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Abstract. A software-defined networking is a complex system that consists of a 

set of end nodes and switching nodes, as well as communication channels that 

connect them to each other. In such networks, along with the information 

transmission processes in the communication channels, there are also processes 

of information sharing that take place and take place at the switching nodes. In 

a software-defined networking, the central controller manages these distribution 

processes. Therefore, in the construction of software-defined networking should 

take into account the quality indicators that characterize these processes. First 

of all, these indicators are related to delay and loss of messages, errors in the 

delivery of messages to specific recipients, time of delivery of the data stream, 

topology of the software-defined networking, etc. They can be described by 

numerical parametric characteristics, which may be restricted. To design and 

construct SDNs, developers try to find the values of the characteristics that 

would optimally satisfy the functioning of the network by minimizing or max-

imizing its quality. And the tasks of researching and finding such characteristics 

are inherently multi-criteria. For a complex solution of the general issue of con-

struction a software-defined networking, the article discusses the basic require-

ments that apply to the criteria in multicriteria tasks. The process of normaliza-

tion of the parameters of the criterion functions in the formation of the Pareto-

optimal set of solutions is described and recommendations are given with their 

subsequent use. 

Keywords: Software-Defined Networking, Data Transmission System, Optimi-

zation, Network Design. 

1 Introduction 

Since the creation of the concept of software-defined networking (SDN), their optimi-

zation has been conducted in three main areas: 
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─ development of theoretical foundations of packet switching and network flows. In 

this direction, the following parameters of the SDN were investigated, such as net-

work response time, its performance, capacity of resources, indicators of their use, 

etc.; 

─ development of mathematical methods for optimization of data flows in SDN by 

choosing the optimal route of their delivery; 

─ scientific and applied researches on development of modern SDN hardware and 

software, creation of routing, switching protocols, etc. [1]. 

This article deals with the theoretical aspects of the application of multicriteria opti-

mization methods to software-defined networking and refers to the second direction. 

2 Formulation of the problem 

According to the performed tasks, a software-defined networking is considered as a 

complex object of research, which is characterized by many features. Describing it, 

take simultaneously into account many indivisible one of the another characteristics. 

In other words, for SDN research, a modern systematic approach requires the in-

volvement of the full spectrum of its characteristics. 

Since being in different conditions, the network exhibits different system proper-

ties, it is necessary to consider not one of its theoretical models, but a set of different, 

sometimes conceptually contradictory models. However, none of them can be ne-

glected, because each characterizes some property of the SDN under study and none 

can be accepted as a single one because it does not express the complete set of all 

properties of the network. 

Multiple SDN properties under different conditions can be quantified by appropri-

ate partial criteria. However, contributing to the acquisition of different properties, the 

corresponding conditions are also evaluated by different partial criteria. Thus, it can 

be said that mutually exclusive theoretical network models are characterized by con-

tradictory partial criteria, each of which is applied in its own, special conditions and 

in the values of its special characteristics. And only a complete set of partial criteria 

makes it possible to adequately evaluate the functioning of the software-switched 

network. Therefore, a multi-criteria approach with contradictory criteria must be ap-

plied to the holistic perception of SDNs in different working conditions. In the gen-

eral case, the results of solutions of this approach will contain not one but several 

variants of SDN construction and be in the area of Pareto-optimal (effective) design 

solutions. 

Content essence of many practical problems is the choice of operating conditions 

SDN that give it an opportunity to show their best qualities. If the conditions, on 

which these properties depend, are quantitatively expressed by some variables 

mxxx ...,,, 21 , which are defined on X, then they can be called optimization argu-

ments. In turn, if the properties themselves are also quantified by variables f, then 

their values will characterize the quality of the network with respect to these proper-

ties. 



In general, indicators sfff ...,,, 21  are called quality criteria and determine vector 

s
kkff 1}{  . Its components quantify the properties of the software-defined network-

ing with a given set of optimization arguments Xxx m
ii  1}{ , and the quality of the 

solution is evaluated by the set of contradictory partial criteria that form s-

dimensional vector XxYxfxf s
kk   ,)}({)( 1 , which is defined on the set X. 

Here, a feasible region mEX   is defined and consists of vectors m
iixx 1}{   of m-

dimensional Euclidean space, expression Yf   means belonging to the vector f to 

the class Y of valid efficiency, and vector of partial criteria is limited by the codomain 

Mf  . 

In addition to the specified conditions, the SDN may also be affected by external, 

random factors r. Although these factors are independent, they are known to take their 

values from a compact set R, and in calculations consider that this set is given and the 

vector of external influences is known [2, 3]. 

As a software-defined networking is a multifunctional system, and limitations are im-

posed on many of its characteristics, the task of research is inherently multicriterion. 

In the most general case, to solve such tasks means to find the optimal decision 

Xx * , which optimizes the efficiency vector under given conditions, relations and 

constraints f(x) [4]. However, this solution formulation is so general that it can diffi-

cult be used in practice. Therefore, summarizing the above and describing mathemati-

cal model for searching of optimal solutions of SDN, it is necessary to consider a set 

of basic conditions for its criteria and for its parameters, namely: 

─ network parameters mxxx ...,,, 21 , on the one hand, should sufficiently and reliably 

characterize it, on the other hand, allow to reduce the dimension of the solving 

task; 

─ to consider the possibility of using the simplest methods of analysis of these pa-

rameters; 

─ to take into account the possibility of normalization of selected parameters, i.e. 

reducing them to a single dimension or to a dimensionless form; 

─ a set of partial criteria  mxxxff ...,,, 21 , by which the quality of the network is 

evaluated, should be a function of the selected parameters; 

─ in turn, the criterion should be considered sensitive to analyzed variants of SDN, in 

particular to the selected parameters mxxx ...,,, 21 ; 

─ to specify the domain of existence of parameters for unambiguous determination of 

their constraints; 

─ to provide specified level of network quality and efficiency of its operation; 

─ criteria should take into account the assessment of the efficiency performance of 

the network main tasks; 

─ the criterion should be sufficiently simple and visual, have a clear physical mean-

ing, so that there are no difficulties in the physical interpretation of the research re-

sults; 

─ choosing criteria it is necessary also to take into account the existence of close 

links and contradictions between them [5]. 



3 Analysis of Publication and Problem Statement 

Today, the issue of finding optimal decisions in the problems of criterion research has 

been given considerable attention. This is confirmed by the large number of publica-

tions, and is caused by the fact that this topic covers a very wide range of tasks in a 

variety of fields. 

There are many publications that classify and uncover the various ways and meth-

ods used in multicriteria optimization tasks. Also, many publications are devoted to 

disclosing the basic conditions for describing mathematical models of finding optimal 

decisions [1-5, 8, 9]. Although different authors invest in the concept of optimality, 

different understanding of most rules for choosing the best project decisions has a 

common feature: the selection is made on the basis of information on the comparison 

of systems variants. Of course, such comparisons can be made on many permissible 

variants of systems, but more often it is convenient to perform in the criterion space, 

since here the design decisions are compared by means of a set of quality indicators 

having a numerical character [6, 12, 14]. 

Development of a method of finding the optimal variant of construction of the 

software-defined networking, which would be economically justified and at the same 

time would ensure the fulfillment of the tasks assigned to it and is the purpose of this 

article. And as can be seen from the goal, this method will be related to the problem 

of multicriteria optimization of complex systems [11, 13-16]. 

4 Formation of the set of Pareto-optimal decisions  

As described above, the results of multi-criteria decisions will be in the domain of 

Pareto-optimal decisions. However, before forming the Pareto-optimal set of variants 

of SDN construction, it is necessary to clearly define the basic requirements for it. In 

addition, it is necessary to set clearly the requirements for the criteria functions, their 

arguments, and also to take into account all the relations between the criteria, their 

physics and nature. All of these requirements should be an integral part of the process 

of proving the choice of the optimal SDN construction option. 

Characterizing a software-defined networking, its parametric characteristics (PC), 

in fact, are said to be coordinates of a point in a multidimensional space. In other 

words, any complex system can be formally described by point coordinates in a mul-

tidimensional space of parametric network characteristics. The equation of existence 

distinguishes in this space the area of technically implemented variants of SDN con-

struction, and the use of models of functioning of this network and methods of evalu-

ating its efficiency provides an opportunity for each point of this area to match the 

numerical values of the specified criteria. 

As is known, there is a method that allows to construct a Pareto-optimal set of de-

cisions using a quadratic approximation of criterion functions, with given constraints 

on parameters and two contradictory criteria. [3]. 

For this purpose, each objective function is given as a quadratic polynomial 
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In this case х is a column vector of SDN parametric characteristics, 
Tx  is a trans-

posed column vector of х, А0 is a free term of approximating polynomial, А1 is a vec-

tor of approximating coefficients at the first degrees of the parametric characteristics 

of SDN, which do not multiply with each other, А2 is a symmetric square matrix for 

the second degrees of parametric characteristics, as well as for parameters that multi-

ply with each other. To find matrices А0, А1 and А2 it is necessary to find the coeffi-

cients of the polynomial aij. 

Methods of finding polynomial coefficients, as well as arguments for choosing a 

quadratic approximation of a criterion function, as described in the second degree 

polynomial class, are described in [5]. 

After finding the coefficients aij, the matrices А0, А1 and А2 are formed for the cri-

terion functions, and using the rules of differentiation of the matrix expressions by the 

scalar argument, the values 
 

dx

xf1  and 
 

dx

xf2  equals to zero. The values of the coor-

dinates of the unconditional minima of the criteria functions are also found. It is a 

point  1
2

1
1 opt ,opt xxA  for  xf1 , and point  2

2
2
1 opt ,opt xxB  for  xf2  (fig. 1). 

 

Fig. 1. Families of initial ellipses 

If these points belong to the feasible region, the solutions, that meet these points, are 

said to be optimal by the criteria  xf1  and  xf2  respectively. If the points do not 



belong to feasible region, then significant constraints and additional researches, based 

on the Lagrange multiplier method, should be introduced [2]. 

In the first case, when the criterion surfaces  xf1  and  xf2  = соnst are multidi-

mensional ellipsoids, and points A and B belong to the feasible region, in the future 

this case will be considered, we can say that the set of points of the spatial curve AB, 

which is a locus of adherent points of the second-order lines of the family 1f  with 

lines belonging to the family 2f , corresponds to set of Pareto-optimal decisions. 

However, for further analysis and comparison of the components of the criteria 

 xf1  and  xf2 , these components should have the same dimension, that is, be nor-

malized. 

5 Rotation of the coordinate system 

To reduce the initial families of second order lines 1f  and 2f  to the same dimension, 

it is necessary with criterion functions  xf1  and  xf2  to do such orthogonal trans-

formations that would allow to move to the new coordinate system using the replace-

ment of variables, i.e. to move to a new basis, but in the same criterion space. 

However, this must be done so that the properties of the initial second-order line 

families 1f  and 2f  do not change according to the moving from the initial coordinate 

system to the new system and vice versa. 

In other words, it is necessary to rotate the coordinate axes of both families of the 

second-order lines and to move the origin of the coordinates of one of the families. 

For further clearness, let’s present a quadratic polynomial in the form (1) if m = 2, 
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where the upper indices of the coefficients ija  correspond to the criterion number, and 

rotate the coordinate system counterclockwise at an angle  . Then the basis vectors 

е1, е2 move to the new basis vectors, respectively: 

211 sincos~ eee   , 

212 cossin~ eee   . 

The old coordinates х1, х2 is expressed by the new coordinates 21
~,~ xx  as:  
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In the new coordinates the quadratic part (1)  212 , xxf  looks like: 
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The matrix in parentheses is the product of three matrices AQQA T
~

, moreover А is 

a symmetric matrix. Hence 

     AAQQQAQAQQA TTTTTTTT ~~
 . 

So, A
~

=[ ija~ ], 2,1  ji , is a symmetric matrix. 

Let's try to choose the angle   so that the matrix A
~

 becomes diagonal matrix: 
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So, let’s equate to zero element  
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If 012 a , so 0  can be taken. If 012 a , the following equation must be solved: 
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Obviously, the solution of this equation exists. Therefore, there is always such   that 

at which A
~

 becomes diagonal matrix. In addition, with any choice of  , we get: 

 
.cossincos2sin

,sinsincos2cos

22
2

1211
2

2

22
2

1211
2

1

aaa

aaa








 

Hence 221121 aa   . At the same time, using equality 
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the product of matrices is equal to the product of the determinants, find 
2
12221121 aaa  . Thus, 1  and 2  are roots of the quadratic equation 
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Note that the left-hand side of this equation is true 
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are the eigenvalues of this matrix. 

It is easy to see that using turning the initial coordinate system by some angle   

equation   0, 21 xxf  is transformed into new coordinates to:  
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values of this matrix А2 of a quadratic polynomial (1). 

6 Movement of the coordinate system 

It is natural to assume that the quadratic part 2f  in the rotated coordinate system is 

not identical to zero. Thus, 1  and 2  are not equal to zero at the same time. 

Then let’s distinguish in the quadratic part the perfect squares 
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Let's move the Cartesian coordinate system 1
~x  and 2

~x , and move its origin at the 

point  
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Then new coordinates 1z  and 2z  will be expressed through 1
~x  and 2

~x  as follows: 
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In the new coordinates, the equation   0, 21 xxf  loses its linear part and looks as  
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So, by rotating and moving the initial coordinate system, the equations 

  0, 21 xxf  is reduced in new coordinates to kind 02
22

2
11  kzz  . Moreover, 

if an equation   0, 21 xxf  in any Cartesian coordinate system has this form, then it 

can have another form in no other Cartesian system.  

7 Criteria Normalization 

Returning to the issue of normalization, note that a new basis can be constructed by 

reducing the quadratic form (1) to the canonical form. As is known, any real symmet-

ric matrix is orthogonally similar to a real diagonal matrix [7] 

 ATTT , 1TTT , 

where  А is a matrix of coefficients ija , Λ is a diagonal matrix of eigenvalues of the 

matrix А, Т  is a matrix of transition or transposition from one basis to another. 

In the new variables, the quadratic form (1) is an algebraic sum 
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In general case, for Т only condition of invertibility is required. Finding the appropri-

ate replacement of variables for a given quadratic form is called a canonical form. If Т 

is an orthogonal matrix, then we are talking about bringing (1) to the principal axes, 

and the transition is made by expressions  

 Txz  , and accordingly zTx 1 . 

But in our case we have two quadratic forms at once  xf1  and  xf2 , which are 

second order curves on the plane. It will be wise to try to simplify their equations in a 

common coordinate system for both. In the general case, this coordinate system will 

be affine. Note that the points in the affine space are equal, they cannot be stacked 

with each other. In the affine space, there is also no concept of zero point or start of 

reference. 

Suppose one of the curves is an ellipse. Then move to a Cartesian system, in which 

the equation is obtained for it 122
2

22
1  bxax . The equation of the second curve 

in this system may have the most general form. Changing the scales along the axes, 

move to the affine space, in which the equation of the ellipse is the equation of the 

circle 1~~ 2
2

2
1  xx . The equation of the second curve in the new (affine) system still 

has the general form. But using rotation, a form 
2
22

2
11 zz    can be obtained for its 

quadratic part. However, the rotation of the coordinate system can not change the 

form of the first equation. 



So, let’s have two real symmetric matrices 
1
2A  and 

2
2A , which are matrices of coef-

ficients ija  of quadratic parts of forms  xf1  and  xf2  accordingly, and thus 
1
2A  

positively defined. In the general case, the positivity of the matrices can be verified 

using the Sylvester’s criterion. 

Then there is the real invertible matrix T such that both matrices TAT T 1
2  and 

TAT T 2
2 are diagonal. That is, using the transposition of matrix T, forms  xf1  and 

 xf2  can be simultaneously reduced to a canonical form. 

Indeed, because of the positive defining, all the eigenvalues of the matrix 
1
2A , 

0i  for all i. Then 
1
2A  is orthogonally similar or congruent to a diagonal matrix Λ 
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where Q is a matrix of eigenvectors of the matrix 
1
2A . 

Further note that 
1
2A  is also congruent to the identity matrix I  
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Let congruence transformation in application to 
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2A  gives a matrix 
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It is easy to verify that С remains a real symmetric matrix. Therefore, using the or-

thogonal matrix V, which is the matrix of eigenvectors of matrix С, a diagonal matrix 

CVVD T  is obtained. In this case, D is a diagonal matrix of eigenvalues of matrix С 
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At the same time, IIVV T  . Finally TATDTATI TT 2
2

1
2 ,  , where 

VQT 21 . 

So, in order to normalize the criteria  xf1  and  xf2 , that is, to reduce them to 

the canonical form, it is necessary: 

─ to select at least one positive definite quadratic part of these criteria, for example, 

let in our case be a positive definite quadratic part of the first criterion, i.e. 
1
2A ; 

─ find eigenvalues and eigenvectors of a positive definite matrix 
1
2A  and add matri-

ces Λ and Q; 



─ using the quadratic part of the second criterion 
2
2A  and matrices Λ and Q calculate 

matrix С; 

─ find eigenvalues and eigenvectors of matrix С and add matrices D and V; 

─ using matrices Λ, Q and V calculate the transpose matrix Т, with a help of which 

transition to a new basis is executed. 

After diagonalization, the criterion functions (2) look like 
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or in general case 
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The transition from the old coordinate system to the new one and vice versa is done 

using expressions Txz   and zTx 1 . 

Therefore, using scale variation on the axes, rotation, and moving the coordinate 

system, the old ellipse family (Fig. 1) can be transformed into a family of circles cen-

tered at a point  0201, zz  and into a family of deformed ellipses (Fig. 2). 

 

Fig. 2. Families of deformed ellipses 

8 Finding Pareto-optimal decisions for SDN construction 

In content terms, the idea of solving the issue of finding Pareto-optimal software-

defined networking decisions is to determine the equation of the curve АВ in the mul-

tidimensional space of the investigated parameters. It was noted above that the Pareto 

line, or curve АВ, passes through the adherent point of isoquants. Moreover, moving 

to a new coordinate system, this property is not changed, it is still the locus of adher-



ent points of the second order lines of a new family 1f  with lines of family 2f  

(Fig. 2). 

So, at these points the tangent line and normal to the isoquants of the family 1f  co-

incide with the tangent line and normal to the isoquants of the family 2f , which allow 

to form a system of equations of the type  

 



























































O

O

O

O

OO

OO

M

M

O

O

M

M

O

O

M

O

M

O

M

O

M

O

dx

df

dx

df

xx

xx

dx

df

dx

df

xx

xx

dx

df

xx

dx

df

xx

dx

df

xx

dx

df

xx

2

2

1

2

22

11

2

1

1

1

22

11

2

2

22

1

2

11

2

1

22

1

1

11

, 

where  МО is an adherent point, 
OO xx 21 ,  are coordinates of adherent point. 

In order for the adherent point to be Pareto-optimal, it must belong to the curve АВ, 

that is   ABxxM OO
O 21 , .  

In the transition to a new coordinate system value  OO
O xxM 21 ,  is identical both for 

family 1f  and family 2f , therefore, in the new coordinate system, the initial equation 

system looks like this: 
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So, knowing one coordinate of point, the value of another point from a new system of 

equations can be determined by the formula  
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It can be shown that, in the multidimensional case, the coordinates of the points be-

longing to the Pareto line, can be determined by a similar formula 
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where mz0  is m-th coordinate of center of family 1f  in new coordinate system; m  

is eigenvalue of the quadratic form 1f . 

So, knowing the coordinates of the family center 1f  , that is  mzzz 00201 ,..., , ei-

genvalues of the quadratic form 1f  , that is  m ,...,, 21 , and changing the coordi-

nate value 1z  in the range  01,0 z , it is possible to calculate other coordinates of 

points belonging to the Pareto line. Application of inverse transformations of the co-

ordinate system allows to obtain Pareto-optimal solutions in the initial coordinate 

system. 

9 Conclusions 

Thus, the proposed method allows to obtain from the Pareto-optimal range of criteria 

by the value of one of any given parameter the whole set of optimal network parame-

ters, as well as the value of the criterion functions in the multidimensional criterion 

space. The values thus found on the set of several criteria will be the Pareto-optimal 

values of the software-defined networking construction. 

In addition, applying the approaches proposed in the method described in [8], we 

can find the unique optimal solution. Therefore, it must be remembered that the fun-

damental complexity of the selection task under many criteria is the inability to de-

termine a priori what is called the best solution. Therefore, in decision-making, re-

searchers should not only rely on their experience and intuition, but also turn to well-

developed mathematical models of decision support, which allow correct selection of 

the best alternatives from available ones [9, 10]. After all, the success of further de-

velopment of the whole research, design and development as a whole depends on how 

competent and competent the decision support is. 
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