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Abstract

Aggregation of software metrics is a challeng-
ing task, it is even more complex when it
comes to considering weights to indicate the
relative importance of software metrics. These
weights are mostly determined manually, it
results in subjective quality models, which
are hard to interpret. To address this chal-
lenge, we propose an automated aggregation
approach based on the joint distribution of
software metrics. To evaluate the effective-
ness of our approach, we conduct an empir-
ical study on maintainability assessment for
around 5 000 classes from open source soft-
ware systems written in Java and compare
our approach with a classical weighted lin-
ear combination approach in the context of
maintainability scoring and anomaly detec-
tion. The results show that approaches assign
similar scores, while our approach is more in-
terpretable, sensitive, and actionable.

Index terms— Software metrics, Aggregation,
Weights, Copula

1 Introduction

Quality models provide a basic understanding of
what data to collect and what software metrics to
use. However, they do not provide how software
(sub-)characteristics should be quantified, and metrics
should be aggregated.
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The problem of metrics aggregation is addressed by
the research community. Metrics are often defined at
a method or class level, but quality assessment some-
times requires insights at the system level. One bad
metric value can be evened out by other good met-
ric values when summing them up or computing their
mean [1]. Some effort has been directed into met-
rics aggregation based on inequality indices [2,3], and
based on thresholds [4–8] to map source code level mea-
surements to software system rating.

In this research, we do not consider aggregation
along the structure of software artifacts, e.g., from
classes to the system. We focus on another type
of metrics aggregation, from low-level to higher-level
quality properties, Mordal-Manet et al. call such type
of aggregation metrics composition [9].

Different software quality models that use weighted
metrics aggregation have been proposed, such
as QMOOD [10], QUAMOCO [11], SIG [12],
SQALE [13], and SQUALE [14]. The weights in these
models are defined based on experts’ opinions or sur-
veys. It is questionable whether manual weighting and
combination of the values with an arbitrary (not nec-
essarily linear) function are acceptable operations for
metrics of different scales and distributions.

As a countermeasure, we propose to use a proba-
bilistic approach for metrics aggregation. In previous
research, we considered software metrics to be equally
important and developed a software metrics visualiza-
tion tool. This tool allowed the user to define and ma-
nipulate quality models to reason about where qual-
ity problems were located, to detect patterns, correla-
tions, and anomalies [15].

Here, we define metrics scores by probability as
complementary Cumulative Distribution Function and
link them with joint probability by the so-called cop-
ula function. We determine weights from the joint dis-
tribution and aggregate software metrics by weighted
product of the scores. We formalize quality models
to expresses quality as the probability of observing a
software artifact with equal or better quality. This

1



approach is objective since it relies solely on data. It
allows to modify quality models on the fly, and it cre-
ates a realistic scale since the distribution represents
quality scores for a set of software artifacts.

2 Approach Overview

We consider a joint distribution of software metrics
values, and for each software artifact, we assign a
probabilistic score. W.l.o.g, we assume that all soft-
ware metrics are defined such that larger values indi-
cate lower quality. The joint distribution of software
metrics provides the means of objective comparison
of software artifacts in terms of their quality scores,
which represent the relative rank of the software arti-
fact within the set of all software artifacts observed so
far, i.e., how good or bad a quality score compare to
other quality scores.

Let A = {a1, . . . , ak} be a set of k software artifacts,
and M = {m1, . . . ,mn} be a set of n software metrics.
Each software artifact is assessed by metrics from M ,
and the result of this assessment is represented as k×n
performance matrix of metrics values.

We denote by ej(ai) for ∀i ∈ {1, k},∀j ∈ {1, n}
an (i, j)-entry, which shows the degree of performance
for an software artifact ai measured for metric mj . We
denote by Ej = [ej(a1), . . . , ej(ak)]T ∈ Ekj the j-th col-
umn of performance matrix, which represents metrics
values for all software artifacts with respect to metric
mj where Ej is the domain of these values.

For each software artifact ai ∈ A and metric mj ∈
M , we define a score sj(ai), which indicates the degree
to which this software artifact meets the requirements
for the metric. Formally, for each metric mj we define
a score function sj :

ej(a) : A 7→ Ej
sj(e) : Ej 7→ [0, 1] (1)

Based on the score functions sj for each metric, our
goal is to define an overall score function such that, for
any software artifact, it indicates the degree to which
this software artifact satisfies all metrics. Formally, we
are looking for a function:

F (s1, . . . , sn) : [0, 1]n 7→ [0, 1] (2)

Such an aggregation function takes an n-tuple of
metrics scores and returns a single overall score. We
require the following properties:

1. If a software artifact does not meet the require-
ments for one of the metrics, the overall score
should be close to zero.

F (s1, . . . , sn)→ 0 as sj → 0 (3)

2. If all scores of one software artifact are greater or
equal than all scores of another software artifact,
the same should be true for the overall scores.

si1 ≥ sl1 ∧ · · · ∧ sin ≥ sln ⇒
F (si1, . . . , s

i
n) ≥ F (sl1, . . . , s

l
n),

where sij = sj(ej(ai)), s
l
j = sj(ej(al)) (4)

3. If the software artifact perfectly meets all but one
metric, the overall score is equal to that metrics
score.

F (1, . . . , 1, sj , 1, . . . , 1) = sj (5)

We propose to express the degree of satisfaction
with respect to a metric using probability. We define
the score function of Equation (1) as follows:

sj(ej(a)) = Pr(Ej > ej(a)) = CCDF ej (a) (6)

We calculate the Complementary Cumulative Dis-
tribution Function (CCDF). This score represents the
probability of finding another software artifact with an
evaluation value greater than the given value. For a
multi-criteria case, we can specify a joint distribution
in terms of n marginal distributions and a so-called
copula function [16]:

Cop(CCDF e1(a), . . . ,CCDF en(a)) =

Pr(E1 > e1(a), . . . , En > en(a)) (7)

The copula representation of a joint probability dis-
tribution allows us to model both marginal distribu-
tions and dependencies. The copula function Cop sat-
isfies the signature (2) and fulfills the required proper-
ties (3), (4), and (5).

We consider a weight vector, where each wi repre-
sents the relative importance of metric mi compared
to the others:

w = [w1, . . . , wn]T , where

n∑
i=1

wi = 1 (8)

We compute weights using a non-linear exponen-
tial regression model for a sample of software artifacts
mapping metrics scores of Equation(6) to copula value
of Equation(7). Note that these weights regard depen-
dencies between software metrics. Finally, we define
software metrics aggregation as a weighted composi-
tion of metrics score functions:

F (s1, . . . , sn) =

n∏
j=1

s
wj

j (9)

We consider a software artifact al to be better than
or equally good as another software artifact ai, if the
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total score according to Equation (2) of al is greater
than or equal the total score of ai:

al � ai ⇔ F (al) ≥ F (ai) (10)

Aggregation is defined as a composition of the product,
exponential, and CCDF functions, which are mono-
tonic functions. Hence, the score which is obtained by
aggregation allows to rank set A of software artifacts
with respect to metrics set M :

Rank(al) ≤ Rank(ai)⇔ F (al) ≥ F (ai) (11)

From a practical point of view, probabilities can be
calculated empirically, and each score can be obtained
as a ratio of the number of software artifacts with lower
than a given metric value to the number |A| of software
artifacts.

The proposed aggregation approach makes it possi-
ble to express the score for a software artifact as the
probability to observe something with equal or worse
metrics values, based on all software artifacts observed.
Once the quality scores are computed, the software ar-
tifacts can trivially be ranked by the score by simply
ordering the values from smallest to largest. We as-
sign the same rank for software artifacts in case their
total scores are equal. Low (high) ranks correspond
to high (low) probabilities. This interpretation is the
same on all levels of aggregation, from metrics scores
to the total quality scores.

3 Preliminary Evaluation

We apply our approach to assess Maintainability and
compare the results with the aggregation approach
based on a weighted linear combination of software
metrics. We measure the difference between rankings
obtained by these approaches and study the agreement
between aggregated scores. Finally, we compare ap-
proaches by means of sensitivity, and the ability to
detect extreme values and Pareto optimal solutions.

In the following subsections, we investigate Java
classes and their quality assessment using two research
questions:

RQ1 How effective is our approach for a quality assess-
ment?

RQ2 How actionable is our approach by means of sen-
sitivity and anomaly detection?

3.1 Quality Model Description

We consider a quality model for maintainability as-
sessment of classes, which relies on well-known soft-
ware metrics from Chidamber & Kemerer [17] software
metrics suit:

CBO, Coupling Between Objects

DIT, Depth of Inheritance Tree

LCOM, Lack of Cohesion in Methods

NOC, Number Of Children

RFC, Response For a Class

WMC, Weighted Method Count
(using Cyclomatic Complexity as method weight)

3.2 Data Set Description

We chose to investigate three open-source software
systems. The systems were chosen by such criteria:
(i) they are written in Java, (ii) available in GitHub,
(iii) they were forked at least once, (iv) they are suf-
ficiently large (several tens of thousands of lines of
code and several hundreds of classes), and (v) they
have been under active development for several years.
The projects we selected are three well-known and
frequently used systems: JabRef 1, JUnit2, and Rx-
Java.3 Table 1 shows descriptive statistics for these
systems.

Table 1: Descriptive statistics of investigated systems

JabRef JUnit RxJava

Number of classes (NOC) 1 532 1 119 2 744
Lines of code (LOC) 136 039 44 082 378 987
Version 4.3.1 5.3.2 3.0.0

3.3 Measures

The result of the aggregation is a maintainability score,
and a ranked list of software artifacts according to
their maintainability score. To evaluate our approach,
we compare it to a well-known approach considering
the following measures:

Correlation We study the Spearman’s correla-
tion [18] between maintainability scores to assess the
ordering, relative spacing, and possible functional de-
pendency.

Ranking distance We measure a distance between
the two rankings based on the Kendall tau distance,
which counts the number of pairwise disagreements
between two lists [19].

1JabRef, Graphical Java application for managing BibTeX
and biblatex databases, https://github.com/JabRef/jabref

2JUnit, A framework to write repeatable tests for the Java
programming language, https://github.com/junit-team/

junit5
3RxJava, Reactive Extensions for the JVM – a library

for composing asynchronous and event-based programs using
observable sequences for the Java VM, https://github.com/

ReactiveX/RxJava
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Agreement We measure agreement between main-
tainability scores using Bland-Altman statistics [20].

To evaluate if the aggregated scores can be used to
detect extreme values and Pareto optimal solutions,
we consider the following measures:

Sensitivity We study a variety of values to under-
stand a percentage of software artifacts that have the
same maintainability score. The overall sensitivity is
the ratio of unique scores and the number of software
artifacts.

Anomaly detection We compare approaches in
terms of their ability to detect anomalies (extreme val-
ues and Pareto optimal solutions) using a ratio of the
number of detected anomalies and the total number of
anomalies in a sample data set.

3.4 Preliminary Results and Analysis

We implemented all algorithms and statistical analyses
in R4. The metrics data for analysis was collected with
VizzMaintenance.5 We collected the metrics values for
classes of JabRef, JUnit, and RxJava software systems
(5 317 classes in total). We considered their packages
structure to group classes and applied Kolmogorov-
Smirnov statistical test [21] to select a subset for fur-
ther statistical analysis, which was composed of 5 101
classes. Moreover, we consider the quality assessment
of each system separately to study potential differ-
ences between software systems. We apply our ag-
gregation approach (See Equation (12)) and compare
the results with a weighted linear sum of metrics (see
Equation(13)), which we normalized by the min-max
transformation.

sw1

CBO × sw2

DIT × sw3

LCOM × sw4

NOC × sw5

RFC × sw6

WMC (12)

w1 × CBO + w2 ×DIT + w3 × LCOM +

w4 ×NOC + w5 × RFC + w6 ×WMC (13)

RQ1-effectiveness

We compare approaches within a single software sys-
tem and the merged data set. First, we study a cor-
relation between aggregation results. Second, we rank
software classes based on maintainability scores ob-
tained by two approaches. Table 2 shows Kendall Tau
distance and Spearman’s rho correlation. We observe a
strong correlation between maintainability scores and
low distance between rankings.

4The R Project for Statistical Computing, https://www.

r-project.org
5VizzMaintenance, Eclipse plug-in, http://www.arisa.se/

products.php

Table 2: Agreement between approaches

Correlation (Spearman) Distance (Kendall)

JabRef 0.93397 0.04829
jUnit 0.98899 0.02483
RxJava 0.96978 0.03083
Merged 0.98953 0.03382

Figure 1: Bland-Altman plot for JabRef

Third, we study an agreement, in the Bland-Altman
plot each class is represented by a point with the av-
erage of the maintainability scores obtained by two
approaches as the x-value and the difference between
these two scores as the y-value. The blue line repre-
sents the mean difference between scores and the red
lines the 95% confidence interval (mean±1.96SD). We
can observe that plots for JabRef and RxJava have a
similar shape (cf. Figure 1, Figure 3) compare to jU-
nit (cf. Figure 2). We can observe a similar shape for
merged data set (cf. Figure 4), since in total JabRef
and RxJava have almost four times more classes than
jUnit. We can observe that in all plots measurements
are mostly concentrated near the blue line and only a
few of them are outside of the red lines. The difference
for jUnit is slightly smaller than for JabRef and Rx-
Java. In sum, we conclude that the approaches agree,
i.e., aggregation results do not differ statistically, and
may be used interchangeably for the ranking of soft-
ware classes.

RQ2-actionability

First, we study the variety of values for each metric
and number of extreme values, which we define by
means of outliers. We detected 19 extreme values in
total. In Table 3 we can observe that metrics have
quite low sensitivity, for each metric 40 values on av-
erage are unique.

We consider a multi-objective optimization problem
based on metrics, and we detect five possible Pareto
optimal solutions, i.e., none of the metrics values can
be improved without degrading some of the other met-
rics values. Second, we study the sensitivity and abil-
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Figure 2: Bland-Altman plot for jUnit

Figure 3: Bland-Altman plot for RxJava

ity to detect anomalies (extreme values and Pareto
optimal solutions) for both approaches. In Table 4 we
can observe that our approach is more sensitive and
more suitable for anomaly detection.

Table 3: Metrics variety of values

Number of Extreme Values Sensitivity

CBO 3 0.00768
DIT 7 0.00109
LCOM 3 0.05746
NOC 2 0.00365
RFC 2 0.01848
WMC 2 0.02086

3.5 Discussion

We define metric scores by means of probability, as
it provides a simple interpretation for a quality score
by means of the joint distribution. In contrast, qual-
ity scores obtained by a weighted linear combination
of metrics do not provide clear interpretation, espe-
cially when metrics are incomparable. We assume that
larger metrics values indicate worse quality, however
both too small and too large values can be problematic
for some of the software metrics. Note that it is not
a limitation since we could transform metrics to have
this property. We extracted weights from joint dis-

Figure 4: Bland-Altman plot for Merged data

Table 4: Comparison of approaches by actionability
Aggregation (Eq.12) Aggregation (Eq.13)

Sensitivity 0.41317 0.31656
Extreme values 0.94736 0.63158
Pareto optimal solutions 1 0.6

tribution, which we consider as a ground truth. This
might be a threat to internal validity. We compare our
approach with a weighted linear combination of met-
rics, it might be a treat as well since we do not compare
it with other approaches. In this preliminary evalua-
tion, we consider six metrics, three software systems
written in Java, and focus on maintainability. This
might be a threat to external validity.

4 Conclusion and Future Work

In conclusion, we defined an automated aggregation
approach for software quality assessment. We defined
probabilistic scores based on software metrics distribu-
tions and aggregate them using the weighted product,
we obtained the weights from joint distribution. To
evaluate the effectiveness and actionability of our ap-
proach, we conducted an empirical study for maintain-
ability assessment. We collected CBO, DIT, LCOM,
NOC, RFC, and WMC metrics from Chidamber & Ke-
merer metrics suit for classes of JabRef, JUnit, and
RxJava software systems, and compared our approach
with a weighted linear combination of metrics. The
results showed that the approaches agree and can be
used interchangeably for ranking software artifacts.
However, our approach is more effective and action-
able, i.e., it has clear interpretation, higher sensitivity,
and is better at detecting extreme values and Pareto
optimal solutions.

Our approach is mathematically well-defined since
generalization is not questionable, and can be theo-
retically validated. For example, we can conduct sim-
ulation experiments to study the deviation between
our and other approaches depending on the number of
classes, number of metrics, levels of aggregation, etc.
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However, there is still a need for empirical validation
of our approach. In the future, we plan to evaluate
our approach on other data sets, such as The GitHub
Java corpus, which contains around 15 000 software
systems [22]. We also plan to compare our approach
with Bakota et al. probabilistic approach [23].
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Rudolf Ferenc, and Tibor Gyimóthy. A proba-
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