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Abstract

In these last years, Blockchain technologies have been widely used in several applica-
tion fields to improve data privacy and trustworthiness and security of systems. Although
the blockchain is a powerful tool, it is not immune to cyber attacks: for instance, recently
(January 2019) a successful 51% attack on Ethereum Classic has revealed security vulnera-
bilities of its platform. Under a statistical perspective, attacks can be seen as an anomalous
observation, with a strong deviation from the regular behavior. Machine Learning is a sci-
ence whose goal is to learn insights, patterns and outliers within large data repositories;
hence, it can be exploit for blockchain attack detection.

In this work, we define an anomaly detection system based on a encoder-decoder deep
learning model, that is trained exploiting aggregate information extracted by monitoring
blockchain activities. Experiments on complete historical logs of Ethereum Classic network
prove the capability of the our model to effectively detect the publicly reported attacks.
To the best of our knowledge, our approach is the first one that provides a comprehensive
and feasible solution to monitor the security of blockchain transactions.

Keywords – Blockchain; Anomaly detection; Attack detection; Autoencoders; Sequence
to sequence models; Encoder-decoder models;

1 Introduction

The Blockchain is largely considered an effective solution able to ensure security and trust-
worthiness. Nevertheless, it can be prone to attacks and security threats, as discussed in [21].
In particular, Ethereum Classic (ETC), a permissionless (public) blockchain-based decentral-
ized platform for smart contracts [5], has recently experienced two significant attacks which
compromised the functionality of the network [1].

Roughly, the blockchain is characterized by a global ledger that can record transactions
efficiently and permanently through a timed sequence of blocks, called chain. Blocks contain
information about the transactions, and each block is added to the chain after a validation
process, based on a distributed consensus mechanism. Consensus is reached whenever a suf-
ficient number of nodes validates the block, that is then considered trustworthy. This whole
process is logged and it is possible to collect information characterizing the activities within the
underlying ledger. It is natural to ask whether such information can be exploited to monitor the
process and provide early analysis and detection mechanisms capable of reporting anomalous
situations and prospective attacks.

Historically, data analysis techniques have been extensively exploited in the cyber security
domain [4], and the recent diffusion of advanced machine learning techniques has allowed to
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accurately identify cyber-attacks and detect threats, both real-time and in post-incident anal-
ysis [20, 15]. Notably, both supervised and unsupervised machine learning algorithms have
been successfully employed to support intrusion detection and prevention systems, as well as to
detect system misuses and security breaches. The scenarios of interest are usually characterized
by a continuous stream of data (such as packet-level or application-level data) summarizing the
behavior of the underlying network or system. The role of the machine learning algorithms
consists either in identifying known attacks (supervised approach), or anomalous behavior (un-
supervised approach). Anomaly-based techniques are able to fit normal system operating sta-
tus, isolating and identifying anomalies as unexpected behavioral deviations. For this reason,
anomaly detection approaches result to be appealing for their ability to detect zero-day attacks,
i.e., attacks exploiting unknown vulnerabilities.

In this paper, we propose an encoder-decoder model that exploits the information collected
by the activities within a blockchain, to highlight anomalies in the underlying network activity,
that can represent a potential symptom of a forthcoming or current attack on the system
integrity. The contribution of the paper is twofold:

• We identify a set of properties to be computed from the blockchain logs, which describe
the status of the system at every time step.

• Next, we devise an unsupervised neural architecture, which takes as input a time series
representing the status of the blockchain network for a time window, able to compute a
score representing the degree of anomaly exhibited by the time series.

Experiments on the historical logs of the ETC network show that the system is effective in
detecting the reported attacks. To the best of our knowledge, our approach is the first one that
provides a comprehensive and feasible solution to monitor the security of blockchain transac-
tions.

The paper is organized as follows. In section 2 we review the architecture of the ETC
network and describe the attacks that exposed its potential vulnerabilities. We also review
how machine learning and blockchain technology have been combined in the current literature.
Section 3 provides two contributions: first, it gives details about the structure of the ETC logs
and the preprocessing steps applied to engineer the relevant features describing the blockchain
status. Next, we discuss about the details of the Encoder/Decoder architecture. Section 4
describes the experiments that demonstrate the effectiveness of the proposed architecture, and
finally in section 5 we discuss open problems and pointers to future directions.

2 Background and Related Work

The blockchain is a Distributed Ledger Technology [9], i.e. a system that allows to store ex-
changes and information in a secure and permanent way. Given the structure and protocol,
blockchain removes the need to have intermediaries, who were previously required to act as
trusted third parties to verify, register and coordinate data.

From a technical perspective, a blockchain is a distributed database shared into a peer-to-
peer network: data are stored under the form of transactions within specific structures named
blocks. Each block is the collection of all transactions performed in a time window and different
blocks may contain a different number of transactions. Blocks are connected by a cryptographic
bond in the chain: a hash function is computed on the concatenation of the signature of the
current block with the hash computed on the previous one. By repeating this step for each
block the chain is created and the references to the previous block are maintained, as shown in
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Figure 1. A not injective (non-invertible) mathematical function is employed to generate the
hash. The chain is immutable and can only be extended by adding new blocks: any modification
on a block generates a different hash, thus making all subsequent blocks inconsistent.

Figure 1: The blockchain structure.

The security is guaranteed by a consensus mechanism that allows to confirm transactions
and produce new blocks. The most popular consensus algorithm is named ”Proof-of-Work”
(PoW), first adopted in the Bitcoin blockchain [16]: special nodes in the network, called miners,
compete in validating the blocks, and only one will produce the final validation.

PoW is considered a robust method, able to reach the Byzantine-fault-tolerant consensus
[14] and to minimize the risk for a Double Spending attack [18]. In fact, any modification to
the ledger would require to re-validate all the blocks between the altered block and the current
one, before any other validation: the confirmation is achieved when at least 51% miners agree
about the validation.

Originally, blockchain was proposed as a technology to support cryptocurrencies. It later
evolved with smart contracts, i.e. computer programs performed in decentralized way on
Blockchain so that they can be executed and verified automatically. ETC implements such
a technology, by providing a platform for decentralized applications that run and are regulated
on a distributed ledger. Each contract is composed of a sequence of operations whose cost is
expressed as gas, i.e., the amount of cryptocurrency that is deemed necessary to execute them.
Actually, ETC implements a priority mechanism of the transaction execution. The priority
depends on the provided gas, that corresponds to the fee received by the first miner able to
compute the solution for the puzzle associated to a block: the higher the provided gas, the
higher the priority.

Blockchain is not immune to attacks. The ETC network exhibits some vulnerabilities [7]
and has experienced several attacks in the recent years. In particular, [1] reports an attack
on 18 June 2016 (referred as DAO from now on), where a vulnerability of the transaction
protocol was exploited. More recently, in January 2019 researchers confirmed a successful 51%
attack 1 on the ETC blockchain, where hackers were able to roll back transactions. Besides a
detailed analysis of the vulnerabilities and countermeasures to improve the robustness of the
overall architecture, it is natural to ask whether it is possible to devise an Intrusion or Anomaly
detection systems capable of detecting signals of malicious behaviors and issue early warnings.
However, to the best of our knowledge, only a limited number of approaches have been proposed
in the current literature.

Signorini et al.[19] propose BAD, a blockchain anomaly detection system that collects in-
formation from blocks in the main chain as well as orphan blocks (i.e., blocks contained within
pruned branches). There are two issues with this approach: first of all the amount of considered
information could be infeasible to handle, as they aim at storing data about each branch occur-
ring on the blockchain; second, it would require nevertheless a modification of the protocol, as

1See http://cointelegraph.com/news/ethereum-classic-51-attack-the-reality-of-proof-of-work
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information concerning the orphan blocks is not currently stored according to the blockchain
protocol specifics.

More similar to our approach is the study proposed in [3]. Here, the authors propose a visual
analytical approach where statistics are collected from Ethereum public blockchain and visu-
alized through a chronological dashboard. The authors show that the collected statistics allow
to detect the DAO attack, by highlighting an anomalous peak close to the corresponding date.
Our method extends this approach by proposing a fully automatic and accurate architecture
based on deep neural networks.

3 Methodology

In this section we devise a machine learning approach to identify anomalies in the usage of
Blockchain-based systems. As discussed before, the approach we propose is essentially unsu-
pervised, due to the lack of labeled data: successful attacks represent very rare events and
typically they don’t share common patterns. As a consequence, supervised models exhibit poor
detection performances.

The proposed anomaly detection system builds a neural encoder-decoder model, capable of
summarizing the information about the status of the ledger within a latent space and then to
rebuild the original information from this space. The underlying intuition is that, whenever
the current status is consistent, the encoding/decoding operation preserves the basic properties
of the data. By contrast, anomalous situations exhibit inconsistent values that ultimately
result in a failing reconstruction. This happens, for example, when the amount of ether (the
cryptocurrency of the ETC blockchain) is anomalously high compared to all the remaining
parameters of the system. An encoder-decoder would interpret this quantity as noise and
consequently would ignore such a value in the reconstruction. As a consequence, the difference
between the original and the reconstructed values would highlight the anomalous situation and
consequently trigger the alert.

The model works on sequences of temporally-sorted events. Formally, we assume that
the data is organized as a sequence X = {~x1, . . . , ~xN} relative to a period of observation,
where ~xt is a vector of features describing the t-th event in chronological order within X. An
anomaly is an unexpected event in X, i.e. a vector ~xt significantly different from its neighbors
~xt−w, . . . , ~xt−1, ~xt+1, . . . , ~xt+v (for a given window [t − w, t + v] to be determined). Thus, the
model should be capable of summarizing all the regularities in the data that characterize the
sequence ~xt−w, . . . , ~xt+v.

Autoencoders [11, 2] represent an effective solution to the unsupervised task of learning a
compact representation of the latent features characterizing a piece of information. An autoen-
coder is a neural architecture trained to reproduce as output a duplicate of its input. It is
composed by two elements, as shown in Figure 2a.

• The encoder Θ, a neural network whose goal is to map an input ~x to a latent compact
representation Θ(~x) = ~z ∈ RK . This mapping produces an embedding of the original
input into a latent vector of size K.

• A decoder Φ, another neural networks that, given a K-dimensional vector ~z, aims at
producing an output Φ(~z) = ~y that is as close as possible to the original input.

In the above description, the components Θ, Φ, ~x and ~y are unspecified. In our framework,
we consider the input and output ~x, ~y of the autoencoder to be temporally marked events. As a
consequence Θ and Φ can be specified as recurrent networks (RNNs) [10]. An RNN naturally fits
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~x Θ ~z Φ ~y

(a) General autoencoder structure.

(b) Recurrent Autoencoder (RAE).

sequential data, since, iterating over the sequence, it saves (partial) memory of each event. In
our implementation we decided to instantiate the RNNs as Long short-term memory networks
(LSTM, see [13] for a detailed description).

The resulting architecture is a sequence to sequence recurrent autoencoder (RAE) model [8]
shown in Figure 2b. In short, the objective of RAE is to: (i) read all the events in the sequence,
(ii) extract a compact representation of all the events within the sequence; (iii) generate a
new sequence that is a copy of (or close to) the input one, by exploiting the representation.
Mathematically, this can be specified as follows: given an input sequence I = {~x1, . . . , ~xn}, we
compute an output sequence O = {~y1, . . . , ~yn} where:

~h
(e)
t = LSTMθ(~xt,~h

(e)
t−1)

~z = mlpϑ(~h(e)n )

~h
(d)
t = LSTMφ(~z,~h

(d)
t−1)

~yt = mlpϕ(~h
(d)
t )

(1)

where LSTMθ and mlpϑ represent the encoder, with internal state ~h
(e)
t given the t-th event;

symmetrically, LSTMφ and mlpϕ represent the decoder, with inner state ~h
(d)
t . Further, mlpϑ and

mlpϕ represent multilayer networks parameterized by θ and φ, respectively.
Since the main purpose of RAE is to reconstruct the input from a compact representation,

the model can be trained by considering a reconstruction loss:

`(I,O) =
1

n

n∑
t=1

‖~xt − ~yt‖2 (2)

Input subsequences are obtained from X through a sliding window mechanism. Each
timestep within X is associated with a subsequence Wt = {~xt−m+1, . . . , . . . , ~xt}, where m
is the window size. Thus, RAE is trained on the set {Wm, . . . ,WN} of subsequences that can
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obtained from X, as illustrated in Figure 2, by learning to reconstruct them in a way that
minimizes the specified loss.

Figure 2: Sliding window mechanism.

RAE will learn to model normal behavior, by mapping input data to compact representations
that can capture all the relevant features characterizing it. An anomalous event will compromise
this reconstruction capability. Thus, the distance between the input and the output can be
exploited as a score to measure the outlierness of the analyzed sequence. Since each event can
be included within several overlapping windows, its final score is computed as the average of
the outlierness scores of all the involved windows:

o(~xt) =
1

m

m∑
i=1

‖Wi − W̃i‖2,

where W̃i = dec(enc(Wi)) is the output of the RAE with input Wi.

4 Analysis of the Ethereum Classic Network

The model proposed in the previous section represents a general approach to anomaly detection
on sequential data. In this section, we apply our model to the ETC network to identify abnormal
situations that can be symptoms of incoming attacks. As discussed in section 2, ETC has
experienced two (known) successful attacks: the DAO attack (18 June 2016) and the 51%
attack. The latter is scarcely documented and the reports state that it happened in a period
within the interval 5-8 January 2019. Hence, our objective is to adopt the RAE model to check
whether these events exhibit an anomaly score significantly higher than the other ones.

4.1 Data source and preprocessing

Our experiments have been conducted on a sample of ETC blockchain spanning over a period
of four years (July 2015 - July 2019). The dataset is available on Kaggle2 and consists of seven
tables, namely blocks, transactions, contracts, logs, token transfers, tokens and traces. These
tables provide information about the usage of the network, the working status and the blocks.

A preliminary analysis of these tables highlighted that only two of them stored relevant
information for our purposes, respectively blocks and transactions.

The raw data have been preprocessed as follows: (i) feature engineering, i.e. selection of the
most relevant attribute, correlation analysis, filtering and aggregation; (ii) normalization; (iii)
data view generation according to the sliding window mechanism.

2https://www.kaggle.com/bigquery/crypto-ethereum-classic
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The first two steps result in the following subset of relevant features, computed on a daily
basis:

(i) block size average, the average size (in bytes) of a block; (ii) provided gas average,
referring to the average provided gas needed to perform the transaction; (iii) block difficulty

average, the average difficulty (i.e. the effort) necessary to validate a block; (iv) transaction
average per block, the average number of transactions contained in a block; (v) gas used sum,
the total amount of employed gas; (vi) transactions number, the total number of transactions
in all blocks.

The normalization steps is meant to re-scale values to avoid instability effects with the neural
modeling, as well as to regularize values by removing seasonal, cyclic and trending fluctuations
in the data [6] and it is performed via moving quantile ratio [12]. Figure 2 shows both the
original and the normalized data, plotted along the time window. Within the plots, the red
lines highlight the periods when the attacks took place.

We partitioned the whole dataset in four periods as shown in Figure 3. Data prior to 7
August 2015 were ignored: they correspond to the first week of the chain genesis and contain
several missing values. The time series were finally produced for each block, to feed the RAE
according to the learning/evaluation strategy outlined as follows. In practice, we consider two
different training set, namely D1 (relative to the interval August 2015 - April 2016) and D2

(covering the interval July 2016 - November 2018). T1 and T2 (the periods within a range of
about two months from the attacks, exact dates are listed in Figure 3) are used as test sets, for
evaluating the outlierness scores.

4.2 Experimental Results

We performed three different tests by training two instances of RAE. The first two exploited D1

as training set and scored all the events within T1 and T2, respectively. In the third experiment
RAE is trained on D1 ∪D2 and scores events in T2.

Figures 4a and 4b plot the outlierness scores computed by RAE on both T1 and T2. We
can see that the DAO attack is perfectly detected by RAE, as shown in Figure 4a. The network
provides no warning until day 295 where we can see a small peak. Instead, the outlierness score
exhibits a difference of two orders of magnitude on day 316, corresponding to the DAO attack.
The result is consistent with the findings of [3], but in our case RAE is capable of perfectly
detect the exact day of the attack.

Within Figure 4b, the same model is used to score events in T2. We can see that the
outlierness score changes its pattern as the attack period approaches. However, the peak is
translated of a few days. The situation represented here needs some interpretation. The
network highlights a strong anomaly on day 1255, a few days after the actual attack. A close
inspection of the events occurring during the 51% attack witnesses that a significant number
of companies, working on ETC, detected the attack and decided to freeze their activities3 4 5.
Then, on the basis of our analysis, block size and related features seems not fully sufficient to
early detect some types of attacks occurring on blockchain, but we figure out that integrating
data from other sources (e.g. the server operating system and the application [3]) could improve
the detection performances of our approach. As a result, the blockchain didn’t register a core
amount of transactions which were instead restarted in the forthcoming days. In practice,
day 1255 (where the anomaly score is the highest) appears to be the day where all the frozen

3http://shorturl.at/giz14
4http://blog.coinbase.com/ethereum-classic-etc-is-currently-being-51-attacked-33be13ce32de
5http://cryptonomist.ch/2019/01/07/ethereum-classic-attacco-del-51/
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Figure 2: chronological distribution of the original and normalized data.

Figure 3: Data split according to the attacks.

activities were recorded on the network, thus representing the actual moment where the anomaly
was injected within the blockchain. This finding is consistent with the findings of the third
experiment, where RAE is trained both on D1 and D2: Figure 4c shows a similar pattern, thus
demonstrating that the preprocessing steps make the RAE findings consistent even on different
time periods. The only false positive seems to be represented by the peak on day 1291, which
appears in both models. Although there is no reporting of attacks in those periods, it would be
interesting to provide a close inspection to the activities during that period and try to explain
such anomaly based on those.
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(a) Outlierness score of events within T1.
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(b) Outlierness score on T2.
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(c) Outlierness score on T2. RAE is trained on
D1 ∪D2.

5 Concluding Remarks
In this work, we define an encoder-decoder deep learning model to detect anomalies in the
usage of blockchain systems. In this scenario, the main problem is the rarity of the events
to identify (i.e. the attacks), therefore, an unsupervised solution is adopted to address this
issue. Specifically, the contribution of the paper is twofold: (i) we identified a relevant set of
features computed on blockchain logs describing network status in determined time steps; (ii)
a sequence-to-sequence neural network model is used to recognize anomalous changes in the
blockchain network. Experiments on the complete historical logs of Ethereum Classic prove our
model capability to effectively detect security attacks.

As future works, we plan to study the usage of hybrid architectures based on the combination
of RNNs with Convolutional Neural Networks [17] to obtain an automatic feature engineering
and evaluate eventual improvements. On the other hand, we are interested in defining models
able to predict attacks before they happen, improving the network security.
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