for converting a sentence into datalog¬ ,
and the algorithm for transforming biconditionals into views and data are bundled
together into biconds-to-datalog, an algorithm for converting an entailment query
in FHL about a set of nonrecursive biconditionals into datalog¬ .

Algorithm 2 biconds-to-datalog(∆, φ)

Assumes: ∆ is a set of nonrecursive biconditionals and φ is in the language of ∆
1: (D,V) := partition(∆)
2: Γ := materialize(Preds[D], ∆)
3: Λ := views-to-datalog(V)
4: ψ := sentence-to-datalog(φ)
5: return (Γ, Λ, ψ)

biconds-to-datalog ensures that ∆ entails φ under FHL semantics if and only
if Γ ∪ Λ entails ψ under Datalog semantics. biconds-to-datalog ensures something
much stronger as well: ∆ and Γ ∪ Λ have all the same models (under their respective
semantics). This ensures all the logical consequences are exactly the same; the transfor-
mation preserves not only entailment of the query in question but of all queries in the
language.

Theorem 4 (Equivalence Preservation of BICONDS-TO-DATALOG). Let
∆ |=FHL φ be a logical entailment query where ∆ is a set of nonrecursive biconditionals
with one definition per predicate besides equality, and let φ be in the language of ∆.
Suppose biconds-to-datalog produces (Γ,Λ, ψ). ∆ |=FHL φ if and only if Γ∪Λ |=D ψ,
under the following assumptions.

• ψ = sentence-to-datalog(φ)

• If ∆ is a set of nonrecursive biconditionals, then (D,V) = Partition(∆) is a
partitioning of ∆.

• If D is a set of nonrecursive biconditionals for predicates {r1, . . . , rn}, then Γ =
materialize(Preds[D],∆) consists of a table for each ri, i.e. a is a tuple in the
ri table in Γ if and only if ∆ |= ri(a).

• If V is a set of nonrecursive biconditionals, then Λ = views-to-datalog(V)
is a nonrecursive, stratified set of datalog¬ rules such that for every set E of
nonrecursive biconditional definitions for Preds[D],

E ∪ V |=FHL φ if and only if materialize(Preds[D], E) ∪ Λ |=D ψ

3.3 Extensional Reasoning

When given a logical entailment query ∆ |= φ, the recognition algorithm to-biconds
determines whether ∆ is complete and if so uses the transformation algorithm biconds-
to-datalog to turn the query into datalog¬ . Then an algorithm for processing datalog¬ is

employed to answer the query. If ∆ is not complete, traditional algorithms are employed
to determine whether entailment holds. The following algorithm, er-entailedp, relies
on db-entailedp to answer the datalog¬ query and fhl-entailedp to answer an ar-
bitrary entailment query in FHL in the case of incomplete theories.

Algorithm 3 er-entailedp(∆, φ)

Returns: T if and only if ∆ |=FHL φ
1: Σ := to-biconds(∆)
2: if Σ then
3: (Γ, Λ, ψ) := biconds-to-datalog(Σ,φ)
4: return db-entailedp(Γ, Λ, ψ)
5: else
6: return fhl-entailedp(∆, φ)
7: end if

The theorems from previous sections ensure er-entailedp is sound and complete.

Theorem 5 (Soundness and Completeness). Suppose φ is a sentence in the lan-
guage of ∆. er-entailedp(∆, φ) returns T if and only if ∆ |=FHL φ.

One of the keys to the proof of this theorem bridges the gap between how the
semantics of logic and the semantics of datalog¬ treat negation. Logic uses classical
negation whereas datalog¬ uses negation as failure. While NAF is often thought of as
a nonmonotonic and therefore unsound inference rule, in the case of complete theories,
NAF is sound.

Theorem 6 (Soundness of NAF). Negation as failure is a sound rule of inference
when it is applied to a closed sentence in the language of an axiomatically complete
theory while using a complete proof procedure.

Proof. NAF is a meta inference rule based on a proof system `. NAF infers ¬φ whenever
∆ 6` φ. Suppose that φ is closed, ∆ is axiomatically complete (entails ψ, ¬ψ, or both for
every closed sentence ψ), and ` is complete (finds a proof whenever entailment holds).
Then, if ∆ 6` φ, by the completeness of `, ∆ 6|= φ. By the completeness of ∆, we have
∆ |= ¬φ. Thus, when ∆ 6` φ, ∆ |= ¬φ, which is the conclusion NAF produces; thus, it
is sound.

3.4 A Comparison of ER and Traditional Techniques

The central claim of this paper is that sometimes answering an entailment query using
algorithms for processing datalog¬ is more efficient than using the typical algorithms for
processing FHL. One of the main benefits of datalog¬ is its use of Negation as Failure,
which happens to be a sound rule of inference in the case of complete theories. This
section compares NAF to traditional treatments of negation from both the theoretical
and the empirical perspective.

Theoretical Comparison

To demonstrate the power of NAF, we start by comparing SLDNF resolution and
model elimination on an example, a fair comparison since the two proof procedures differ
mainly in how they treat negation. SLDNF uses NAF, whereas model elimination uses
classical negation. Consider the following biconditional definition for p.

p(x) ⇔

 (p1(x) ∧ p2(x) ∧ p3(x)) ∨
(p4(x) ∧ p5(x) ∧ p6(x)) ∨
(p7(x) ∧ p8(x) ∧ p9(x)))


Converting the biconditional above to view definitions using the algorithms of the last
section basically amounts to dropping the ⇒.

p(x) :− p1(x) ∧ p2(x) ∧ p3(x)
p(x) :− p4(x) ∧ p5(x) ∧ p6(x)
p(x) :− p7(x) ∧ p8(x) ∧ p9(x)

In contrast, converting the biconditional to clausal form produces the implications above
along with implications for ¬p(x). In this example, there are 27 possible ways to prove
¬p(t) for a particular t, which is exponential in the size of the biconditional. The naive
clausal form conversion will construct one clause for each one. (Structure-preserving
clausal form conversion, which can be found in chapters 5 and 6 of [RV01], ensures the
number of clauses is polynomial in the size of the original sentence set, but as we will
see the size of the search space can still be exponential.)

¬p(x) ⇐ ¬p1(x) ∧ ¬p4(x) ∧ ¬p7(x)
¬p(x) ⇐ ¬p1(x) ∧ ¬p4(x) ∧ ¬p8(x)
¬p(x) ⇐ ¬p1(x) ∧ ¬p4(x) ∧ ¬p9(x)

...
¬p(x) ⇐ ¬p3(x) ∧ ¬p6(x) ∧ ¬p9(x)

We compare SLDNF resolution on the datalog¬ with model elimination on the
clauses. For the entailment query ∃x.p(x), the two perform identically (assuming we
turn off the reduction operation [AS92] for model elimination); however, for the query
∃x.¬p(x), the two techniques differ significantly. SLDNF resolution uses the rules with
p(x) in the head to look for a t such that the proof for p(t) fails. Model elimination uses
the rules with ¬p(x) in the head to look for a t such that ¬p(t) has a proof. Depending
on the relative sizes of the universe, the search space for p(x), and the search space for
¬p(x), proving ¬p(t) by exhausting the search space for p(t) can be far less expensive
than finding a proof in the search space for ¬p(t).

Information theoretically, it is not surprising that for complete theories, NAF some-
times answers queries more quickly than methods for classical negation. NAF can be
viewed as a mechanism for reasoning about complete theories, whereas methods for clas-
sical negation are mechanisms for reasoning about incomplete theories. NAF implicitly
leverages the fact that the theory is complete, but methods for classical negation do not.

More tangibly, the tradeoff between NAF and classical negation can be seen as a
tradeoff of search spaces. Often the space for ¬p is larger than the space for p, and
it is this case that NAF takes advantage of. As opposed to classical negation, NAF

avoids searching the large space and instead searches just the small space. (We might
additionally consider Truth as Failure to handle the case where the space for p is very
large but the space for ¬p is very small.)

As mentioned earlier, structure-preserving clausal-form conversion will avoid enu-
merating the exponential number of rules with ¬p in the head, but that does not nec-
essarily prevent resolution from enumerating an exponential search space. Moreover,
with certain assumptions placed on what it means to convert to clausal form, one can
show that regardless of which clausal form conversion is used, there is an infinite class
of biconditionals such that resolution has the potential to generate exponentially many
clauses in the size of the biconditional, assuming that the implementation of resolution
is generatively complete.

Lemma 1. Consider the following biconditional β.

p(x) ⇔

 (p11(x) ∧ · · · ∧ p1n1(x)) ∨
...
(pm1(x) ∧ · · · ∧ pmnm(x))


When applying the naive clausal form conversion to β, the number of clauses with a
negative p literal is the product of the lengths of the disjunctions:

∏
i ni.

¬p(x) ∨ p11(x) ∨ p21(x) ∨ · · · ∨ pm1(x)
¬p(x) ∨ p11(x) ∨ p21(x) ∨ · · · ∨ pm2(x)

...
¬p(x) ∨ p1n1(x) ∨ p2n2(x) ∨ · · · ∨ pmnm(x)

Suppose a clausal form conversion algorithm converts β into Γ. Further suppose Γ it
is logically equivalent to β with respect to the predicates in β, i.e. for every sentence
σ whose predicates are a subset of those in β, Γ |= σ iff β |= σ. Suppose Res is an
implementation of resolution that is generatively complete.

Res[Γ ∪ {p(t)}] will produce at least
∏

i ni clauses.

Proof. Here we argue somewhat informally. Consider an arbitrary clause with a negative
p literal.

¬p(x) ∨ p1j1(x) ∨ p2j2(x) ∨ · · · ∨ pmjm(x)

This clause, which is entailed by β, entails

p(t) ⇒ p1j1(t) ∨ p2j2(t) ∨ · · · ∨ pmjm(t)

Consequently Γ entails it as well. Thus, Γ ∪ {p(t)} entails

p1j1(t) ∨ p2j2(t) ∨ · · · ∨ pmjm(t)

Since Res is generatively complete up to subsumption, Res[Γ ∪ {p(t)}] must include
either this disjunction, or some clause that subsumes it. No clause that subsumes this
one is entailed by Γ ∪ {p(t)}; hence, this clause must appear in the closure. Since the
clause was chosen arbitrarily, the same holds for all clauses. Since there are

∏
i ni of

these clauses, the resolution closure must contain at least that many clauses.

The above lemma guarantees a local property about resolution—that given a single
biconditional and a query, the resolution closure is exponentially large in the number
of disjunctions. When other sentences are included, the lemma makes no guarantees.
For example, if resolution were given a biconditional for p(x) along with the sentence
¬p(x), resolution could find a proof without enumerating the exponential number of
consequences described above.

To truly understand a technique it is important to find its limitations. Extensional
Reasoning is not always superior to traditional techniques. Consider a satisfiable, com-
plete premise set that consists of a single sentence ∀xy.p(x, y), which when converted
to clausal form is just p(x, y). The query ∀xy.p(x, y) when negated and converted to
clausal form is ¬p(k1, k2). Resolution finds a proof in a single step, regardless of how
large the universe is.

In Extensional Reasoning, if the decision is made to materialize p, the database
includes n2 tuples for p, where n is the size of the universe. Using SLDNF resolution,
the proof attempt ∀xy.p(x, y) is performed by attempting to find elements k1 and k2

such that ¬p(k1, k2) is true. Since every attempt fails, even assuming perfect indexing,
the proof costs n2.

Thus, in some cases Extensional Reasoning can find proofs in complete theories more
efficiently than traditional techniques, but this last example demonstrates that this is
not always the case. An important next step is to investigate algorithms that predict
which approach will find a proof (or fail to find a proof) more quickly; such algorithms
are the subject of future work.

Empirical Comparison

Next we report on experiments designed to compare Extensional Reasoning tech-
niques to traditional techniques in the case of complete theories. Since the algorithms
for detecting completeness presented in this paper produce a set of nonrecursive bi-
conditional definitions, all the tests we performed were on such sentence sets. The
results demonstrate what is predicted above. When negation occurs in the sentences,
the datalog¬ implementation, which uses Negation as Failure, is significantly faster than
techniques that do not employ NAF.

Each sentence set represents the layout of a two-dimensional grid, like the one shown
in Fig. 2. Every sentence set has exactly six biconditionals representing the following
information.

• west(x, y): cell x is the cell immediately west of cell y.

• north(x, y): cell x is the cell located immediately north of cell y.

• duewest(x, y): cell x is in the same row as cell y and located to the west.

• duenorth(x, y): cell x is in the same column as cell y and located to the north.

• vert(x, y): cell x is duenorth of y or vice versa.

• westof(x, y): cell x is located to the west of y, i.e. x and y can be in different
rows but x’s column is to the west of y’s column.

Figure 2: A 4× 4 grid, corresponding to the theory in the appendix.

An axiomatization for the 4× 4 case can be found in the appendix.
The tests varied the dimensions of the grid, starting at 4× 4 and ending at 20× 20.

The queries were of the form westof(t, u) and ¬westof(t, u), where t and u were always
ground. Every query tested was entailed. The results of the positive queries are reported
separately from the results of the negative queries because negation plays a prevalent
role in the negative queries but not the positive. The positive queries provide a baseline
for comparing techniques on how well they handle nonrecursive biconditional definitions.
The negative queries illustrate how NAF can affect performance.

We compared our implementation of Extensional Reasoning for the case of complete
theories, DBD (Datalog Based Deduction), with Vampire 8.1, Darwin, and Epilog (the
Stanford Logic Group’s model-elimination implementation1). Vampire and Darwin were
run using SystemOnTPTP, and Epilog and DBD were run in Macintosh Common Lisp
on a 1.5 GHz G4 Powerbook with 1.25 GB of RAM.

As expected, DBD, the system built to reason about towers of biconditionals, outper-
formed the three general-purpose systems on both the positive and the negative queries.
Each system had 1000 seconds to find a proof. Most of the systems performed fairly
similarly until the last or second-to-last grid size they solved under the time limit.

For the positive queries (Fig. 3), Epilog and Darwin performed similarly, both failing
to find a proof in 1000 seconds for the 16 × 16 grid. Vampire failed to find a proof at
20× 20; DBD solved the 20× 20 in 126 seconds. These tests were run without the DCA
or the UNA since entailment did not require them; thus, these tests primarily illustrate
how the various systems cope with the potentially large number of clauses generated by
converting biconditionals to clausal form.

1For completeness, model elimination and therefore Epilog require all contrapositives of the clauseset
to be explored. For these experiments, only those clauses produced by a typical clausal form conversion
were used.

Figure 3: Results for queries of the form westof(t, u).

n× n Darwin Vampire Epilog DBD
4 0 0 0 0
6 0 3 1 0
8 1 47 7 1

10 7 48 43 2
12 65 50 152 6
14 509 61 480 15
16 > 999 82 > 999 33
18 589 69
20 > 999 126

For the negative queries (Fig. 4), the difference between DBD and the others is
larger. Vampire failed at size 8 × 8; Epilog failed at size 12 × 12; Darwin failed at
16× 16. DBD solved 20× 20 in 187 seconds. This difference appears to be due mainly
to the fact that DBD uses NAF, and the negative search space for westof (as induced
by the clauses with negative westof literals) is substantially larger than the positive
search space. These tests required the UNA, but not the DCA.

Figure 4: Results for queries of the form ¬westof(t, u).

n× n Darwin Vampire Epilog DBD
4 0 14 0 0
6 0 170 6 0
8 4 > 999 67 1

10 5 512 2
12 55 > 999 6
14 137 15
16 > 999 40
18 72
20 187

We also worked on answering entailment queries using boolean SAT solvers, since
every FHL theory can always be converted into propositional logic. Conversion to clausal
form after grounding proved to be prohibitively expensive, even using the structure-
preserving version of clausal form conversion. Comparing DBD to a non-clausal SAT
solver is the subject of future work.

These experiments compare how quickly various sytems can prove theorems when the
search space is shallow but has a high branching factor. Typical database applications
have this character: the majority of the cost comes from manipulating large amounts of
data, and the tower of view definitions built on top of the extensional tables is relatively
short. As expected, in such situations Negation as Failure can produce significant savings
over treating negation classically.

4 Incomplete Theories

Complete theories have powerful properties, but incomplete theories are the norm. The
last section detailed techniques for reasoning efficiently about complete theories using
database techniques. However, if one were to add even just a small amount of incom-
pleteness into a complete theory by including new predicates, those techniques could no
longer be applied. This is unfortunate since the speedups in the complete case seem to
be large enough to absorb some extra overhead for dealing with theories that have a
small amount of incompleteness.

For example, suppose we take any complete theory and add in the following sen-
tences, where p and q are new predicates.

p(a) ∨ p(b) ∨ p(c)
q(d) ∨ q(e) ∨ q(f)

Supposing the complete theory had a definition for the binary predicate r, a reason-
able entailment query might be

∀xy.(p(x) ∧ q(y) ⇒ r(x, y)). (2)

When the definitions for r are large enough to warrant using a database system, we
probably still want to use that database system in spite of the fact that we now have
an incomplete theory.

Theory resolution [Sti85] is one approach to dealing with such situations, where
part of the theory can be effectively represented and reasoned about with a specialized
procedure. If a theory were partitioned into the complete portion C and the incomplete
portion I, theory resolution would allow us to use a database system to represent C
while answering queries about C ∪ I using resolution.

One of the benefits of the to-biconds algorithm shown in Alg. 1 is that with a two-
line change, it can be used to find the portion of the theory that is complete, partitioning
the theory as required for theory resolution. This change consists of replacing lines (14)
and (15) so that once the algorithm fails to find a new biconditional definition, it returns
all the biconditionals it has found so far. Alg. 4 gives this new algorithm, to-biconds-
max. It is noteworthy that to-biconds-max can be turned into an anytime algorithm,
allowing the user or system designer to determine how much time to spend trying to
find a complete subtheory.

With the partitioning algorithm in place, we can now focus on theory resolution.
Because C is complete, we can think of it as being a set of ground literals such that
every ground atom or its negation is included. For the case where the incomplete portion
I is in ∀∗, i.e. where when I is written in prenex normal form the quantifiers are all
universal, theory resolution takes a particularly simple form. Suppose p is a predicate
that belongs to the complete portion, i.e. every ground p literal or its negation belongs
to C. Then if there were some clause

{p(t)} ∪ Φ,

resolution would produce a resolvent for every literal ¬p(a) where p(a) unifies with p(t):

Φσ, where σ is the mgu of p(a) and p(t)

Algorithm 4 to-biconds-max(∆, basepreds)

1: sents := {〈p, d〉|d ∈ ∆ and p 6∈ basepreds and Preds[d] is p and some subset of basepreds}
2: preds := {p|〈p, d〉 ∈ sents}
3: bicond := NIL
4: for all p ∈ preds do
5: partition := {d|〈p, d〉 ∈ sents}
6: bicond := reformulate-to-bicond(partition, p)
7: pred := p
8: when bicond then exit for all
9: end for

10: when not(bicond) then return NIL
11: remaining := ∆− partition
12: when remaining = ∅ then return cons(bicond,NIL)
13: rest := to-biconds-max(remaining, basepreds ∪ {pred})
14: return cons(bicond, rest)

For completeness, theory resolution must produce all such clauses.

Definition 5 (Complete Theory Resolution). Complete Theory Resolution (CTR)
is the following rule of inference. When it is added to the usual resolution inference rules,
we denote the closure of clauses S using all those rules by CTRRes(C,S). Suppose C
is a complete theory with a definition for predicate p.

±p(t) ∪ Φ
Let {σ1, . . . , σn} be the set of all mgus σ such that ∓p(t)σ is entailed by C.

Φσ1
...
Φσn

∓p(t)σ has the opposite sign of ±p(t).

In general, for FHL the DCA, UNA, and x = x must be added to a set of clauses for
standard implementations of resolution equipped with paramodulation to be sound and
complete; however, in the case where the clauses are in ∀∗, it has been shown [Rei80]
that neither the DCA nor paramodulation are necessary for completeness. This fact
simplifies the completeness proof below.

Theorem 7 (CTRRes Soundness and Completeness for ∀∗). Suppose ∆ = C ∪ I
is a finite set of FHL sentences, where C is a satisfiable, complete theory with definitions
for predicates P , and I is in ∀∗. ∆ is unsatisfiable if and only if CTRRes(C, I) contains
the empty clause.

Proof. (Soundness) Every resolution inference rule is sound, which means we need only
show CTR is sound. But this is immediate because CTR is simply n applications of
resolution, using literals from C.

(Completeness) A database system compactly represents C, which is semantically
a finite set of ground literals. We show that CTRRes is complete by showing that

every inference step that could occur using resolution between C, represented as a set
of ground literals, and I will also occur in CTRRes(C, I).

Because C is a set of ground literals, it is in ∀∗, and I is in ∀∗ by assumption;
thus, C ∪ I is in ∀∗, which means neither the DCA nor paramodulation are necessary
for resolution to be complete. Thus, the only necessary rules of inference are binary
resolution and factoring; moreover, only those inferences that use as a premise some
literal from C could cause incompleteness.

If ∆ is unsatisfiable then there is a resolution proof of the empty clause from C ∪ I.
Consider any step in which one of the literals from C is resolved with a non-unary clause.

±p(t) ∪ Φ
∓p(a) (from C)

Φσ, where σ is the mgu of p(t) and p(a)

In CTRRes(C, I), this resolvent is one of many produced when CTR is applied to the
first clause above. CTR finds all variable assignments ρ1, . . . , ρm so that ∓p(t)ρi belongs
to C. Because every literal in C is ground, the unifier σ is a variable assignment such
that p(t)σ belongs to C, i.e. σ is one of the ρi. Since CTR produces all Φρ and σ is
some ρi, CTR certainly produces Φσ.

For every resolution between some literal in C and some other literal, we know that
the other literal could not have come from C because that would make C unsatisfiable;
the above argument applies to this case as well, which guarantees no binary resolution
inferences are lost by using CTRRes.

Hiding C does not result in the loss of any factoring step since factoring does not
apply to unit clauses. Altogether, every inference rule application using resolution can
be mirrored using CTRRes.

In effect, this result is a practical approach to enlarging Reiter’s result [Rei80] that
eliminates the need for paramodulation in the case of ∀∗. Here we have shown that
regardless what prefix class the complete portion of the theory belongs to, we can avoid
paramodulation as long as the remaining sentences are in ∀∗.

We have speculated on inference rules for performing theory resolution when the
incomplete sentences do not belong to ∀∗. The difficulty is that skolems exist, which
must be dealt with by the database; moreover, the proof of completeness is complicated
by the fact that paramodulation is necessary. Here we simply illustrate the issues and
point toward an avenue with promise.

Consider an example where the incomplete sentences are in ∃∗∀∗, which causes the
clausal form conversion to introduce new skolem constants but no skolem functions.

p(x) ⇔ (x = a ∨ x = b)
q(x) ⇔ (x = c)
∃x.(¬p(x) ∧ ¬q(x))

The first two sentences comprise complete definitions for p and q, and the last sentence
belongs to the incomplete portion. These sentences are inconsistent because every el-
ement is either in p or in q, but the last sentence says that there is some element in
neither p nor q. The definitions for p and q are stored in the database, which leaves the
existential to be manipulated by resolution. The clauses we start with (UNA left out
for brevity) are as follow.

1. x = a ∨ x = b ∨ x = c

2. ¬p(k)

3. ¬q(k)

Notice here that not only must the database be used to answer queries with skolems,
but the result of such queries must include information about skolems. Concentrating
on the ¬p(k) clause, we see that if k is equal to any one of the values true of p in C,
then we have an inconsistency; or equivalently, k cannot be equal to any one of those
values if the sentences are consistent. This line of reasoning produces the following two
resolvents.

4. k 6= a

5. k 6= b

Applying the same rule of inference to ¬q(k) produces the following resolvent.

6. k 6= c

Together these three resolvents are inconsistent with the DCA, which, by the complete-
ness of resolution, ensures the production of the empty clause.

Further work needs to be done to determine whether an inference rule built around
this idea would be complete. The next step would be to build an inference rule for
handling skolem functions as well as skolem constants.

The downside to the theory resolution approach is that if large amounts of data are
stored in the database, and even a small fraction of that data must be used for a proof,
we still must address the problem of building theorem provers that can handle massive
amounts of data.

Our approach is to avoid theory resolution altogether by completing the incomplete
theory, and using the techniques described in the previous section to answer questions
about the theory. This gives the database the opportunity to solve the entire problem
itself, managing the massive amount of data as it sees fit. The tricky part is performing
theory completion in a way that is not so expensive as to negate the benefits of using a
database to reason about the completed theory.

Our approach to theory completion, outlined in [HG07], is to first partition the
theory into the complete portion and the incomplete portion using to-biconds-max.
Then we use various techniques for completing the incomplete portion of the theory
while ignoring the complete portion, to the extent possible. We now have a complete
theory, which can be reasoned about using the algorithms presented in the last section.

We expect this approach to work well in the context of large theories when a large
portion of the theory is complete. As the size of the complete portion increases, so
does the cost of manipulating the data, which increases the utility of using a database.
Moreover, if the incomplete portion of the theory is small enough, running what might
normally be considered expensive algorithms to perform theory completion is affordable
because of the relative cost of manipulating the data. Thus, in large theories that have
a small amount of incompleteness, Extensional Reasoning has the potential for large
computational savings over traditional techniques.

5 Conclusion and Future Work

This paper presents Extensional Reasoning for both complete theories and incomplete
theories. In the complete case it introduces a quadratic-time partitioning algorithm for
rewriting a class of complete theories into a set of nonrecursive biconditional definitions
and discusses issues regarding the transformation of those definitions into datalog¬ .
For the incomplete case, it introduces an anytime algorithm for finding the portion of
a theory that can be transformed into a set of nonrecursive biconditionals, and theory
resolution techniques that allow the complete portion to be represented with a database
system. The theory resolution techniques are sound and complete when the incomplete
portion of the theory is in ∀∗. Empirically, Extensional Reasoning techniques perform
better than traditional theorem proving techniques when the theory consists of nonre-
cursive biconditional definitions.

Besides enlarging the class of complete theories that we can detect, the first extension
to the work presented here is a better algorithm for finding a biconditional that is
entailed by a given set of sentences. This problem is unlike the traditional theorem
proving problem because the entailment query is a metalevel query: do these sentences
entail a sentence of the form p(x) ⇔ φ(x)? We have done some work on metalevel logic
[HG05] and made preliminary investigations into meta-resolution, a variant of resolution
that targets metalevel logic.

Second, the algorithm illustrated in section 3 for converting a set of nonrecursive
biconditional definitions into datalog¬ is straightforward, but in those cases where the
resulting rules are unsafe, we introduce the univ relation, which is true of every object
constant in the language. Minimizing the cases where univ is used can have drastic
effects on run time. Because such domain-dependent queries are often explicitly disal-
lowed in the traditional database setting, standard database query optimizers will not
take advantage of the semantics of univ. ER will reap large benefits from augmented
query-optimization algorithms.

Third, the policy we currently use for determining which portion of the theory to
turn into extensional tables and which portion to turn into intensional tables needs
further study. The database community has studied view materialization [Hal01] and
view construction [Chi02] in depth, and those results can surely inform if not entirely
address this issue.

A Example of Test Theory

west(x, y) ⇔



(x = a ∧ y = b) ∨
(x = b ∧ y = c) ∨
(x = c ∧ y = d) ∨
(x = e ∧ y = f) ∨
(x = f ∧ y = g) ∨
(x = g ∧ y = h) ∨
(x = i ∧ y = j) ∨
(x = j ∧ y = k) ∨
(x = k ∧ y = l) ∨
(x = m ∧ y = n) ∨
(x = n ∧ y = o) ∨
(x = o ∧ y = p)



north(x, y) ⇔



(x = a ∧ y = e) ∨
(x = e ∧ y = i) ∨
(x = i ∧ y = m) ∨
(x = b ∧ y = f) ∨
(x = f ∧ y = j) ∨
(x = j ∧ y = n) ∨
(x = c ∧ y = g) ∨
(x = g ∧ y = k) ∨
(x = k ∧ y = o) ∨
(x = d ∧ y = h) ∨
(x = h ∧ y = l) ∨
(x = l ∧ y = p)


duewest(x, y) ⇔

 west(x, y) ∨
∃z.(west(x, z) ∧ west(z, y)) ∨
∃zw.(west(x, z) ∧ west(z, w) ∧ west(w, y))


duenorth(x, y) ⇔

 north(x, y) ∨
∃z.(north(x, z) ∧ north(z, y)) ∨
∃zw.(north(x, z) ∧ north(z, w) ∧ north(w, y))


vert(x, y) ⇔ (duenorth(x, y) ∨ duenorth(y, x))
westof(x, y) ⇔ (duewest(x, y) ∨ ∃z.(vert(x, z) ∧ duewest(z, y)))

References

[AS92] Owen Astrachan and Mark Stickel. Caching and lemmaizing in model elimi-
nation theorem provers. CADE, 1992.

[Chi02] Rada Chirkova. Automated Database Restructuring. PhD thesis, Stanford
University, 2002.

[Hal01] Alon Halevy. Answering queries using views: A survey. VLDB Journal: Very
Large Data Bases, 10(4):270–294, 2001.

[HG05] Timothy L. Hinrichs and Michael R. Genesereth. Axiom schemata as metalevel
axioms. AAAI, 2005.

[HG07] Timothy L. Hinrichs and Michael R. Genesereth. Reformulation for extensional
reasoning. Proceedings of the Symposium on Abstraction, Reformulation, and
Approximation, 2007.

[Llo84] John Lloyd. Foundations of Logic Programming. Springer Verlag, 1984.

[McC82] John McCarthy. Coloring maps and the Kowalski doctrine. Stanford Technical
Report, 1982.

[MG03] James Masters and Zelai Gungordu. Structured knowledge source integration:
A progress report. Integration of Knowledge Intensive Multiagent Systems,
2003.

[Rei80] Raymond Reiter. Equality and domain closure in first-order databases. Journal
of the ACM, 27(2):235–249, 1980.

[RV01] Alan Robinson and Andrei Voronkov. Handbook of Automated Reasoning. MIT
Press and Elsevier Science, 2001.

[Sti85] Mark Stickel. Automated deduction by theory resolution. Journal of Auto-
mated Reasoning, 1:333–356, 1985.

