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eAbstra
t. We study the me
hanization of phylogeneti
 trees in higher order logi
.After 
hara
terizing trees within su
h a logi
, we state how to reason and to 
om-pute about them. We introdu
e the so 
alled generative partitions and relations whosepurpose is to allow the re
onstru
tion of a tree from its leaves. After introdu
ing treetransformations, we de�ne the graft operation. and 
onsider su�
ient 
onditions forthe preservation of the generative partitions or relations after a graft. It follows that we
an re
onstru
t a tree given its set of leaves and its generative relation whi
h has beenpreserved along the growth of the tree. We apply this result to the re
onstru
tion of adistributed 
omputation.keywords: HOL, tree stru
ture, veri�
ation, ISAR.1 Introdu
tionThis paper gives a de�nitional formalization, in higher order logi
 (HOL), ofphylogeneti
 trees. We also formalize how to reason and 
ompute on su
h trees.We de�ne the notion of a generative relation, that aims at 
hara
terizing in-formation whi
h enables to rebuild a tree. Finally, we propose a re
onstru
tionalgorithm based on the set of leaves and a generative relation. The 
orre
tnessof the algorithm is established. We introdu
e an operation, the graft, that allowsto represent the growth of a tree. a graft are stated. We illustrate su
h a re
on-stru
tion through the so-
alled leaf ve
tors and a 
on
rete generative relation. Itshould be stressed that our study is not only 
on
erned with the proposal of anoriginal algorithm but also by the formal de�nitions and proofs within a logi
alframework.The rest of this paper is organized as follows: Se
tion 2 gives the repre-sentation and the basi
 operations. Se
tion 3 introdu
es the graft operation andstudies its re
onstru
tion properties.Se
tion 4 presents a 
on
rete example wherewe apply the re
onstru
tion algorithm. Se
tion 5 
ontains the 
on
lusions andrelated works.2 A phylogeneti
 tree representation and basi
 operationsIn this se
tion, we introdu
e the formal representation of phylogeneti
 trees;For su
h a representation, we 
onsider how to reason about it and how to 
om-pute on it. We rely mainly on basi
 set theory. However, rather than working



22 Mamoun Filaliwith set theory only, we use type theoreti
 reasoning also. We have done theme
hanization within the Isabelle logi
al framework [13℄. A
tually, we have usedthe Isabelle/Isar1 [19℄ environment whi
h goal is to assist in the developmentof human-readable proof do
uments 
omposed by the user and 
he
ked by thema
hine.2.1 Notations and basi
 de�nitionsIn this se
tion, we re
all the basi
 set theory and order notions, we will use.Wehope that the name of the de�nitions and their formal expression are self ex-planatory. We have used the de�nitions given in [6℄. Moreover, we express themin the Isabelle syntax [13℄. For ea
h de�nition, �rst, we give its signature, thenits formal expression. For instan
e, we have used the following de�nitions:"Maximal , λ S . {m ∈ S . ∀ m' ∈ S . m ⊆ m' ⇒ m = m'}""Down , λ(S , e ) . { s ∈ S . s ⊆ e }""PDown , λ(S , e ) . { s ∈ S . s ⊂ e }"
−−{∗ proper p a r t i t i o n ∗}"PPart i t ion , λ (n , S ) . Pa r t i t i on (n , S) ∧ (∀ e ∈ S . e ⊂ n) ""A// r ,

⋃x ∈ A. {r ` ` { x}}" −− {∗ s e t o f equiv 
 l a s s e s ∗}In Isabelle, the re�exive transitive 
losure of relation r, denoted rˆ⋆, is in-trodu
ed as an indu
tive data type [2℄. Its introdu
tion rules are rtran
l_reflwhi
h spe
i�es that every 
ouple (a,a) belongs to the transitive 
losure, andrtran
l_into_rtran
l whi
h spe
i�es that if (a,b) belongs to rˆ⋆ and (b,
)belongs to r, then (a,
) belongs also to rˆ⋆.i ndu
 t i v e " r^∗"i n t r o sr t r a n 
 l_ r e f l : "( a , a ) ∈ r^∗"r t ran
 l_ in to_rt ran
 l :"(a , b ) ∈ r^∗ =⇒ (b , 
 ) ∈ r =⇒ ( a , 
 ) ∈ r ^∗"With respe
t to the proofs, we have used the Isabelle/Isar format. A proof isestablished by a sequen
e of intermediate results whi
h has to be proved re
ur-sively or already established. Eventually, results are justi�ed either as axiomsof the logi
 or by rules of the logi
. With respe
t to proofs, Isar promotes the1 �Isar� abbreviates �Intelligible semi-automated reasoning�.
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alled �de
larative style� [18℄ whi
h is 
loser to the usual mathemati
al rea-soning than the pro
edural format. Let us mention that, basi
ally, Isar supportsnatural dedu
tion but also supports 
al
ulational reasoning [7℄.As an example, the following statement whi
h 
onsists in assumptions2 (assumes),a 
on
lusion (shows) and a proof s
ript (proof) establishes that the union oftwo hierar
hies (see se
tion 2.2) is also a hierar
hy. A basi
 statement of theproof has the format:
from 〈fa
ts〉 have label ′ :′ 〈proposition〉 by 〈method〉whi
h aim is to establish proposition from fa
ts by applying method.theorem Hierar
hy_union :assumes h1 : "H1 ∈ Hierar
hy "assumes h2 : "H2 ∈ Hierar
hy "assumes s : "∀ n1 ∈ H1 . ∀ n2 ∈ H2 . SDS(n1 , n2 ) "shows "(H1 ∪ H2) ∈ Hierar
hy "proof −from h1 h2 have e : "∅ 6∈ H1 ∪ H2" by (unfoldHierar
hy_def , b l a s t )from s have "∀ n1 ∈ H1 . ∀ n2 ∈ H2 . SDS(n2 , n1 ) "by ( auto simp only : SDS_def )from this have "∀ n1 ∈ H2 . ∀ n2 ∈ H1 . SDS(n1 , n2 ) " byautofrom s this h1 h2 have sds : "∀ n1 ∈ H1 ∪ H2 . ∀ n2 ∈ H1 ∪H2 . SDS(n1 , n2 ) "by (unfold Hierar
hy_def , b l a s t )from h1 h2 have f : " f i n i t e (H1 ∪ H2) " by (unfoldHierar
hy_def , auto )from h1 h2 have "∀ n ∈ H1 ∪ H2 . f i n i t e n" by(unfoldHierar
hy_def , auto )from e sds f this show ? thesis by (unfold Hierar
hy_def ,b l a s t )qed2.2 Hierar
hies and treesOur me
hanization is based on the introdu
tion of phylogeneti
 trees startingfrom the basi
 notions of set theory. For su
h a purpose, we �rst 
onsider hier-ar
hies [3℄ and then introdu
e trees as restri
ted hierar
hies. Along with thesehierar
hies, we give some general de�nitions that will be used later.2 Sometimes assumptions are also 
alled pre
onditions.



24 Mamoun FilaliThe basi
 idea of the following representations is to infer a stru
ture fromthe relations between its elements; the stru
ture is not en
oded dire
tly. Su
h a
ontent based en
oding is motivated by the fa
t that our basi
 
on
ern is there
onstru
tion starting from some of the elements, namely the leaves, of the treestru
ture.Hierar
hies. We �rst introdu
e a generi
 graph as a set of nodes. A node is aset of generi
 elements.types' e graph = "( ' e s e t ) s e t " −− {∗ g en e r i 
 graph ∗}' e node = "( ' e s e t ) " −− {∗ g en e r i 
 node ∗}Hierar
hies are �nite graphs whi
h elements are �nite and non empty andobey to the SDS: �Subset Disjoint Subset� relation:"SDS , λ( s1 , s2 ) . s1 ⊆ s2 ∨ s1 ∩ s2 = ∅ ∨ s2 ⊆ s1 ""Hierar
hy , {H. f i n i t e (H)
∧ (∀ n ∈ H. f i n i t e (n) )
∧ ∅ 6∈ H
∧ (∀ n1 ∈ H. ∀ n2 ∈ H. SDS (n1 , n2 ) )}"In the following, we give the formal de�nitions that will be used."Leaves , λ h . { l ∈ h . PDown(h , l ) = ∅}""ROOT , λ h . ⋃ h"" Subtrees , λ t . image (λ e . Down( t , e ) ) (Maximal ( t ) ) "

−− {∗ proper subt r e e s ∗}"PSubtrees , λ t . Subtrees ( t − Maximal ( t ) ) "
−− {∗ roo t s o f proper subtrees , 
 h i l d nodes ∗}"R1 , λ t . image ROOT ( PSubtrees ( t ) ) ""Sigma , λ S . {⋃ (⋃ S) } ∪ (⋃ S) "Due to the la
k of spa
e, we do not state all the established results. We willgive them on the �y when needed.Trees and phylogeneti
 trees. Starting from hierar
hies, we �rst de�ne atree as a hierar
hy with its ROOT as the single maximal element :
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 Trees 25"Tree , {h ∈ Hierar
hy . Maximal (h) = {ROOT(h) }}"Then, we introdu
e phylogeneti
 trees as trees whi
h nodes are either leavesor the union of all its subnodes:"Phylo ,{ t ∈ Tree . ∀ n ∈ t . n ∈ Leaves ( t ) ∨ n = ⋃ PDown( t , n ) }"With respe
t to phylogeneti
 trees, we just mention the following equalitythat will allow us to say that the re
onstru
tion 
an pro
eed starting from theleaves, while the statement of the re
onstru
tion theorem is over the root. A
tu-ally, for a phylogeneti
 tree t, we have: ROOT(t) =
⋃Leaves(t). Moreover, wewill rely on the following result about the union of phylogeneti
 trees:lemma phylo_union :assumes t1 : " t1 ∈ Phylo"assumes t2 : " t2 ∈ Phylo"assumes u : "ROOT( t2 ) ∈ Leaves ( t1 ) "shows " t1 ∪ t2 ∈ Phylo"proof . . . qed

Examples. The �gure 1 illustrates the representation of phylogeneti
 trees. Forinstan
e, with respe
t to the previous de�nitions and the tree let t2, we have:
t0 {x}

{a,e,b}

{a} {e} {b}

t1
{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

t2

Fig. 1. phylogeneti
 trees
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t2 = {{x, y, a, e, b, u, v, w}, {x, y}, {x}, {y}

, {a, e, b}, {a}, {e}, {b}, {u, v, w}, {u}, {v}, {w}}Leaves(t2) = {{x}, {y}, {a}, {e}, {b}, {u}, {v}, {w}}ROOT(t2) = {x, y, a, e, b, u, v, w}R1(t2) = {{x, y}, {a, e, b}, {u, v, w}}The de
omposition and indu
tion theorems. In order to reason aboutphylogeneti
 trees, we �rst introdu
e a de
omposition theorem: a tree is eithera singleton 
ontaining its ROOT, or the sum (Sigma) of its proper subtrees.theorem phylo_
ases :assumes t : " t ∈ Phylo"shows " t = {ROOT( t ) } ∨ t = Sigma ( PSubtrees ( t ) ) "proof . . . qedWe state the indu
tion theorem about phylogeneti
 trees as follows:theorem phylo_indu
t :assumes b : "∀ e . P({ e }) "assumes r : "∀ T ∈ domSigma . (∀ t ∈ T. t ∈ Phylo ∧ P( t ) )
⇒ P( Sigma (T) ) "shows "∀ t ∈ Phylo . P( t ) "proof . . . qedwhere domSigma spe
i�es the set of trees whi
h 
an be �joined� to form a phy-logeneti
 tree:"domSigma ,{S . S 6= ∅ ∧ f i n i t e (S ) ∧ S ⊆ Tree
∧ (∀ t1 ∈ S . ∀ t2 ∈ S . t1 6= t2 ⇒

⋃ t1 ∩
⋃ t2 = ∅ )

∧ PPart i t ion (⋃ ⋃ S , image ROOT S)}"2.3 TransformationsThe basi
 property of the studied transformations is to preserve the underlyingstru
ture while transforming the nodes.Hierar
hy transformations and preservation theorem. First, we intro-du
e general transformations whi
h basi
 property is to preserve the 
ardinalityof a set of nodes."G_tr , λ g . { t r . ∀ n1 ∈ g . ∀ n2 ∈ g .( t r ( n1 ) = t r ( n2 ) ) = (n1 = n2 ) }"
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hy transformation is a general transformation whi
h preserves therelations between the nodes of a hierar
hy:{∗ h i e ra r 
hy t rans f o rmat i on s s e t ∗}"H_tr , λ h .{ t r ∈ G_tr(h ) . (∀ n ∈ h . f i n i t e (n) ⇒ f i n i t e ( t r (n ) ) )
∧(∀ n ∈ h . n 6= ∅ ⇒ t r (n) 6= ∅ )
∧(∀ n1 ∈ h . ∀ n2 ∈ h . n1 ⊆ n2 ⇒ t r ( n1 ) ⊆ t r ( n2 ) )
∧(∀ n1 ∈ h . ∀ n2 ∈ h . n1 ∩ n2 =∅ ⇒ t r ( n1 ) ∩ t r ( n2 ) =∅ )}"A hierar
hy is preserved by a hierar
hy transformation:theorem hierar
hy_trans :assumes t : " t ∈ Hierar
hy "assumes t r : " t r ∈ H_tr( t ) "shows "image t r t ∈ Hierar
hy "proof . . . qedA tree is also preserved by a hierar
hy transformation.Phylogeneti
 transformations and preservation theorem. Intuitively,when a phylogeneti
 transformation is applied to a non-leaf node, the de
ompo-sition into its des
endant nodes is preserved. The 
hara
terizing property of aphylogeneti
 transformation is expressed as follows:"P_tr , λ h . { t r ∈ H_tr(h ) . ∀ n ∈ h .n ∈ Leaves (h ) ∨ t r (n ) = ⋃ ( image t r (R1(Down(h , n) ) ) ) }"Then, we state the preservation theorem:theorem phylo_trans :assumes t : " t ∈ Phylo"assumes t r : " t r ∈ P_tr ( t ) "shows " image t r t ∈ Phylo"proof . . . qedExample. A Mutation is a transformation that 
on
erns the nodes up a graphnode: gp, su
h �up� nodes 
ontain gp, and a mutation is expressed as follows:"Mutation , λ( gp ,R) .λ n . i f gp ⊆ n then (n − gp ) ∪ R else n"We show that the Mutation transformation is a phylogeneti
 transformation:theorem Mutation_P_tr :assumes h : "h ∈ Phylo "assumes g : "g ∈ Phylo "



28 Mamoun Filaliassumes pre : "PreGraft (h , gp , g ) "shows "Mutation ( gp ,ROOT( g ) ) ∈ P_tr (h ) "proof . . . qedwhere PreGraft (We will use this predi
ate as the pre
ondition of the Graftoperation.) is de�ned as follows:"PreGraft , λ(h , gp , g ) . h ∈ Hierar
hy ∧ ( ( (ROOT h) ∩ (ROOT g ) ) = ∅ ) ∧gp ∈ Leaves (h) ∧ g ∈ Hierar
hy ∧ g 6= ∅"2.4 Generative partitions and relationsOne of our 
on
erns is the re
onstru
tion of a phylogeneti
 tree starting fromthe set of its leaves. The basi
 idea of su
h a re
onstru
tion is to partitionthe leaves a

ording to its dire
t proper subtrees and to apply re
ursively there
onstru
tion to ea
h of the sets of the partition. These su

essive partitionsde�ne the sets whi
h are generated by a generative partition.Generative partitions. Given a phylogeneti
 tree h, GP is 
alled a generativepartition of h, if ea
h node is either a leaf or partitioned a

ording the dire
tsub-roots of n (Down(h,n) is the subtree of h whi
h root is n)."Gene ra t i v ePar t i t i on, λ(h ,GP) . ∀ n ∈ h .GP(n) =( i f n ∈ Leaves (h ) then {n} else R1(Down(h , n ) ) ) "Generative relations. Semanti
ally, the generative relation is a symmetri
relation of whi
h the transitive 
losure is a generative partition. The motivationfor introdu
ing generative relations is to make lo
al the reasoning about the ofgrowth the tree and 
onsequently easier than a global one. First, we de�ne R2Pwhi
h 
onverts a relation to the partition fun
tion given by its re�exive andtransitive 
losure: a node n is partitioned by the 
lasses of the 
orrespondingequivalen
e relation."R2P( r ) , λ n . (n // ( ( r (n ) ) ^∗) ) ""Generat iveRe lat ion , λ (h ,GR) .(∀ n ∈ h . GR(n) ⊆ n × n ∧ sym(GR(n) ) )
∧ Genera t i v ePar t i t i on (h , R2P(GR) ) "2.5 The re
onstru
tion fun
tion and theoremWe introdu
e the auxiliary fun
tion Re
onstru
t. Its de�nition is set up inorder to be a

epted as a well de�ned fun
tion by Isabelle: sin
e it is a re
ursivefun
tion that is not primitive, we have to provide a measure that de
reases
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h 
all. The 
ondition of the if expression ensures it. The re
onstru
tfun
tion is a 
urry�ed version of Re
onstru
t.re
def Re
onstru
t "measure (λ (GP, s ) . 
ard s ) ""Re
onstru
t (GP, s ) =( i f ( f i n i t e s ) ∧ (∀ s ' ∈ GP( s ) . s ' ⊂ s ) thenSigma ( image (λ e . Re
onstru
t (GP, e ) ) (GP s ) )else { s }) "(hints simp add : psubset_
ard_mono )" r e 
 on s t ru 
 t (GP) , λ s . Re
onstru
t (GP, s ) "The theorem 
hara
terizing the re
onstru
tion is stated as follows:theorem gene ra t i v e_par t i t i on_re
ons t ru 
 t i on :shows"∀ GP. ∀ t ∈ Phylo . Gene ra t i v ePar t i t i on ( t ,GP)
⇒ ( r e 
 on s t ru 
 t (GP) (ROOT( t ) ) = t ) "proof . . . qedThis theorem is established thanks to the indu
tion theorem over phyloge-neti
 trees (2.2).2.6 Dis
ussionIn this se
tion, we dis
uss the de�nition of phylogeneti
 trees that has beenelaborated. With respe
t to the stru
tural point of view: a phylogeneti
 tree 
anbe de�ned as either a singleton node or as the Sigma of its subtrees. Su
h aset based 
onstru
tion is not admitted by most of the type theory based logi
alframeworks [9, 1, 4, 13℄. In fa
t, in su
h frameworks a tree is usually re
ursivelyde�ned through the list of its subtrees, or through a map of its subtrees from agiven index type. We have tried to work with ea
h of these representations. Theirmain drawba
k is to break the underlying natural 
on�uen
e. For instan
e, withsu
h representations, inserting a subtree after a
tually removing it, does not yieldthe original tree. Su
h a 
on�uen
e is fundamental for establishing naturally ourre
onstru
tion result. Otherwise, we would have to introdu
e modulo relationsin order to not distinguish between trees of whi
h subtrees are identi
al but notin the same order.3 The graft operationIn our setting, the graft operation models the growth of a tree. As its namesuggests, the graft operation 
onsists in grafting a tree at a given node. In thisstudy, we 
onsider a restri
ted version: grafting o

urs at singleton nodes only.



30 Mamoun Filali3.1 Graft de
ompositionLet h be a graph, gp a node of h where the graft should o

ur and g the graph tograft. We express the graft through two basi
 operations: �rst, h is transformedthrough a Mutation, se
ond, g is grafted through the union (∪) operation. Su
ha de
omposition is illustrated by �gure 2. The Graft is expressed as follows:"Graft , λ(h , gp , g ) . ( image (Mutation ( gp ,ROOT(g ) ) ) h) ∪ g"
{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

Graft

{x,y,a,n1,n2,b,u,v,w}

{x,y} {a,n1,n2,b} {u,v,w}

{x} {y} {a} {n1,n2}{b} {u} {v} {w}

{n1} {n2}

{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

{x,y,a,n1,n2,b,u,v,w}

{x,y} {a,n1,n2,b} {u,v,w}

{x} {y} {a} {n1,n2}{b} {u} {v} {w}

{n1,n2}

{n1} {n2}

transformation

union

Fig. 2. De
omposition of a graftWe show that the grafted tree is also a phylogeneti
 tree. The proof is estab-lished thanks to the de
omposition of the graft operation; we �rst establish thatMutation is a phylogeneti
 transformation, then thanks to the union theorem,g being phylogeneti
, it follows that the grafted tree is phylogeneti
.theorem graft_phylo :assumes h : "h ∈ Phylo"assumes g : "g ∈ Phylo"assumes pre : "PreGraft (h , gp , g ) "shows "Graft (gp , g ) (h ) ∈ Phylo"proof . . . qed
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onstru
ting a graft through a generative partitionThis se
tion states a general result about the preservation of a generative par-tition GP. In fa
t, we have a pre
ondition about the partitioning of the mutatednodes.theorem generat ive_part i t ion_gra f t_phylo :assumes h : "h ∈ Phylo"assumes g : "g ∈ Phylo"assumes pre : "PreGraft (h , gp , g ) "assumes gp_h : "Gene ra t i v ePar t i t i on (h ,GP) "assumes gp_g : "Gene ra t i v ePar t i t i on ( g ,GP) "assumes gp_tr :"∀ n ∈ h . GP(Mutation (gp ,ROOT(g ) ) (n ) ) =( i f n ∈ Leaves (h ) then {Mutation ( gp ,ROOT(g ) ) (n) }else image (Mutation ( gp ,ROOT( g ) ) ) (GP(n) ) ) "shows "Gene ra t i v ePar t i t i on ( Graft (h , gp , g ) ,GP) "proof . . . qed3.3 Re
onstru
ting a graft through a generative relationIn the same way, a generative relation 
an be preserved while extending a treethrough a graft. Thanks to this preservation: a tree, growing through graft op-erations, will always be re
onstru
tible from its leaves through its invariant gen-erative relation.A simpli�ed mutation: the basi
 update upd. For the purpose of ourappli
ation, we 
onsider the following node transformation:"upd , λ ( l ,N) . λ S . i f l ∈ S then S − { l } ∪ N else S"Sin
e we have: upd(l, N) = Mutation({l}, N), upd inherits the property ofMutation; then it is a phylogeneti
 transformation.Moreover, in order to simplify the proof obligations for establishing thata generative relation is preserved after a graft, we have elaborated su�
ient
onditions that should be established by the update fun
tion. Due to the la
kof spa
e, we do not detail them.We have established the preservation of the generative relation for the graftof a so 
alled 
anoni
al tree whi
h 
onsists of a root and a set of leaves:"Canoni
 , λ N. {N} ∪ (S e ∈ N. {{ e }}) "We have the following invariant theorem establishing the preservation of agenerative relation when grafting a 
anoni
 tree:



32 Mamoun Filalilemma generat ive_re lat ion_gra f t_phylo :assumes t : " t ∈ Phylo"assumes up : "{ l } ∈ t "assumes gp1 : "Generat iveRe lat ion ( t ,GR) "assumes gr_m: "∀ n . GR(n) ⊆ n × n ∧ sym(GR(n) ) "assumes te rmina l : "Terminal ( t ) "assumes N: "∀ n ∈ t . N ∩ n = ∅"assumes N_e: "N 6= ∅ ∧ f i n i t e (N) "assumes gp2 : "Generat iveRe lat ion ( Canoni
 (N) ,GR)"assumes gr_tr :"∀ n ∈ t . l ∈ n ⇒ r_upd( l ,N) (n) (GR(n) ,GR(upd ( l ,N) (n) ) ) "shows "Generat iveRe lat ion ( Graft ({ l } , Canoni
 (N) ) ( t ) ,GR) "proof . . . qed4 Appli
ationAs an appli
ation of phylogeneti
 trees, we 
onsider distributed di�using 
om-putations. In the initial state, one site (or pro
ess) multi-
asts a message to asubset of other nodes. Then, all nodes share the same behavior: when a messageis re
eived, the re
eiver performs a 
omputation step and, possibly, multi-
astsa message to a subset of other nodes.We are interested in the following problem: how to re
onstru
t the globalhistory of su
h a 
omputation, after its termination3, from information gatheredduring the 
omputation. For su
h a di�using 
omputation, the 
ontrol �ow is atree in whi
h the nodes are the 
omputation steps and the edges are the message
ommuni
ations. Our algorithm 
onsists in 
olle
ting an en
oded representationof these leaves. From this leaves set, we apply the re
onstru
tion algorithm basedupon a generative relation de�ned on the 
omputation as a phylogeneti
 tree.4.1 Control tree en
odingWe de�ne an en
oding for the 
ontrol tree. The nodes generated during the
omputation (temporary leaves) are en
oded as ve
tors. At ea
h site, a lo
al
ounter is in
remented by p − 1 ea
h time a 
omputation step multi-
asts pmessages. Thus, one4 plus the sum of the lo
al 
ounters represents the numberof the 
ontrol tree leaves. Moreover, the value of the 
ounter of site s is themaximum of the ve
tors 
omponent at the index s.3 Su
h a re
onstru
tion is usually used for debugging purposes.4 We have to take into a

ount the initial states where the 
ounters are all null and the tree 
onsistsof one leaf node.
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collected visit tag

(0,[0,0,0,0])

(1,[1,0,0,0])

S0

S1

S2

S3

(2,[1,1,0,0])

(3,[1,1,2,0])

(site,[x,y,z,t]) internal node tag (site,[x,y,z,t])

(2,[2,1,0,0])

(2,[1,1,2,2])

(1,[2,1,0,0])

(1,[1,1,2,2])

(0,[1,1,2,0])(0,[1,1,2,2])(0,[1,1,0,0])

(1,[1,1,2,0])

(2,[1,0,0,0])

Fig. 3. Visit tags en
odingWe asso
iate a "visit tag" to ea
h node. This tag is 
omposed of the site ofthe node and a natural integers ve
tor. This ve
tor V has a size N , 
orrespondingto the number of sites, and is assigned the lo
al 
ounter values of the sites ithas visited. Figure 3 shows the tagging of the nodes of a di�using 
omputationwith this en
oding.The state spa
e of all the appli
ation is modeled by a global type State.It 
ontains the �elds related to the network, the lo
al 
omputations and the
olle
tor. The 
omputation is 
on
erned by the following �elds:� The �eld l
ounter implements the lo
al 
ounter of ea
h site;� The �eld 
olle
ted re
ords the visit tags of the 
omputation leaves.Two transitions are 
onsidered and ea
h of them is laun
hed when a messageis re
eived:� Re
eiveAndEnd des
ribes a 
omputing step without further message multi-
ast. In this 
ase, the visit tag 
ontained in the re
eived message is sent tothe 
olle
tor;� Re
eiveAndSplit des
ribes a 
omputing step terminated by a message mul-ti
ast. In this 
ase, a new tag is 
reated: it holds the destination site (d) anda ve
tor whi
h is identi
al to the tag ve
tor of the splitting node (m.V ), ex-
ept for the splitting site (self) 
omponent, whi
h gets the new lo
al 
ountervalue lcounter[self ] assigned by this 
omputation step. No message is sentto the 
olle
tor.
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t to phylogeneti
 trees, the di�using 
omputation is seen as atree. A Re
eiveAndEnd assigns to a node the de�nitive leaf status. While aRe
eiveAndSplit extends a tree with new leaves. We interpret it as a Graftoperation. Then, for validation purposes, we have an auxiliary variable auxTreefor re
ording the growth of su
h a �superposed� tree: we prove that at termina-tion, this auxiliary tree and the re
onstru
ted tree are the same.4.2 Termination dete
tion and re
onstru
tionWe introdu
e a 
olle
tor pro
ess to gather ve
tors: a ve
tor is sent to the 
ol-le
tor when a pro
ess performs a 
omputation step without multi-
asting a newmessage. In su
h a 
ase, this step generates a leaf with respe
t to the 
ontrol�ow of the 
omputation. Then, with respe
t to phylogeneti
 trees, the 
olle
tedtagged messages are in fa
t leaves of the phylogeneti
 tree superposed to thedi�using 
omputation ( and re
orded in the auxiliary variable auxTree).The re
onstru
tion of the 
ontrol tree 
an only start when the global 
om-putation is terminated. Several distributed algorithms 
an solve the terminationproblem, espe
ially, thanks to a 
olle
tor pro
ess[12℄. However, the en
oding it-self provides a simple 
riterion for termination dete
tion [8℄: a 
omputation isterminated when the number of 
olle
ted leaves is equal to one plus the sum ofthe elements in the maximum of the 
olle
ted visit ve
tors5:
| 
olle
ted |= 1 +

∑

s∈Site max
v∈collected

v.V [s]The generative relation for the di�using 
omputation as a phylogeneti
 treeis de�ned as follows:" gr , λ n . {( v1 , v2 ) . v1 ∈ n ∧ v2 ∈ n ∧( i f V(v1 ) = min_on(n) ∨ V( v2 ) = min_on(n)then ( v1 = v2 )else (∃ s . V( v1 ) ( s ) = V( v2 ) ( s ) ∧ s 6= w( v1 ) ∧s 6= w( v2 ) ∧ V( v1 ) ( s ) 6= min_on(n) ( s ) ) )}"We derive the 
orre
tness of the re
onstru
tion through the following invari-ant:"Re
ons t ru
 t i on Invar i an t , λ s t . auxTree ( s t ) =r e 
 on s t ru 
 t (R2P( gr ) ) ( 
 o l l e 
 t e d ( s t ) ∪ network ( s t ) ) "Then, when termination is rea
hed, the network is empty, and the re
on-stru
tion applied to the 
olle
ted messages gives the 
omputation tree.5 |_| denotes the 
ardinality of _ .



A Me
hanization of Phylogeneti
 Trees 355 Con
lusionIn this paper, we have proposed a me
hanization of phylogeneti
 trees. Startingfrom basi
 set theory, we have introdu
ed phylogeneti
 trees through hierar
hiesand trees. Then, we have de�ned generi
 transformations. We note that setsbased representations, although already suggested in the literature[10℄, are notwidely used in 
omputer s
ien
e. To the best of our knowledge, the representa-tion of a tree through the set of its leaves together with a generative partitionor relation, as well as the study of dedi
ated transformations, are original. Wehave given a 
on
rete example, where su
h notions have been applied to treere
onstru
tion and shown how su
h a re
onstru
tion 
ould be validated. It isinteresting to remark that thanks to theorem proving te
hniques, su
h a vali-dation was possible; a
tually we have 
onsidered an unknown number of nodesand unbounded natural ve
tors. Usual model 
he
king te
hniques 
annot handlesu
h problems.Most of our results have been proved formally within Isabelle. In fa
t, ourtrees are �unordered� trees. Su
h a data type 
ould be 
onsidered as an indu
tivedata type where Sigma would play the role of a 
onstru
tor; however, due tothe negative o

urren
e 6 most of the logi
al frameworks (HOL [9℄, Isabelle [13℄,PVS [4℄, Coq [1℄) do not support su
h a de�nition s
hema. Vos and Swiestra [17℄have studied restri
tions for a

epting indu
tive data types with negative o

ur-ren
es; sin
e our trees are �nite, we 
ould have reused their work. This workis not known to be available within the Isabelle framework. An alternative waywould have been to introdu
e �unordered� trees through an equivalen
e rela-tion [14℄ over ordered trees where subtrees are 
onstru
ted with a list. It wouldbe interesting to 
ompare the subsequent developments of phylogeneti
 trees,generative relations and partitions.With respe
t to the formalization of trees and biology related results, numer-ous works have been published. Among the more re
ent, we 
an 
ite [16℄ who
onsider the problem of tree in
lusion in a 
ategori
al setting. [11℄ reviews ba-si
 network models for reasoning about biology; he noti
es that appli
ations tobiology of existing tools from algebra is just beginning. To the best of our knowl-edge, the me
hanization of these works has not been 
onsidered yet. We thinkthat our work 
ould be reused as a starting point for establishing algorithms
orre
tness but also for the 
orre
tness of their proposed proofs7.6 The negative o

urren
e is due to the fa
t that the parameter of Sigma, 
onsidered as a 
onstru
tor,is a set of trees.7 It is interesting to remark that the analysis of the algorithm of [5℄ is reported to be in
orre
tin [15℄.
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