A Mechanization of Phylogenetic Trees

Mamoun Filali
filali@irit.fr

IRIT CNRS
Université Paul Sabatier
118 Route de Narnonne
F-31062 Toulouse France

Abstract. We study the mechanization of phylogenetic trees in higher order logic.
After characterizing trees within such a logic, we state how to reason and to com-
pute about them. We introduce the so called generative partitions and relations whose
purpose is to allow the reconstruction of a tree from its leaves. After introducing tree
transformations, we define the graft operation. and consider sufficient conditions for
the preservation of the generative partitions or relations after a graft. It follows that we
can reconstruct a tree given its set of leaves and its generative relation which has been
preserved along the growth of the tree. We apply this result to the reconstruction of a
distributed computation.

keywords: HOL, tree structure, verification, ISAR.

1 Introduction

This paper gives a definitional formalization, in higher order logic (HOL), of
phylogenetic trees. We also formalize how to reason and compute on such trees.
We define the notion of a generative relation, that aims at characterizing in-
formation which enables to rebuild a tree. Finally, we propose a reconstruction
algorithm based on the set of leaves and a generative relation. The correctness
of the algorithm is established. We introduce an operation, the graft, that allows
to represent the growth of a tree. a graft are stated. We illustrate such a recon-
struction through the so-called leaf vectors and a concrete generative relation. It
should be stressed that our study is not only concerned with the proposal of an
original algorithm but also by the formal definitions and proofs within a logical
framework.

The rest of this paper is organized as follows: Section 2 gives the repre-
sentation and the basic operations. Section 3 introduces the graft operation and
studies its reconstruction properties.Section 4 presents a concrete example where
we apply the reconstruction algorithm. Section 5 contains the conclusions and
related works.

2 A phylogenetic tree representation and basic operations

In this section, we introduce the formal representation of phylogenetic trees;
For such a representation, we consider how to reason about it and how to com-
pute on it. We rely mainly on basic set theory. However, rather than working

22 Mamoun Filali

with set theory only, we use type theoretic reasoning also. We have done the
mechanization within the Isabelle logical framework [13]. Actually, we have used
the Tsabelle/Tsar' [19] environment which goal is to assist in the development
of human-readable proof documents composed by the user and checked by the
machine.

2.1 Notations and basic definitions

In this section, we recall the basic set theory and order notions, we will use.We
hope that the name of the definitions and their formal expression are self ex-
planatory. We have used the definitions given in [6]. Moreover, we express them
in the Isabelle syntax [13]. For each definition, first, we give its signature, then
its formal expression. For instance, we have used the following definitions:

"Maximal 2 A S. {m€ S. Vm € S. mCm’ =m—=m'}"
"Down £ A(S,e). {s € S. s C e}"
"PDown = A(S,e). {s € S. s C e}"

__{* proper partition*}
"PPartition £ A (n,S).Partition(n,S) A (V e € S. e C n)"

"A//r 2k € A, {r {x}}" — {* set of equiv classes x}

In Isabelle, the reflexive transitive closure of relation r, denoted r”x, is in-
troduced as an inductive data type [2]. Its introduction rules are rtrancl_refl
which specifies that every couple (a,a) belongs to the transitive closure, and
rtrancl_into_rtrancl which specifies that if (a,b) belongs to r"x and (b, c)
belongs to r, then (a,c) belongs also to r” .

inductive "r "%

intros
rtrancl _refl : "(a, a) € r %"
rtrancl _into rtrancl
"(a, b) e r"x = (b, ¢) € r = (a, c) € r %"

With respect to the proofs, we have used the Isabelle/Isar format. A proof is
established by a sequence of intermediate results which has to be proved recur-
sively or already established. Eventually, results are justified either as axioms
of the logic or by rules of the logic. With respect to proofs, Isar promotes the

! “Isar” abbreviates “Intelligible semi-automated reasoning”.

A Mechanization of Phylogenetic Trees 23

so called “declarative style” [18] which is closer to the usual mathematical rea-
soning than the procedural format. Let us mention that, basically, Isar supports
natural deduction but also supports calculational reasoning |7].

As an example, the following statement which consists in assumptions® (assumes),
a conclusion (shows) and a proof script (proof) establishes that the union of
two hierarchies (see section 2.2) is also a hierarchy. A basic statement of the
proof has the format:

from (facts) have label ' ;" (proposition) by (method)

which aim is to establish proposition from facts by applying method.

theorem Hierarchy union:

assumes hl:"H1 € Hierarchy"

assumes h2:"H2 € Hierarchy"

assumes s: "V nl € Hl. V n2 € H2. SDS(nl,n2)"

shows "(H1 U H2) € Hierarchy"

proof —

from hl h2 have e: "0 ¢ H1 U H2" by (unfold
Hierarchy def, blast)

from s have "V nl € Hl. V n2 € H2. SDS(n2,n1)"
by (auto simp only: SDS def)

from this have "V nl € H2. V n2 € Hl. SDS(nl,n2)" by
auto

from s this hl h2 have sds: "V nl € Hl U H2. V n2 € H1 U

H2. SDS(nl,n2)"

by (unfold Hierarchy def, blast)

from hl h2 have f: "finite (HI U H2)" by (unfold
Hierarchy def, auto)

from hl h2 have "V n € Hl U H2. finite n" by(unfold
Hierarchy def, auto)

from e sds f this show 7thesis by (unfold Hierarchy def,

blast)

qed

2.2 Hierarchies and trees

Our mechanization is based on the introduction of phylogenetic trees starting
from the basic notions of set theory. For such a purpose, we first consider hier-
archies [3] and then introduce trees as restricted hierarchies. Along with these
hierarchies, we give some general definitions that will be used later.

2 Sometimes assumptions are also called preconditions.

24 Mamoun Filali

The basic idea of the following representations is to infer a structure from
the relations between its elements; the structure is not encoded directly. Such a
content based encoding is motivated by the fact that our basic concern is the
reconstruction starting from some of the elements, namely the leaves, of the tree
structure.

Hierarchies. We first introduce a generic graph as a set of nodes. A node is a
set of generic elements.

types
e graph = "(’e set) set" — {x generic graph x}
e node = "(’e set)" — {x generic node x}

Hierarchies are finite graphs which elements are finite and non empty and
obey to the SDS: “Subset Disjoint Subset” relation:

"SDS £ A(sl,s2). s1 C s2 Vsl Ns2=0Vs2Csl"

"Hierarchy = {H. finite (H)
A (V n e H. finite(n))
ANOD ¢H
A (V¥ nl € H V n2 € H. SDS (nl,n2))
}"

In the following, we give the formal definitions that will be used.

"Leaves = A h. {I € h. PDown(h,1) = @}"
"ROOT £ X h. J h"
"Subtrees £ X\ t. image (A e. Down(t,e)) (Maximal(t))"

— {* proper subtrees x}
"PSubtrees £ X\ t. Subtrees (t — Maximal(t))"

— {* roots of proper subtrees, child nodes x}
"R1 £ X t. image ROOT (PSubtrees(t))"

"Sigma £ X S. {UJ US)} U US)"

Due to the lack of space, we do not state all the established results. We will
give them on the fly when needed.

Trees and phylogenetic trees. Starting from hierarchies, we first define a
tree as a hierarchy with its ROOT as the single maximal element :

A Mechanization of Phylogenetic Trees 25

"Tree £ {h € Hierarchy. Maximal(h) = {ROOT(h)}}"

Then, we introduce phylogenetic trees as trees which nodes are either leaves
or the union of all its subnodes:

"Phylo £
{t € Tree. V n € t. n € Leaves(t) V n = J PDown(t,n)}"

With respect to phylogenetic trees, we just mention the following equality
that will allow us to say that the reconstruction can proceed starting from the
leaves, while the statement of the reconstruction theorem is over the root. Actu-
ally, for a phylogenetic tree ¢, we have: ROOT(t) = | Leaves(t). Moreover, we
will rely on the following result about the union of phylogenetic trees:

lemma phylo union:

assumes t1: "tl € Phylo"

assumes t2: "t2 € Phylo"

assumes u: "ROOT(t2) € Leaves(tl)"
shows "t1 U t2 € Phylo"

proof ... qged

Examples. The figure 1 illustrates the representation of phylogenetic trees. For
instance, with respect to the previous definitions and the tree let t2, we have:

t2 {x,y,a,e,b,u,v,w
tl {a, e, b} [)
4 N
{x, {a, ¢, b} {ohy, w
a e b o (0 {aY {e} {0} { { {
o0 | C{]} } @éé o
N /L -

Fig. 1. phylogenetic trees

26 Mamoun Filali

t2 = Hz,y.a,e,b,u,0,wh, {2, y}, {z}, {y}

Aa,e b}, {a},{e}, {b},{u, v, w}, {u}, {v} {w}}
Leaves(t2) = {{z}, {y}, {a}, {e}, {0}, {u}, {v},{w}}
ROOT(t2) = {x,y,a,e,b,u,v,w}
R1(t2) = {{z,y},{a,e,b},{u,v,w}}

The decomposition and induction theorems. In order to reason about
phylogenetic trees, we first introduce a decomposition theorem: a tree is either
a singleton containing its ROOT, or the sum (Sigma) of its proper subtrees.

theorem phylo cases:

assumes t: "t € Phylo"

shows "t = {ROOT(t)} VvV t = Sigma (PSubtrees(t))"
proof ... qged

We state the induction theorem about phylogenetic trees as follows:

theorem phylo induct:
assumes b: "V e. P({e})"
assumes r: "V T € domSigma. (V t € T. t € Phylo A P(t))
= P(Sigma (T))"
shows "V t € Phylo. P(t)"
proof ... qged

where domSigma specifies the set of trees which can be “joined” to form a phy-
logenetic tree:

"domSigma =
{S. S # 0 A finite(S) A S C Tree
AVtl eSS Vi2eS tl#t2=UtlnlUt2=210)
A PPartition(J U S, image ROOT S)

}ll

2.3 Transformations

The basic property of the studied transformations is to preserve the underlying
structure while transforming the nodes.

Hierarchy transformations and preservation theorem. First, we intro-
duce general transformations which basic property is to preserve the cardinality
of a set of nodes.

"G tr = X g. {tr. Vnl €g. ¥V n2cg.
(tr(nl) = tr(n2)) = (nl = n2)}"

A Mechanization of Phylogenetic Trees 27

A hierarchy transformation is a general transformation which preserves the
relations between the nodes of a hierarchy:

{* hierarchy transformations setx}

"H tr £ X\ h.

{tr € G_tr(h). (V n € h. finite(n) = finite (tr(n)))
AVneh n#0=tr(n) #0)
A(V nl € h. ¥ n2 € h. nl1 € n2= tr(nl) C tr(n2))
AV nl € h. ¥V n2 € h. n1 N n2 =) = tr(nl) N tr(n2) =0)

}ll

A hierarchy is preserved by a hierarchy transformation:

theorem hierarchy trans:
assumes t: "t € Hierarchy"
assumes tr: "tr € H_tr(t)"
shows "image tr t € Hierarchy"
proof ... qged

A tree is also preserved by a hierarchy transformation.

Phylogenetic transformations and preservation theorem. Intuitively,
when a phylogenetic transformation is applied to a non-leaf node, the decompo-
sition into its descendant nodes is preserved. The characterizing property of a
phylogenetic transformation is expressed as follows:

"P tr 2 X h. { tr € H tr(h). ¥V n € h.
n € Leaves(h) v tr(n) =J (image tr (R1(Down(h,n))))}"

Then, we state the preservation theorem:

theorem phylo trans:
assumes t: "t € Phylo"

assumes tr: "tr € P_tr(t)"
shows "image tr t € Phylo"
proof ... qed

Example. A Mutation is a transformation that concerns the nodes up a graph
node: gp, such “up” nodes contain gp, and a mutation is expressed as follows:

| "Mutation £ Agp,R).A n. if gp C n then (n — gp) UR else n" '

We show that the Mutation transformation is a phylogenetic transformation:

theorem Mutation P _tr:
assumes h: "h € Phylo"
assumes g: "g € Phylo"

28 Mamoun Filali

assumes pre: "PreGraft(h,gp,g)"
shows "Mutation (gp ,ROOT(g)) € P_tr(h)"
proof ... qged

where PreGraft (We will use this predicate as the precondition of the Graft
operation.) is defined as follows:

"PreGraft £ X(h,gp,g). h € Hierarchy A (((ROOT h) N (ROOT g)) = 0) A
gp € Leaves(h) A g € Hierarchy A g # 0"

2.4 Generative partitions and relations

One of our concerns is the reconstruction of a phylogenetic tree starting from
the set of its leaves. The basic idea of such a reconstruction is to partition
the leaves according to its direct proper subtrees and to apply recursively the
reconstruction to each of the sets of the partition. These successive partitions
define the sets which are generated by a generative partition.

Generative partitions. Given a phylogenetic tree h, GP is called a generative
partition of h, if each node is either a leaf or partitioned according the direct
sub-roots of n (Down (h,n) is the subtree of h which root is n).

"GenerativePartition= A(h,GP). V n € h.
GP(n) =(if n € Leaves(h) then {n} else R1(Down(h,n)))"

Generative relations. Semantically, the generative relation is a symmetric
relation of which the transitive closure is a generative partition. The motivation
for introducing generative relations is to make local the reasoning about the of
growth the tree and consequently easier than a global one. First, we define R2P
which converts a relation to the partition function given by its reflexive and
transitive closure: a node n is partitioned by the classes of the corresponding
equivalence relation.

"R2P(r) = A n. (n // ((r(n)) %))"

"GenerativeRelation = X\ (h,GR).
(Vneh GR(n) Cn xn A sym(GR(n)))
A GenerativePartition (h, R2P(GR))"

2.5 The reconstruction function and theorem

We introduce the auxiliary function Reconstruct. Its definition is set up in
order to be accepted as a well defined function by Isabelle: since it is a recursive
function that is not primitive, we have to provide a measure that decreases

A Mechanization of Phylogenetic Trees 29

at each call. The condition of the if expression ensures it. The reconstruct
function is a curryfied version of Reconstruct.

recdef Reconstruct "measure (A (GP,s). card s)"
"Reconstruct (GP,s) =
(if (finite s) A (V s’ € GP(s). s’ C s) then
Sigma (image (A e. Reconstruct (GP,e)) (GP s))
else {s})"
(hints simp add: psubset card mono)

"reconstruct (GP) & X\ s. Reconstruct (GP,s)"

The theorem characterizing the reconstruction is stated as follows:

theorem generative partition reconstruction :
shows
"V GP. V t € Phylo. GenerativePartition (t,GP)
= (reconstruct (GP) (ROOT(t)) = t)"
proof ... qed

This theorem is established thanks to the induction theorem over phyloge-
netic trees (2.2).

2.6 Discussion

In this section, we discuss the definition of phylogenetic trees that has been
elaborated. With respect to the structural point of view: a phylogenetic tree can
be defined as either a singleton node or as the Sigma of its subtrees. Such a
set based construction is not admitted by most of the type theory based logical
frameworks [9,1,4,13|. In fact, in such frameworks a tree is usually recursively
defined through the list of its subtrees, or through a map of its subtrees from a
given index type. We have tried to work with each of these representations. Their
main drawback is to break the underlying natural confluence. For instance, with
such representations, inserting a subtree after actually removing it, does not yield
the original tree. Such a confluence is fundamental for establishing naturally our
reconstruction result. Otherwise, we would have to introduce modulo relations
in order to not distinguish between trees of which subtrees are identical but not
in the same order.

3 The graft operation

In our setting, the graft operation models the growth of a tree. As its name
suggests, the graft operation consists in grafting a tree at a given node. In this
study, we consider a restricted version: grafting occurs at singleton nodes only.

30 Mamoun Filali

3.1 Graft decomposition

Let h be a graph, gp a node of h where the graft should occur and g the graph to
graft. We express the graft through two basic operations: first, h is transformed
through a Mutation, second, g is grafted through the union (U) operation. Such
a decomposition is illustrated by figure 2. The Graft is expressed as follows:

"Graft £ X(h,gp,g).(image (Mutation (gp,ROOT(g))) h) U g"

{x,y,a, e b,uv,w

{x.y,a,ebuvw

{x,
{x, {a, ¢, b} {ony, W
Oy {a
oy {af {ef {b} { |
transformation

{x,y,a,nl,n2b,u,v,w

{a ¢ b}

{e (b}

{x, {a, n1 n2, b} v, W

{x,y,a,nl, n2 b, u,v,w
{x, {a, 1, n2, b} Tuy, v Of \) (aY {n1.,]n2} {b} { o {

O

Oy {aY {n1,n2} {\b} { (v {

O ‘ uni on
{n1, n2}

{n1} n2} {n {h2}

O O O

Fig. 2. Decomposition of a graft
We show that the grafted tree is also a phylogenetic tree. The proof is estab-

lished thanks to the decomposition of the graft operation; we first establish that
Mutation is a phylogenetic transformation, then thanks to the union theorem,
g being phylogenetic, it follows that the grafted tree is phylogenetic.

theorem graft phylo:

assumes h: "h € Phylo"

assumes g: "g € Phylo"

assumes pre: "PreGraft(h,gp,g)"
shows "Graft(gp,g)(h) € Phylo"
proof ... qed

A Mechanization of Phylogenetic Trees 31

3.2 Reconstructing a graft through a generative partition

This section states a general result about the preservation of a generative par-
tition GP. In fact, we have a precondition about the partitioning of the mutated
nodes.

theorem generative partition graft phylo:
assumes h: "h € Phylo"
assumes g: "g € Phylo"
assumes pre: "PreGraft(h,gp,g)"
assumes gp_h: "GenerativePartition (h,GP)"
assumes gp g: "GenerativePartition (g,GP)"
assumes gp _ tr:
"V n € h. GP(Mutation(gp,ROOT(g))(n)) =
(if n € Leaves(h) then {Mutation(gp,ROOT(g))(n)}
else image (Mutation(gp,ROOT(g))) (GP(n)))"
shows "GenerativePartition (Graft(h,gp,g) ,GP)"
proof ... qed

3.3 Reconstructing a graft through a generative relation

In the same way, a generative relation can be preserved while extending a tree
through a graft. Thanks to this preservation: a tree, growing through graft op-
erations, will always be reconstructible from its leaves through its invariant gen-
erative relation.

A simplified mutation: the basic update upd. For the purpose of our
application, we consider the following node transformation:

"upd £ A (I,N). A S. if 1 € S then S — {1} UN else S"

Since we have: upd(l, N) = Mutation({l}, N), upd inherits the property of
Mutation; then it is a phylogenetic transformation.

Moreover, in order to simplify the proof obligations for establishing that
a generative relation is preserved after a graft, we have elaborated sufficient
conditions that should be established by the update function. Due to the lack
of space, we do not detail them.

We have established the preservation of the generative relation for the graft
of a so called canonical tree which consists of a root and a set of leaves:

i "Canonic 2 AN. {N} U (U e € N. {{e}})"

We have the following invariant theorem establishing the preservation of a
generative relation when grafting a canonic tree:

32 Mamoun Filali

lemma generative relation graft phylo:
assumes t: "t € Phylo"
assumes up: "{1} € t"
assumes gpl: "GenerativeRelation (t,GR)"
assumes gr m: "V n. GR(n) € n x n A sym(GR(n))"
assumes terminal: "Terminal(t
assumes N: "V n € t. NN n —
assumes N_e: "N # () A finite (N)"
assumes gp2: "GenerativeRelation (Canonic(N) ,GR)"
assumes gr tr:
"V e t. 1l €n=r_upd(l,N)(n)(GR(n) ,GR(upd (1,
shows "GenerativeRelation (Graft ({1} ,Canonic(N))
proof ... qed

)"
@ll

N)(n)))"
(t),GR)"

4 Application

As an application of phylogenetic trees, we consider distributed diffusing com-
putations. In the initial state, one site (or process) multi-casts a message to a
subset of other nodes. Then, all nodes share the same behavior: when a message
is received, the receiver performs a computation step and, possibly, multi-casts
a message to a subset of other nodes.

We are interested in the following problem: how to reconstruct the global
history of such a computation, after its termination?, from information gathered
during the computation. For such a diffusing computation, the control flow is a
tree in which the nodes are the computation steps and the edges are the message
communications. Our algorithm consists in collecting an encoded representation
of these leaves. From this leaves set, we apply the reconstruction algorithm based
upon a generative relation defined on the computation as a phylogenetic tree.

4.1 Control tree encoding

We define an encoding for the control tree. The nodes generated during the
computation (temporary leaves) are encoded as vectors. At each site, a local
counter is incremented by p — 1 each time a computation step multi-casts p
messages. Thus, one? plus the sum of the local counters represents the number
of the control tree leaves. Moreover, the value of the counter of site s is the
maximum of the vectors component at the index s.

% Such a reconstruction is usually used for debugging purposes.
4 We have to take into account the initial states where the counters are all null and the tree consists
of one leaf node.

A Mechanization of Phylogenetic Trees 33

(0.0,0.0.0]) (OILLO0) (o[1,1,22x0,1,1,20])

S1______._ o WILLSOD T N (1,01,1,2,2))

82 ____________________ 7[1s1, 52]L
5 -
(3,[1,1,2,0))
(site[x,y,z,1]) internal node tag (site,[x,y,2,1]) collected visit tag

Fig. 3. Visit tags encoding

We associate a "visit tag" to each node. This tag is composed of the site of
the node and a natural integers vector. This vector V' has a size N, corresponding
to the number of sites, and is assigned the local counter values of the sites it
has visited. Figure 3 shows the tagging of the nodes of a diffusing computation
with this encoding.

The state space of all the application is modeled by a global type State.
It contains the fields related to the network, the local computations and the
collector. The computation is concerned by the following fields:

— The field 1counter implements the local counter of each site;
— The field collected records the visit tags of the computation leaves.

Two transitions are considered and each of them is launched when a message
is received:

— ReceiveAndEnd describes a computing step without further message multi-
cast. In this case, the visit tag contained in the received message is sent to
the collector;

— ReceiveAndSplit describes a computing step terminated by a message mul-
ticast. In this case, a new tag is created: it holds the destination site (d) and
a vector which is identical to the tag vector of the splitting node (m.V'), ex-
cept for the splitting site (self) component, which gets the new local counter
value lcounter[sel f] assigned by this computation step. No message is sent
to the collector.

34 Mamoun Filali

With respect to phylogenetic trees, the diffusing computation is seen as a
tree. A ReceiveAndEnd assigns to a node the definitive leaf status. While a
ReceiveAndSplit extends a tree with new leaves. We interpret it as a Graft
operation. Then, for validation purposes, we have an auxiliary variable auxTree
for recording the growth of such a “superposed” tree: we prove that at termina-
tion, this auxiliary tree and the reconstructed tree are the same.

4.2 Termination detection and reconstruction

We introduce a collector process to gather vectors: a vector is sent to the col-
lector when a process performs a computation step without multi-casting a new
message. In such a case, this step generates a leaf with respect to the control
flow of the computation. Then, with respect to phylogenetic trees, the collected
tagged messages are in fact leaves of the phylogenetic tree superposed to the
diffusing computation (and recorded in the auxiliary variable auxTree).

The reconstruction of the control tree can only start when the global com-
putation is terminated. Several distributed algorithms can solve the termination
problem, especially, thanks to a collector process[12|. However, the encoding it-
self provides a simple criterion for termination detection [8]: a computation is
terminated when the number of collected leaves is equal to one plus the sum of
the elements in the maximum of the collected visit vectors®:

| collected |= 1+ Z max v.V[s]

=~ wvEcollected
seSite

The generative relation for the diffusing computation as a phylogenetic tree
is defined as follows:

"er 2 A n. {(vl,v2). vl €n A v2 € n A
(if V(vl) = min_on(n) V V(v2) = min_on(n)
then (vl = v2)
else (3 s. V(vl)(s) =V(v2)(s) As # w(vl) A
v s # w(v2) A V(vl)(s) # min_on(n)(s)))

We derive the correctness of the reconstruction through the following invari-
ant:

"ReconstructionInvariant £ X\ st. auxTree(st) =
reconstruct (R2P(gr)) (collected (st) U network(st))"

Then, when termination is reached, the network is empty, and the recon-
struction applied to the collected messages gives the computation tree.

% | | denotes the cardinality of _ .

A Mechanization of Phylogenetic Trees 35

5 Conclusion

In this paper, we have proposed a mechanization of phylogenetic trees. Starting
from basic set theory, we have introduced phylogenetic trees through hierarchies
and trees. Then, we have defined generic transformations. We note that sets
based representations, although already suggested in the literature[10], are not
widely used in computer science. To the best of our knowledge, the representa-
tion of a tree through the set of its leaves together with a generative partition
or relation, as well as the study of dedicated transformations, are original. We
have given a concrete example, where such notions have been applied to tree
reconstruction and shown how such a reconstruction could be validated. It is
interesting to remark that thanks to theorem proving techniques, such a vali-
dation was possible; actually we have considered an unknown number of nodes
and unbounded natural vectors. Usual model checking techniques cannot handle
such problems.

Most of our results have been proved formally within Isabelle. In fact, our
trees are “unordered” trees. Such a data type could be considered as an inductive
data type where Sigma would play the role of a constructor; however, due to
the negative occurrence ® most of the logical frameworks (HOL [9], Tsabelle [13],
PVS [4], Coq [1]) do not support such a definition schema. Vos and Swiestra [17]
have studied restrictions for accepting inductive data types with negative occur-
rences; since our trees are finite, we could have reused their work. This work
is not known to be available within the Isabelle framework. An alternative way
would have been to introduce “unordered” trees through an equivalence rela-
tion [14] over ordered trees where subtrees are constructed with a list. It would
be interesting to compare the subsequent developments of phylogenetic trees,
generative relations and partitions.

With respect to the formalization of trees and biology related results, numer-
ous works have been published. Among the more recent, we can cite [16] who
consider the problem of tree inclusion in a categorical setting. [11] reviews ba-
sic network models for reasoning about biology; he notices that applications to
biology of existing tools from algebra is just beginning. To the best of our knowl-
edge, the mechanization of these works has not been considered yet. We think
that our work could be reused as a starting point for establishing algorithms
correctness but also for the correctness of their proposed proofs’.

5 The negative occurrence is due to the fact that the parameter of Sigma, considered as a constructor,
is a set of trees.

" It is interesting to remark that the analysis of the algorithm of [5] is reported to be incorrect
in [15].

36 Mamoun Filali

References

1. B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Giménez, H. Herbelin, G. Huet,
C. Munoz, C. Murthy, C. Parent, C. Paulin, A. Saibi, and B. Werner. The Coq Proof
Assistant Reference Manual — Version V6.1. Technical Report 0203, INRIA, August 1997.
http://coq.inria.fr.

2. S. Berghofer and M. Wenzel. Inductive datatypes in HOL - lessons learned in formal-logic engi-
neering. In Springer-Verlag, editor, Theorem Proving in Higher Order Logics, volume 1690, pages
19-36, 1999.

3. S. Bocker and A. W. Dress. A note on maximal hierarchies. Advances in Mathematics, (151):270-
282, 2000.

4. S. Crow, S. Owre, J. Rushby, N. Shankar, and S. Mandayam. A Tutorial Introduction
to PVS. In Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton,
http://www.csl.sri.com/pvs, April 1995.

5. J. Culberson and P. Rudnicki. A fast algorithm for constructing trees from distance matrices.
Information Processing Letters, 30(4):215-220, may 1989.

6. B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge Mathematical Text-
books. Cambridge University Press, 1990.

7. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag,
1989.

8. M. Filali, P. Mauran, G. Padiou, P. Quéinnec, and X. Thirioux. Refinement based validation
of a distributed termination detection algorithm . In FMPPTA 2000 , Cancun, volume 1800 of
Lecture Notes in Computer Science, pages 1027-1036. Springer-Verlag, may 2000.

9. M. Gordon and T. Melham. Introduction to HOL. Cambridge University Press, 1994.

10. D. E. Knuth. The art of computer programming Fundamental algorithms, volume 1. Addison-
Wesley, 1969.

11. R. Laubenbacher. Algebraic models in Systems biology. In H. Anai and K. Horimoto, editors,
Algebraic Biology 2005 - Computer Algebra in Biology, pages 33—-40. Universal Academic press,
Tokyo, Japan, 2005.

12. F. Mattern. Global quiescence detection based on credit distribution and re covery. Information
Processing Letters, 30(4):195-200, Feb. 1989.

13. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for Higher-Order Logic.
Number 2283 in Lecture Notes in Computer Science. Springer-Verlag, 2002.

14. L. C. Paulson. Defining functions on equivalence classes. ACM Transactions on Computational
Logic, 7(4):658-675, 2006.

15. L. Reyzin and N. Srivastava. On the longest path algorithm for reconstructing trees from distance
matrices. Information Processing Letters, 101(1):98-100, january 2007.

16. F. Rosello and G. Valiente. An algebraic view of the relation between largest common subtrees
and smallest common supertrees. Theoretical Computer Science, (362):33-53, 2006.

17. T. E. Vos and S. D. Swierstra. Inductive data types with negative occurrences in HOL. In
Workshop on Thirty Five years of Automath, Edinburgh, UK, 2002.

18. M. Wenzel and F. Wiedijk. A comparison of the mathematical proof languages Mizar and Isar.
Journal of Automated Reasoning, 29:389-411, 2002.

19. M. M. Wenzel. Isar — a generic interpretative approach to readable proof documents. Number

1690 in Lecture Notes in Computer Science. Springer-Verlag, 1999.

