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Concrete domains have been introduced in the area of Description Logic to
enable reference to concrete objects (such as numbers) and predefined predicates
on these objects (such as numerical comparisons) when defining concepts [2].
Unfortunately, in the presence of general concept inclusions (GCIs), which are
supported by all modern DL systems, adding concrete domains may easily lead
to undecidability [4,13].

One contribution of this paper is to strengthen the existing undecidability
results further by showing that concrete domains even weaker than the ones con-
sidered in the previous proofs may cause undecidability. We show by a reduction
from the halting problem of two-register machines that concept satisfiability in
the DL ALC(D) is undecidable if D is a structure with domain Q, Z, or N whose
only predicate is the binary predicate +1, which is interpreted as incrementation.
Our proof is an an adaptation of the undecidability proof in [5] to the case where
no zero test =0 is available. Even though both proofs use a functional role g to
represent the transitions between configurations of a given two-register machine,
the reduction also works if g is assumed to be an arbitrary role. One simply
must use additional universal quantification to ensure that all the g-successors of
an individual satisfy the same properties. It turns out that undecidability also
holds if we use the ternary predicate + rather than the binary predicate +1.
Intuitively, with + we can easily test for equality with 0 since the number m is 0
iff m+m = m. Instead of incrementation by 1, we can then use addition of a
fixed non-zero number.

To regain decidability in the presence of GCIs and concrete domains, the notion
of ω-admissible concrete domains was introduced in [14]. The main motivation
for the definition of ω-admissible concrete domains was that they can capture
qualitative calculi of time and space. In particular, it was shown in [14] that
Allen’s interval logic [1] as well as the region connection calculus RCC8 [17] can
be represented as ω-admissible concrete domains. To the best of our knowledge,
no other ω-admissible concrete domains have been exhibited in the literature
since then.

The major contribution of the paper is to support locating new ω-admissible
concrete domains by linking their definition to well-known notions from model
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theory. To this purpose, we first generalize the notion of ω-admissibility and
the decidability result from concrete domains with only binary predicates as in
[14] to concrete domains with predicates of arbitrary arity. We then introduce
several model-theoretic properties of relational structures and show their con-
nection to ω-admissibility. This allows us to formulate sufficient conditions for
ω-admissibility using well-know notions from model theory, and thus to employ
existing model-theoretic results to find new ω-admissible concrete domains. This
is not the first model-theoretic description of a sufficient condition for decid-
ability of reasoning in DLs with concrete domains in the presence of GCIs. The
existence of homomorphism is definable (EHD) property was used in [10] to
obtain decidability results for DLs with concrete domains. However, the way the
concrete domain is integrated into the DL in [10] is different from the classical
one employed by us and used in all other papers on DLs with concrete domains.
In [10], constraints are always placed along a linear path stemming from a single
individual, which is rather similar to the use of constraints in temporal logics
[9,11]. In contrast, in the classical setting of DLs with concrete domains, one can
compare feature values of siblings of an individual.

The main result shown in this paper is that, under the natural assumption
that concrete domains can express the binary equality predicate, there is a
close connection between the patchwork property, an essential part of the ω-
admissibility condition, and the amalgamation property. The latter plays a crucial
role in Fraïssé’s theorem, which characterizes those classes of finite structures
which arise as finite substructures of a countable homogeneous structure [12]. We
use this connection to prove that the large class of finitely bounded homogeneous
structures yields ω-admissible concrete domains. The facts that a great variety
of homogeneous structures is known from the literature [16] and that finitely
bounded homogeneous structures play an important rôle in the CSP community
[8] support our claim that this work will turn out to be useful for locating new
ω-admissible concrete domains.

Finally, we discuss possible applications and limits for our approach. The
algorithm from [15] for reasoning with ω-admissible concrete domains depends
heavily on the finiteness of the signature. In principle, structures with an infinite
signature satisfying similar conditions could also provide decidable extensions
of ALC by concrete domains. However, there are examples of structures with
infinite signatures satisfying most of our conditions that lead to undecidability
if used as concrete domains. For instance, the structure with domain Z whose
relations are of the form +k for every k ∈ Z is homogeneous, but ALC extended
with this concrete domain is undecidable, even though satisfiability of finite
conjunctions of constraints in this structure is decidable. Restricting the attention
to structures over finite signatures has also other advantages. For a given finite
set of binary predicates described by a finite set of bounds (which is the case for
Allen and RCC8), it is actually decidable whether there exists a finitely bounded
homogeneous structure which has precisely these as its relations [7].

We continue the discussion by showing how to reproduce some of the known
proofs of ω-admissibility for specific concrete domains using our approach and how
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to combine several concrete domains into one while preserving ω-admissibility.
For the latter, we consider disjoint unions and also certain products which allow
us to access finitely many concrete domains through coordinates of a single
concrete domain living on the Cartesian product. Taking products instead of
disjoint unions turns out to be necessary if one wants to describe several features
of an individual at once in the presence of relational paths in concrete domain
constructors.

In our setting, ω-admissibility also remains preserved under expansions by
finitely many constants, i.e., unary predicates of the form =d for domain elements
d. Unfortunately, we cannot allow for infinitely many additional predicates of any
sort since our algebraic tools are only applicable to finite signatures. Intuitively,
the expansion of any structure by all domain elements is always homogeneous,
but we lose all complexity-theoretic properties of the original structure, including
finite boundedness.

We finish the paper with an example of a structure that is ω-admissible but
not finitely bounded. This shows that finitely bounded homogeneous structures
do not exhaust the pool of ω-admissible concrete domains entirely.

The paper containing these results was published at IJCAR 2020 [6].
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