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Simple counting quantifiers that can be used to compare the number of role
successors of an individual or the cardinality of a concept with a fixed natu-
ral number have been employed in Description Logics (DLs) for more than two
decades, under the respective names of number restrictions [8,13,12] and cardi-
nality restrictions on concepts (CRs, CBoxes) [4,19].

The DL ALCQ [12] extends the basic DL ALC with so-called qualified num-
ber restrictions of the form (≥n r.C) and (≤n r.C), collecting individuals for
which the number of r successors belonging to the concept C is bounded from
below/above by the natural number n. The computational complexity of concept
satisfiability in ALCQ [12] has been shown to be PSpace-complete without con-
cept inclusions (CIs, TBoxes) and ExpTime-complete w.r.t. CIs, independently
from the encoding (unary or binary) of the numbers occurring in the restric-
tions [18,20]. CRs are global constraints of the form (≥nC) and (≤nC), which
state a lower/upper bound on how many elements of C a model may contain. By
replacing CIs with CRs, the complexity of satisfiability increases to NExpTime-
complete if the numbers occurring in the CRs are assumed to be encoded in
binary [19]. With unary coding of numbers, it stays ExpTime-complete even
w.r.t. CRs [19]. It should be noted that both qualified number restrictions and
CRs (which generalize CIs) can be expressed in C2, the two-variable fragment of
first-order logic with counting quantifiers [11,16], whose satisfiability problem is
known to be NExpTime-complete [17].

Qualified number restrictions cannot relate cardinalities of different sets of
role successors to one another, but can only compare the number of role suc-
cessors (satisfying certain properties) of an individual against a fixed natural
number. To overcome this limitation, in [1] we extended ALCQ by enabling the
statement of restrictions on role successors using the quantifier-free fragment of
Boolean Algebra with Presburger Arithmetic (QFBAPA) [14], in which one can
express Boolean combinations of set constraints and numerical constraints com-
paring the cardinalities of finite sets. The resulting logic, called ALCSCC, strictly
extends the expressive power of ALCQ. In [1] it is shown that the ALCSCC con-
cept description succ(|r| = |s|), which describes individuals having the same
number of r-successors as s-successors, cannot be expressed in ALCQ. In addi-
tion, it has been shown in [5] that succ(|r∩A| = |r∩¬A|), the ALCSCC concept
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describing individuals whose number of r-successors belonging to A is the same
as the number of r-successors not belonging to A, is not even expressible in first-
order logic. In spite of this considerable increase in expressive power, we were
able to show in [1] that there is no increase in complexity: like for ALCQ, the
complexity of the satisfiability problem in ALCSCC is PSpace-complete without
CIs and ExpTime-complete w.r.t. CIs. The “in PSpace” result can also be de-
rived from previous work [9] on modal logics with Presburger constraints, while
the “in ExpTime” result is a novel contribution of [1].

Just like classical number restrictions, CRs can only relate the cardinality of
a concept to a fixed number. In [7] we have introduced and investigated a gen-
eralization of CRs, which we called extended cardinality constraints (ECBoxes).
The main idea was again to use QFBAPA to formulate and combine these con-
straints. It is shown in [7] that, in the DL ALC, the complexity of reasoning w.r.t.
extended cardinality constraints (NExpTime for binary coding of numbers), is
the same as for reasoning w.r.t. CRs. Moreover, we identified a special class of
ECBoxes called restricted cardinality constraints (RCBoxes), which can express
CIs but not CRs, and showed that the complexity of reasoning is lowered to
ExpTime if ECBoxes are replaced with RCBoxes. The NExpTime upper bound
for the extended case can actually be inferred from the NExpTime upper bound
in [21] for a more expressive logic with n-ary relations and function symbols, but
the ExpTime upper bound for the restricted case is a novel result.

In [2,3], we have combined the work in [1] and [7] by considering extended
cardinality constraints in ALCSCC. This turned out to be non-trivial since the
local cardinality constraints of ALCSCC may interact with the global ones in
the extended cardinality constraints. Nevertheless, we were able to show that
the complexity results (NExpTime-complete in general, and ExpTime-complete
in the restricted case) hold not only for ALC, but also for ALCSCC.

The purpose of the paper [6], whose results this abstract summarizes, is
twofold. On the one hand, after giving a compact representation of the known
complexity results for the DLs with extended counting facilities mentioned above,
we prove that those bounds are preserved in a setting where arbitrary rather than
just finite models are considered. On the other hand, we investigate in detail the
expressive power of these DLs over arbitrary models.

A first step in this direction had already been made in [5] for number re-
strictions over role successors. There, to ease the comparison with classical
DLs such as ALCQ, where one usually employs a semantics based on arbitrary
rather than finite models, we considered variants of QFBAPA and ALCSCC
(called QFBAPA∞ and ALCSCC∞) that allow for possibly infinite sets and
interpretations, respectively. After transferring the known complexity results
for QFBAPA and ALCSCC to these variants, we examined their expressive
power using appropriate bisimulation relations. Basically, we showed there that
ALCSCC∞ concepts can go beyond first-order logic (recall the concept descrip-
tion succ(|r ∩ A| = |r ∩ ¬A|) mentioned earlier) and determined a sub-logic
of ALCSCC∞, called ALCCQU , that corresponds to the first-order fragment of
ALCSCC∞. We also proved that ALCCQU is more expressive than ALCQ and
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Fig. 1. The relative expressive power of the DLs ALCQ, ALCQt, ALCCQU , and
ALCSCC∞. The source of every arrow is a strict sub-logic of the target.

KBs (L ∈ {ALCQ,ALCQt,ALCCQU})FOL

L TBoxes

Boolean
L TBoxes

Boolean L CBoxes
=

L ECBoxes ∩ FOL

L RCBoxes

L ECBoxes ALCSCC∞

ECBoxes(

(

(

(

(

(

Fig. 2. The relative expressivity of boxes. The source of every arrow is a strict sub-logic
of the target.

equivalent to an extension of ALCQ, called ALCQt, where number restrictions
range over (safe) role types rather than role names. Figure 1 gives an overview
of the expressivity results contained in [5].

In [6], we recall these results, and then extend them to TBoxes, CBoxes,
RCBoxes, and ECBoxes, by adapting methods and ideas from [15]. As in [5],
we consider the semantic variants QFBAPA∞ and ALCSCC∞, rather than their
finite counterparts, and derive the expressivity hierarchy depicted in Figure 2
using suited bisimulation relations and the 0-1 law for first-order sentences [10].

Detailed definitions of the aforementioned formalisms, as well as proofs of
the expressivity results mentioned in this abstract, have been published in [6].
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