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Abstract. The small description logic FL0 deals with concepts con-
structed from concept names and roles with conjunction and value re-
striction for the roles. It is known that deciding the subsumption be-
tween concepts in this logic is polynomial, and unification is ExpTime-
complete. If we consider the subsumption problem modulo a set of ground
axioms the problem is ExpTime-complete. In this paper we study uni-
fication in FL0 modulo a set of ground axioms. We do not solve the
problem in general, but focus on a very restricted case, namely the case
where axioms are flat subsumptions between concept names. In this re-
stricted case the subsumption is still polynomial, and we show that the
unification is ExpTime-complete.

1 Introduction

The FL0 description logic is a logic which deals with the concepts constructed
only from a set of concept names, N, and a set of role names, R, top symbol >,
and constructors: conjunction u, value restriction ∀r.C, where r ∈ R and C is
an FL0 concept.

Unification of concepts in the description logic FL0 without a TBox (a set
of ground axioms) was proved to be ExpTime complete in [5].

Unification in FL0 modulo a general TBox remains unsolved. In this paper,
we will see how to solve this problem for a very restricted TBox.

The algorithm is going to use a decision procedure for subsumption between
FL0 concepts modulo a TBox. Without a TBox (or with an empty TBox) sub-
sumption in FL0 is polynomial. In [1] deciding subsumption between FL0 con-
cepts modulo a TBox was proved to be ExpTime-complete. We will see that for
the restricted TBox in this paper, the subsumption is still polynomial.

The content of this paper as related to the result in [4], where it was shown
that the general unification in ACUI-theory modulo a set of ground axioms con-
sisting of constants only, is NP-complete. FL0 can be treated as the equational
theory ACUI (for conjunction) extended with homomorphism axioms for unary
function symbols (for value restrictions). Our result differs form the above men-
tioned in this, that we do not allow free functions, but only homomorphisms.
Hence this result is a step forward towards the goal of the authors of [4], to solve
unification in FL0 modulo a general TBox.
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On the other hand the presented result can be viewed as a generalization
of our unification algorithm from [6]. In that paper we have encoded the FL0

unification problem as a set of restricted anti-Horn clauses, and we proved that
a finite Herbrand model of these clauses defines a solution for the unification
problem. In order to decide the existence of a finite Herbrand model, we use a
concept of a shortcut, that defines an assignment of terms to predicates, which
may be a part of a model.

In this paper we will analyze the unification problem directly, without an
encoding into anti-Horn clauses. The idea though is the same as in [6], to use
a kind of shortcuts to define an assignment for variables, which may constitute
a part of a solution. Our algorithm is in ExpTime complexity class. The prob-
lem is also ExpTime-hard, because unification in FL0 with the empty TBox
is already ExpTime-hard.1 Hence FL0 unification modulo a flat TBox is Exp-
Time-complete.

We assume some knowledge of Description Logics and of FL0 in particular,
and refer the reader to [2].

2 Normal form, TBox and subsumption

Normal form of an FL0 concept
An FL0 concept C is in normal form2 if it is of the form: ∀v1.A1 u · · · u∀vn.An,
where vi are words over a set of role names R and Ai ∈ N are concept names.
If vi = ε, then ∀vi.Ai = ∀ε.Ai = Ai. Notice that the concept names can be
repeated, as they can be reachable by different role words. A simple conjunct of
a concept in this form, ∀vi.Ai, with vi ∈ R∗, is called a particle.

Since an FL0 concept in the normal form is a conjunction of particles, we
treat it as a set of particles and use the notation: P ∈ C to indicate that P is a
conjunct of a conjunction of particles C. Similarly, we use the subset relation to
compare conjunctions. In accordance of the meaning of conjunction, the empty
conjunction (or the empty set) of particles is understood as >, the concept that
subsumes every other concept.

Since in the usual FL0 concept, conjunction can appear also under universal
value restriction, changing C into this normal form may increase the size, but
only polynomially, since each particle in the normal form of C has to correspond
to a unique leaf in the parse tree of the original concept.

Below we assume that all concepts are in this normal form. As sets of parti-
cles, we always understand them modulo associativity, commutatity and idem-
potence, even when we write them using conjunction constructor.

FL0 TBox and subsumption
We assume that an FL0 TBox is a set of general concept inclusions (GCIs)
between concepts in normal form. These GCIs are also called axioms.

1 Our algorithm solves also unification in FL0 with the empty TBox.
2 There are different choices of normal forms for FL0 concepts possible. We choose

the one that is most suitable for our purposes.



By properties of conjunction and equivalence, we can transform these axioms
into the subsumptions with one particle on the right hand-side:
∀v1.A1 u · · · u ∀vn.An v ∀w.B, where vi, w are words over the set of role names
R and Ai, B ∈ N are concept names.

Equivalence between particles ∀v.A ≡ ∀w.B is just a short form of two sub-
sumptions in the opposite directions.

Rewrite step
We define a rewrite step as a notion describing an application of an axiom from
a TBox T .
C u ∀v.C1 u · · · u ∀v.Cm vT C u ∀v.D is called a rewrite step at position p iff
C1 u · · · u Cm v D is a GCI in T and v is a word over R of the length p.
C in the above definition is any FL0 concept in normal form and C1, . . . , Cm, D
are particles.

Subsumption modulo a TBox
In the presence of a TBox, subsumption between two FL0 concepts C1 vT C2

in normal forms occurs if and only if one of the following cases holds:

– C2 ⊆ C1 (inclusion step)

– There is a rewrite step between C1 and C2 at some position.

– There is a sequence of inclusion or rewrite steps:
C ′1 vT C ′2, C

′
2 vT C ′3, . . . , C

′
n−1 vT C ′n, such that C1 = C ′1 and C2 = C ′n.

(transitivity of subsumption)

This characterization of subsumption in FL0 follows directly from the se-
mantic properties of constructors of FL0.3

Now, we assume that a TBox has a special form. It contains only flat
subsumptions of the form: A1 u · · · u An v B, where A1, . . . , An, B are concept
names. We call such TBox a flat TBox.

Obviously, in such a TBox, every rewrite step can only have the form
C ′ u ∀v.A1 u · · · u ∀v.An vT C ′ u ∀v.B, where each particle has the same role
prefix v.

Hence if this rewrite step is applied to C, C vT D, then there must be
particles of the same height: ∀v.A1, . . . ,∀v.An in C, and they are replaced by a
particle of the same height, ∀v.B in D.

Now we show that the subsumption problem w.r.t. a flat TBox is in P.4

We define a saturation of an FL0 concept C w.r.t. GCIs in a TBox T . In this
definition [∀v.C] denotes a concept ∀v.C brought to the normal form. Hence e.g.
[∀v.(AuB)] denotes ∀v.Au∀v.B or equivalently a set of particles {∀v.A,∀v.B}.

3 Without a TBox, subsumption in FL0 is characterized by the first and third condi-
tion. In the presence of a TBox, rewrite steps allow us to show additional subsump-
tions between FL0 concepts. Since we assume that concepts are in normal form,
they are treated as sets of particles.

4 We follow here the idea from [4].



1. We start with C∗ := C.
2. As long as there is a GCI C1 v C2 in T , such that [∀v.C1] ⊆ C∗ and

[∀v.C2] 6⊆ C∗, redefine C∗ := C∗ ∪ [∀v.C2].

Saturation terminates (because T is finite and flat) and C∗ ≡T C.
Obviously, if T is not flat, this process may not terminate.

Lemma 1. Let C,D be FL0 concepts and T a flat FL0 TBox. Then C vT D
if and only if D ⊆ C∗.

Example 1. Let T = {A uB v C, B u C v D}.
Let C = {∀r.A, ∀r.B}.
Then C∗ = {∀r.A, ∀r.B, ∀r.C, ∀r.D}. Obviously, C vT ∀r.D

Corollary 1. Subsumption problem in FL0 modulo a flat TBox is polynomial.

Proof. In order to decide if C vT D, we saturate C. This process terminates in
polynomial time, because T is finite and the saturation may be executed only the
number of times corresponding to the number of GCIs in T times the number
of prefixes present in the particles of C.

Most crucial observation for our unification procedure is that for every sub-
sumption of the form ∀v1.C1 u · · · u ∀vn.Cn vT ∀v.D, also the subsumption
C1 u · · · uCn vT D holds, where C1, . . . , Cn, D are constants. This is true for a
flat TBox. We can prove the following, even stronger result.

Lemma 2. Let T be a flat TBox. Then for every v, v′ ∈ R∗,
∀v.A1 u · · · u ∀v.An vT ∀v.B if and only if ∀v′.A1 u · · · u ∀v′.An vT ∀v′.B.

Proof. If ∀v.A1 u · · · u ∀v.An vT ∀v.B then A1 u · · · u An vT B because T is
flat and then ∀v′.A1 u · · · u ∀v′.An vT ∀v′.B by FL0 properties.5

3 Unification problem

Unification problem is defined as a set of goal subsumptions between FL0 con-
cepts in normal form: Γ = {C1 v? D1, . . . , Cn v? Dn}.

Each of the goal subsumptions contains concepts in normal form, hence it is
of the form: ∀v1.A1 u · · · u ∀vm.Am v? ∀v.B, where vi (or v) may be empty and
Ai (or B) is a concept name.

Some of the concept names in the goal are variables. The concept names
that are not variables are called constants. The set of goal variables is denoted
by Var. FL0 concepts, subsumptions and sets of subsumptions that do not
contain variables are called ground. We assume a flat, ground TBox T .

A solution for the unification problem modulo T is a substitution of ground
concepts for the variables, such that the goal subsumptions are true modulo
the TBox T . Notice that we are searching for ground substitutions, hence if a

5 Value restrictions behave like homomorphism.



variable is assigned an empty conjunction of particles, we understand that it
is substituted by the top constructor, >. If a goal subsumption is of the form
C1 u · · · uCn v? D, D is a variable, and a substitution γ assigns > to D, we say
that γ satisfies this subsumptions voidly.

Flattening
The flattening of goal subsumptions is a kind of decomposition, which is a part
of unification procedure. We flatten the goal subsumptions by a transformation
using fresh variables and adding new goal subsumptions. A goal subsumption
C1 u · · · uCn v? D, where C1, . . . , Cn, D are particles, is not flat if D is of the
form ∀r.D′ or there is an i, 1 ≤ i ≤ n, such that Ci is of the form ∀r.C ′i. In order
to flatten such a subsumption, we will introduce decomposition variables, e.g. for
a variable X, a decomposition variable would be denoted Xr. Such a variable
will be defined by an increasing subsumption X v? ∀r.Xr and a decreasing
rule 1 introduced later. An increasing subsumption is added automatically to the
unification problem, at the moment of the creation of a decomposition variable.
The set of increasing subsumptions is maintained separately from other goal
subsumptions, and is not subject to flattening. For a given role r and a variable
X, Xr is unique, if it exists.

In a flattening process we will use the following notation. If P is a particle
and r a role name (r ∈ R), we define P−r in the following way:

P−r =


P r if P is a variable and P r is a decomposition variable

P ′i if Pi = ∀r.P ′i
> in all other cases

If s is a goal subsumption, s = C1 u · · · uCn v? D, where C1, . . . , Cn, D are
particles, we define s−r = C−r1 u · · · u C−rn v? D−r.

If P is a particle, then we define P cons in the following way:

P cons =

{
P if P is a constant or variable

> in all other cases

If s is a goal subsumption, s = C1 u · · · uCn v? D, where C1, . . . , Cn, D are
particles, we define scons = Ccons

1 u · · · u Cccons
n v? Dcons.6

The subsumptions obtained in the process of flattening are called:

– Start subsumptions: of the form C1 u · · · uCn v? D and D is a constant.
– Flat subsumptions: of the form C1 u · · · u Cn v? D and D is a variable.
– Increasing subsumptions: of the form C v? ∀r.Cr for a role name r.

Now we define our flattening procedure in Figure 1.
After the flattening is done on Γ in an exhaustive way, we can remove the

goal subsumptions with > on the right hand-side, as trivially satisfied by any
substitution.

The flattening process is non-deterministic because of guessing in 3b. This is
a polynomial guess, hence the process adds a non-deterministic polynomial step

6 This means that the particles that are not constants or variables are deleted from s.



Given a non flat goal subsumption: s = C1 u · · · u Cn v? D,

1. If D is of the form ∀r.D′,
then replace s with s−r.

2. If D is a constant (s is not flat, hence there is Ci of the form ∀r.C′i), then replace s
with scons.

3. If D is a variable (s is not flat, hence there is Ci of the form ∀r.C′i), delete s from
Γ and add the following goal subsumptions:

(a) for each r ∈ R, add s−r,
(b) guess a set of constants AD in the constants of T and Γ ,
(c) for each C ∈ AD, add

– D v? C and
– Ccons

1 u · · · u Ccons
n v? C

Fig. 1. Flattening of Γ

to the unification procedure. The complexity of the unification is dominated by
the algorithm explained in the next section.

The flat subsumptions of the form C1u· · ·uCn v? D, where D is a variable,
may have constants or variables on the left hand sides. We call such subsumptions
with constants on the left hand sides, mixed subsumptions.

Now we define pure subsumptions by deleting all constants from mixed sub-
sumptions in the goal. For example, if X u A v? Y is a mixed subsumption in
Γ , then X v? Y is the corresponding pure subsumption.

Pure subsumptions are not part of the goal, but they have the following prop-
erty: if γ unifies pure subsumptions, then it also unifies the corresponding mixed
subsumptions. We will use the pure subsumptions later on in our unification
procedure.

The meaning of a decomposition variable Zr is that in a solution it should
hold exactly those particles P , for which ∀r.P is in the substitution for Z. The
process of solving the unification problem will determine which particles should
be in the solution of Z.

An increasing subsumption does not suffice to express this relation between
the substitution for Z and that for Zr. In order to properly characterize the
meaning of a decomposition variable Zr, we need to add another restriction on
a substitution, which cannot be expressed as a goal subsumption, but rather as
an implication, which we call a decreasing rule:

Z v ∀r.P =⇒ Zr v P (1)

where P is a ground particle. The meaning of this restriction is that whenever a
ground particle of the form ∀r.P is in the substitution for Z, then P has to be
in the substitution for the decomposition variable Zr. The reason is illustrated
in the next example.

Example 2. Let our unification problem contain the goal subsumptions:
Z v? ∀r.A, ∀r.A v? Z,Z v? X,X v? ∀r.B. In this example, we assume that the



TBox is empty. The flattened goal is then:
start subsumptions: Zr v? A, Xr v? B; flat subsumptions: A v? Zr, Z v? X;
increasing subsumptions: Z v? ∀r.Zr, X v? ∀r.Xr.

The first start subsumption forces A into a substitution for Zr and thus by
the first increasing subsumption ∀r.Amust be in the substitution for Z. Similarly,
Xr gets B and X gets ∀r.B. By the second flat subsumption we know that ∀r.B
must be also in the substitution for Z. But there is nothing that can force B into
Zr, if we do not use the decreasing rule. If we do apply the decreasing rule 1,
then B is forced into Zr, but then we discover that the goal is not unifiable,
because A 6v∅ B.

Without applying the decreasing rule 1, the following substitution would be
wrongly accepted as a solution:
Z 7→ {∀r.A, ∀r.B}, Zr 7→ {A}, X 7→ {∀r.B}, Xr 7→ {B}

The process of flattening of the unification problem obviously terminates in
polynomial time with polynomial increase of the size of the goal. It is bounded by
the size of the original problem. We call a flat unification problem, normalized.

Lemma 3. Let Γ be a unification problem which contains a goal subumption
which is not flat. Let T be a flat FL0 TBox.

There is a right application of a rule from Figure 1, such that and Γ ′ a
unification problem obtained from Γ by this application satisfies the following
claim: γ is a ground solution of Γ w.r.t. T iff there is a substitution γ′ that is a
solution of Γ ′ modulo T , where γ′ is an extension of γ to some new variables.

Notice that the decreasing rule is not mentioned in the formulation of the
above lemma. This is because if a substitution γ (or γ′) is a ground unifier of Γ
(or Γ ′), then even if the decreasing rule is not satisfied by the assignments of γ
(or γ′), this can be easily repaired by redefining the assignment for every decom-
position variable: γ(Xr) := {P | ∀r.P ∈ γ(X)}. Because of this, knowing that a
substitution γ is a solution for Γ , we can assume about it that the decreasing
rule is satisfied by it.

Example 3. We illustrate in this example the flattening process.

Let Γ = {A u ∀s.X v? ∀r.Y, B u ∀r.Y v? A, ∀s.Y u ∀r.X v? X}

– Let s = A u ∀s.X v? ∀r.Y . The first case of flattening applies and s is
replaced by s−r. s−r = > v? Y .

– Let s = B u ∀r.Y v? A. The second case of flattening applies and s is
replaced by sA. sA = B v? A

– Let s = ∀s.Y u ∀r.X v? X. The third case applies. We guess that AX = ∅.
Then s is replaced by s−s and s−r. s−s = Y v? Xs. s−r = X v? Xr.
Since two decomposition variables are introduced, we have to add two in-
creasing goal subsumptions. X v? ∀s.Xs and X v? ∀r.Xr. Additionally
we will require that the decreasing rule 1 restricts the assignment for the
decomposition variables.



Finally the flattened Γ has the form:
start subsumption: B v? A; flat subsumptions: > v? Y, Y v? Xs, X v? Xr;
increasing subsumptions: X v? ∀s.Xs, X v? ∀r.Xr

We can notice that the goal has a solution for any TBox T for which B vT A.
For example a solution assigns > to all variables in Γ .

Shortcuts
From a syntactic point of view a shortcut is just a pair (X , t̄) where X is a set
of variables and t̄ is a vector of sets of particles of the same height. It represents
an assignment of corresponding sets of particles from t̄ to variables from X .
X (t̄) = [X1 7→ t1, X2 7→ t2, . . . , Xn 7→ tn]. We require that X (t̄) satisfies the
flat clauses of a given unification problem. We will also make sure that for each
valid shortcut (X , t̄) there is a substitution γ of which X (t̄) is a part such that
all minimal particles of in the range of γ are in t̄, and such that γ satisfies all
subsumptions of Γ , including decreasing rule for the particles of greater heights.

The idea behind our unification algorithm is that a solution γ may be divided
into assignments of the particles of the same height to variables in the unification
problem. These particles behave in an independent way as far as the satisfiability
of flat clauses is concerned. The only connections between particles of different
heights is by the increasing subsumptions and the decreasing rule.

If (X , t̄) is a valid shortcut and it satisfies the decreasing rule for the particles
in t̄ it is called closed. If additionally it satisfies all start subsumptions, it is
called complete. Obviously, there is a solution for a unification problem Γ , if
there is a shortcut that is complete.

In the following part, we will show that we do not need to look for shortcuts
for all possible assignments of all possible particles to variables, which would be
impossible, given infinitely many possible particles. We can restrict ourselves to
the shortcuts with assignment of sets of constants only. These shortcuts of the
form (X , c̄), where c̄ is a vector of sets of constants, are called c-shortcuts.

They are defined as follows.

Definition 1. Let X ⊆ Var. The pair of set of variables X and a vector of sets
of constants c̄, (X , c̄) is called a c-shortcut (for Γ ) if there is a substitution γ
satisfying the following conditions:

S1 γ assigns the constants only from c̄ and only to the variables from X , ac-
cording to the assignment X (c̄) defined by (X , c̄).

S2 All subsumptions in Γ and the decreasing rule are satisfied by γ, with possible
exception of start subsumptions.

The height of γ is max{|w| | ∀w.A ∈ range(γ) with A a constant }. The height
of the shortcut (X , c̄) is the smallest height of a substitution satisfying S1 and
S2.

A special c-shortcut is of the form (∅, ∅), hence the empty assignment. This
corresponds to the solution that substitutes all variables in the unification prob-
lem with >. Notice that this substitution satisfies all flat subsumptions, increas-
ing subsumptions and the decreasing rule. Hence it is a legitimate shortcut. We
say that this c-shortcut has height 0.



Theorem 1. A unification problem Γ has a solution modulo a flat TBox T iff
there is a complete c-shortcut for Γ .

An interesting property of some of the c-shortcuts is the following: if (X , c̄)
is a c-shortcut for some vector c̄, then it provides a substitution γ satisfying
the conditions of Definition 1. Now for some of these c-shortcuts we can lift this
substitution in such a way, that instead of constants it assigns the same constants
prefixed with a common word v from R∗ (the particle is ∀v.C). We construct
a new substitution γ′, which assigns to each variable in X particles of the form
∀v.C, whenever γ assigned a constant C. γ′ satisfies the same subsumptions as
γ with exception of start subsumptions and the decreasing rule activated by the
particles replacing constants.7

Not all c-shortcuts have this property. Some subsumptions maybe satisfied
by γ because of constants present on the left side of flat, mixed subsumptions.
We cannot substitute for constants. Hence in such case, we cannot lift γ to γ′.
The possibility of lifting of a substitution to particles of bigger height occurs
only if γ satisfies pure counterparts of all flat subsumptions in the goal, where
the pure subsumptions with > on the left hand-side are satisfied voidly by γ.

The idea for solving FL0 unification w.r.t. a flat TBox is the following:
compute all possible c-shortcuts of height 0, check if there is a complete c-
shortcut among them, and if not then identify the c-shortcuts that can be used
to compute c-shortcuts for height 1, compute the c-shortcuts of height at most
1 with the help of the shortcuts of height 0, and so on, until we find a c-shortcut
which is complete.

For constructing new c-shortcuts, we define a notion of an f-output of a
shortcut (X , c̄) as a pair (X+f , c̄), where X+f = {Xf ∈ Var | X ∈ X} such
that c̄[i] = {C | [Xi 7→ C] ∈ X (c̄)}. This means that in X+f (c̄) the same constant
C which was assigned to X is now assigned to Xf . With the help of f -output,
we make sure that the decreasing rule will be always satisfied by the solution we
search for.

Example 4. In this example we see how c-shortcuts can be used to construct a
solution. Let T = {A u C v B}.
Γ = {start subsumptions: X v? C; flat subsumptions: Y fuA v? X,ZuX v? Y ;
increasing subsumption: Y v? ∀f.Y f }

The pure counterparts for the flat subsumptions are: Y f v? X, Z uX v? Y .
First we compute all c-shortcuts of height 0. Among others we will discover

the c-shortcut S1 = ({Y, Z}, < {C}, {C} >). Since this shortcut defines an
assignment that satisfies the pure subsumptions, we label it as usable. Since this
is not a complete c-shortcut (the start subsumption is not satisfied), then we
look for other c-shortcuts.

We check if S2 = ({X,Y f , Y, Z}, < {C}, {C}, {B}, {A} >) is a c-shortcut.
For that we need a c-shortcut with Y included, and f -output in S2. We can
use S1, because its f -output, ({Y f}, < {C} >) is included in S2. S2 is thus a
legitimate c-shortcut. It happens also that S2 is complete.

7 Notice that constants never activate this rule.



Algorithm 1 Main(Γ, T )

Input: Γ a normalized unification problem, T a flat TBox
Output: True if there is a complete and closed c-shortcut for Γ , False otherwise
1: S0 ← ∅
2: i = 0
3: for all i ≥ 0 do
4: Si+1 ← nextShortcuts(Γ,Si, T ),
5: if there is a complete shortcut in Si+1 then
6: return True
7: else if Si+1 = Si then
8: return False
9: end if

10: end for

From the two shortcuts S2 and S1 we can construct the following solution:
γ = [X 7→ {C}, Y f 7→ {C}, Y 7→ {B, ∀f.C}, Z 7→ {A,∀f.C}]. Notice how
the decreasing rule 1 is satisfied by the solution, because the f -output of S1 is
included in S2.

4 Algorithm

The unification procedure consists of two stages.

1. Flattening of a given unification problem.
2. Running Algorithm Main 1 on the normalized problem.

Since the flattening process contains a non-deterministic component (it is in NP),
in the case the main algorithm fails, one has to try different choice of constants
for variables in the process of flattening, in the first step.

Now we look at the algorithms: Algorithm Main 1 and Algorithm nextShort-
cuts 2. Γflat denotes the set of flat subsumptions from Γ and Γpure their pure
counterparts.

Correctness of Algorithm Main 1
The soundness of the main algorithm follows from Theorem 1. If there is a
complete c-shortcut, then there is a solution to the unification problem given
by Definition 1. The completeness of this algorithm follows from the fact that
given a ground solution γ for a problem, we can extract from it a c-shortcut
(X , c̄), by grouping in X all variables assigned a constant by γ, and defining
vector c̄ as a vector of sets of constants assigned to variables by γ. This shortcut
must be complete (start subsumptions are satisfied by γ and they are satisfied by
constants mentioned in (X , c̄)). This shortcut must have a height which is equal
or smaller than the height of γ. Hence if Algorithm 2 is sound and complete,
the main algorithm will detect the existence of this shortcut and terminate with
success.



Algorithm 2 nextShortcuts(Γ,Sin, T )

Input: Γ a normalized unification problem, Sin a set of already computed c-shortcuts,
T a flat TBox

Output: Sout all c-shortcuts computed based on Sin in the input
1: Let Sout = {}.
2: for all (X , c̄) where X is a set of variables and c̄ an assignment of sets of constants

to variables in X do
3: γtemp ← {P 7→ C | P is assigned C in (X , c̄)}
4: if T |= γtemp(Γflat) then
5: for all f ∈ R do
6: X−f ← {P ∈ Var | C ∈ γtemp(P f )}
7: if X−f 6= ∅ then . check if a suitable shortcut is present in Sin

8: if there is no (Z, c̄) ∈ Sin labeled usable, such that X−f ⊆ Z and
f -output of (Z, c̄) is included in (X , c̄). then

9: fail for this choice of (X , c̄)
10: end if
11: end if
12: end for
13: if T |= γtemp(Γpure) and for every > v? X ∈ Γpure, γtemp(X) = > then
14: label (X , c̄) as usable
15: end if
16: Sout ← Sout ∪ {(X , c̄)}
17: end if
18: end for
19: return Sout

Somewhat technical proof of the correctness of Algorithm NextShortcuts 2
is included in the appendix. Our main result is stated in the following theorem.

Theorem 2. FL0-unification problem w.r.t. a flat TBox is ExpTime-complete

The argument for termination and complexity is based on the following ob-
servation. The number of all possible pairs (X , c̄) is exponential in the size of T
and Γ . Hence the for-loop starting in line 2 in Algorithm 2 is executed expo-
nentially many times and preforms polynomially many steps that take at most
exponential time each. Since there are at most exponentially many c-shortcuts,
the for-loop starting at line 3 may run only at most exponentially many times
until the sets of subsequent shortcuts are the same.

The algorithm presented above is sound and complete for unification in FL0

modulo a flat TBox. It is also sound and complete for unification in FL0 mod-
ulo the empty TBox. This is because the subsumption checks in Algorithm 1
and Algorithm 2 are done modulo a given TBox. If a TBox is empty, then the
subsumption checks will be just simpler.

In the case of the second algorithm, computing next shortcuts, the check is
applied in line 4 (T |= γtemp(Γflat)). We do this checks by applying substitution
to the subsumptions and checking if they are true modulo the TBox. This check is
polynomial, as shown in Section 2. The next check in line 13 (T |= γtemp(Γpure))



is done the same way. With the empty TBox, the checks are also polynomial of
course.

In the main algorithm, we check if any shortcut in the set of shortcuts is com-
plete (line 5). To do this, we apply the assignment of variables to the start sub-
sumptions and check if they are true modulo the TBox. The start subsumptions
can be satisfied only by constants, hence we need to check only the assignment
defined be a c-shortcut, disregarding bigger particles. Hence we do this check by
substituting variables given by the shortcut with constants and checking if the
start subsumptions are true modulo the TBox. If the TBox is empty, this check
is a bit simpler: we check inclusion, without computing the saturation of the left
hand sides of the subsumptions.

Of course, with the empty TBox, we could much simplify our procedures.
First the flattening of the unification problems may be more radical. Constants
can be treated independently from each other. Hence we could split subsumptions
further on, or delete the constants that are irrelevant for a unifier. Moreover the
notion of shortcuts may be simplified too, because now vectors of constants
may be required to contain only one constant. (Constants behave independently
from each other). Finally, usable shortcuts will be usable for particles with any
constant, hence we do not even need to mention a constant in their definition.
These ideas were used in our paper [6]. The number of such shortcuts is then
bounded by the number of all possible subsets of variables, hence it is at most
exponential. Thus we have the same complexity in this simpler case of unification
in FL0 with the empty TBox, as in the case of the unification in FL0 modulo
a flat TBox.

5 Conclusions

We have proved the FL0-unification problem modulo a flat TBox is solvable in
ExpTime. The algorithm shown in this paper is based on the notion of shortcuts,
i.e. substitutions which satisfy some part of the problem.

This method works for a flat TBox. It seems though that it can be applied
to other forms of TBoxes, provided that they satisfy some form of the property
expressed in Lemma 2. Can we define properties of a TBox which has a kind of
flat normal form, but is not completely flat, such that the same algorithm would
work for it too?

The result in this paper is of course a small step in the direction of hopefully
solving unification in FL0 modulo general TBox. Hence one would like to explore
how to extend the algorithm for less restricted TBoxes.

Another interesting line of research would also be to study matching in FL0

modulo flat TBoxes. In [3] matching between FL0 concepts w.r.t. a general
TBox, was shown to be ExpTime-complete, but in a restricted case it is of a
polynomial complexity. One can ask if this case applies for the flat TBoxes.
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A Proofs omitted in the paper

Lemma 1 (Lemma 1 in the paper). Let C,D be FL0 concepts and T a flat
FL0 TBox. Then C vT D if and only if D ⊆ C∗.

Proof. For the only if direction, let us assume that C vT D. Let C∗ be the
saturation of C. Then since C∗ ≡T C, C∗ vT D. If D 6⊆ C∗, then there is
a rewrite step C∗ vT D′ with D′ 6⊆ C∗. But this is impossible since C∗ is a
saturation.

For the if direction, just notice that if D ⊆ C∗, then by inclusion step,
C∗ vT D and since C ≡T C∗, we have C vT D.

Lemma 2 (Lemma 3 in the paper). Let Γ be a unification problem which
contains a goal subumption which is not flat. Let T be a flat FL0 TBox.

There is a right application of a rule from Figure 1, such that and Γ ′ a
unification problem obtained from Γ by this application satisfies the following
claim: γ is a ground solution of Γ w.r.t. T iff there is a substitution γ′ that is a
solution of Γ ′ w.r.t. T , where γ′ is an extension of γ to some new variables.

Proof. In the only if direction we assume that γ is a unifier before a flattening
step. We define extension of γ for some decomposition variables that are possibly
introduced in this step as follows:

γ′(Xr) := {P | ∀r.P ∈ γ(X)}.
This yields immediately that all increasing subsumptions created in the

course of flattening are satisfied by γ′. Also the applications of the decreasing
rule 1 are correct. (If γ′(X) vT ∀r.P , then γ′(Xr) vT P .)

We assume also that in the process of flattening (Figure 1) if case 3 is to be
applied, the set of constants AD guessed in 3(b) is as follows:

AD = {C | C is a constant of T or Γ and C ∈ γ(D)}.
Now we consider the flattening steps.

1. Let the flattening step be taken as defined in point 1 of Figure 1. Then
s = C1 u · · · u Cn v? D ∈ Γ , where D = ∀r.D′. The flattening step modifies
the subsumption in Γ to (C1)−r u · · · u (Cn)−r v? D′ in Γ ′.
We have to show that if γ unifies the first subsumption, γ′ unifies the second.
If γ unifies C1 u · · · u Cn v? ∀r.D′ it means that γ(∀r.D′) ⊆ γ(C1, . . . , Cn)∗.
This means that also γ′(D) ⊆ γ′((C1)−r, . . . , (Cn)−r)∗ and thus
(C1)−r u · · · u (Cn)−r v? D′ is unified by γ′.

2. Let the flattening step be taken as defined in point 2 of Figure 1.
Then s = C1 u · · · u Cn v? D ∈ Γ , where Ci = ∀r.C ′i and D is a constant.
Since γ unifies the subsumption, γ(D) = D ⊆ γ(C1, . . . , Cn)∗. By the prop-
erties of FL0 subsumption w.r.t. a flat TBox, we can remove γ(Ci) from
γ(C1, . . . , Cn)∗ and still D ⊆ γ({C1, . . . , Cn} \ {Ci})∗. Hence γ′ unifies the
same subsumption with Ci deleted.

3. Let the flattening step be taken as defined in point 3 of Figure 1.
Then C1 u · · · u Cn v? D ∈ Γ , where Ci = ∀r.C ′i and D is a variable.
We have to show that if γ unifies the subsumption w.r.t. T , then γ′ unifies
the subsumptions constructed according to the flattening procedure for this
case.



– For all particles of the form ∀r.P ∈ γ(D), we can see that s−r is satisfied
by γ′, because the substitution for Dr on the right side of sr is such that
γ′(Dr) = {P | ∀r.P ∈ γ(D)}.
If there is no particle of the form ∀r.P , for a particular role r, then sr is
satisfied, because then γ′(Dr) = >.

– For all the constants C ∈ γ(D), we have guessed C ∈ AD, and thus Since
C ∈ γ′(D), γ′ unifies D v? C and also Ccons

1 u · · · u Ccons
n v? C.

For the if direction, we trace the flattening step backwards. If γ′ is a solution
for Γ ′, then γ′ is also a unifier of Γ . We assume that all the increasing subsump-
tions are satisfied by γ′ and also the decreasing rule 1, read as implication is
true under γ′.

We look at what kind of flattening step was made.

1. In the first case we get sr from s according to the first point of Figure 1.
Since γ′ unifies sr and the increasing subsumptions are satisfied by γ′ then
γ′ unifies also s.

2. In the second case, we get scons from s, where scons differs from s only in this
that some non-flat particles are deleted from its left side. Since these particles
cannot play any role in the subsumption of a constant, they are redundant.
Hence if γ′ solves scons, it also solves s.

3. In the third case, we have a set of subsumptions that replaced s in Γ ′. The
subcases of this case illustrate how different particles in γ′(D) are solved. We
consider them separately.
– If a particle of the form ∀r.P is in γ′(D), then we know that P ∈ γ′(Dr)

and since γ′ solves s−r, then s is also solved by the same substitution if
D on the right side of s is replaced by ∀r.P .

– If a constant C of T ∪ Γ ′ is in γ′(D) (case (b)), γ′ satisfies D v? C and
Ccons

1 u · · · u Ccons
n v? C, then γ′ unifies also C1 u · · · u Cn v? C.

These are all possible particles in γ′(D), hence γ′ unifies s.

Now since all variables added in the flattening are not in the original goal
and γ′ is ground, we can restrict γ′ to γ which is equal to γ′ restricted to the goal
variables. Then γ = γ′|Var and γ is a unifier of the original unification problem
before flattening.

Theorem 1 (Theorem 1 in the paper). A unification problem Γ has a so-
lution modulo a flat TBox T iff there is a complete c-shortcut for Γ .

Proof. This theorem follows directly from the definition of c-shortcuts (Defini-
tion 1).

First only if direction. Let γ be a solution for Γ , then it satisfies the start
clauses. If there are some constants assigned by γ to variables, we can extract a
c-shortcut (Z, c̄) such that Z contains all variables such that γ assigns constants
to them and c̄ contains sets of constants assigned to these variables. γ satisfies
all subsumptions and the decreasing rule, hence this shortcut is complete as
required by the theorem.



If there are no constants assigned by γ to variables, this means that all start
clauses are ground. Hence they are satisfied by T . Then the c-shortcut we are
looking for is defined as (∅, ∅). Notice that the empty substitution8 satisfies all
flat and increasing subsumptions and also the decreasing rule. Hence the shortcut
(∅, ∅) is complete.

For the opposite direction, assume there is a c-shortcut satisfying the as-
sumptions in theorem. Obviously, this shortcut provides a substitution γ that
satisfies the conditions of Definition 1, hence Γ has a solution.

Theorem 2 (Theorem 2 in the paper). FL0-unification problem w.r.t. a
flat TBox is ExpTime-complete

Proof. Lemma 5, together with Lemmas 3 and 4 below show that the problem
is in ExpTime. Unification in FL0 with the empty TBox is already ExpTime-
hard. Hence FL0-unification modulo a flat TBox is ExpTime-complete.

Lemma 3 (Soundness of Alg. Main). If Algorithm 1 terminates with True,
then there is a solution γ for Γ modulo T .

Proof. The algorithm terminates with True only if there is a complete c-shortcut
in Si for i ≥ 0. The lemma follows by Theorem 1.

Lemma 4 (Completeness of Alg.Main). If there is a solution γ for Γ mod-
ulo T , then Algorithm 1 terminates with True.

Proof. Assume there is a solution γ of Γ modulo T . Then there is a c-shortcut de-
fined as follows: (X , c̄), where X = {P | [P 7→ C] ∈ γ} and c̄[i] = {C | Pi 7→ C ∈ γ}
for a Pi ∈ X .

(X , c̄) is a complete c-shortcut, because γ satisfies the start subsumptions in
Γ . By Lemma 7 (completeness of nextShortcuts), this shortcut will be com-
puted for some height n (equal or smaller than the height of γ). Algorithm Main
will detect that it is a complete shortcut in line 5. In order to detect this, it will
substitute the start subsumptions with the assignment defined by the shortcut
(X , c̄) and check if they are true modulo T . Hence the algorithm will return
True.

Lemma 5 (Termination of Alg. Main). Algorithm 1 terminates within time
exponential in the size of Γ and T .

Proof. Since there are at most exponentially many c-shortcuts (compare the
proof for Lemma 8), the for-loop starting at line 3 may run only at most ex-
ponentially many times until the sets of subsequent shortcuts provided are the
same. And each round of the loop terminates in time exponential (Lemma 8).
Hence in the worst case, the algorithm will return false after computing all pos-
sible c-shortcuts, therefore it will terminate in at most exponential time.

8 The substitution that assigns > to all variables.



Lemma 6 (Soundness of Alg. nextShortcuts). Let S be in Sout output by
Algorithm 2. Then there is a substitution γ that satisfies conditions of Defini-
tion 1, and thus S is a c-shortcut.

Proof. The proof is by induction of the height of the shortcuts in the input Sin

given to the algorithm.

1. The base case is when Sin is empty. If S = (∅, ∅), we know that it corre-
sponds to the substitution assigning > for all variables, which satisfies the
condition of Definition 1.
Let then S = (X , c̄). The algorithm defines γtemp in line 3. We show that
satisfies all conditions of Definition 1.
Since Algorithm did not fail for S, S1 of is satisfied by this definition of γ.
S2 also is satisfied, because γ satisfies all flat subsumptions, and the decompo-
sition variables are not assigned any constants, hence increasing subsumptions
are voidly satisfied. The decreasing rule 1 is also voidly satisfied. Some start
subsumptions may not be satisfied.
The height of γ is 0, hence the height of such c-shortcut is also 0.

2. Induction step. Let the heights of c-shortcuts in the input Sin be maximally
n. We assume for the induction argument that all of them are real c-shortcuts,
hence for each of them there is a substitution that satisfies the conditions of
Definition 1.
Now we justify that S = (X , c̄) is also a c-shortcut. If S is already in the
input Sin, then this is true by induction. Hence we can assume that S 6∈ Sin,
but it is in the output.
We show how to construct a substitution γ for S, which satisfies the conditions
of Definition 1.
We start with γtemp defined in the algorithm and consider the unsatisfied
increasing subsumptions.
These subsumptions are not satisfied only because P f ∈ X are assigned some
constants. For such f , X−f 6= ∅. Hence the algorithm has to check if an
appropriate c-shortcut is present in Sin.
Since the algorithm did not fail for this S, we know that there was a c-
shortcut (Z, c̄) labeled usable in the input Sin, such that the f -ouput of
(Z, c̄) is included in S, satisfying the conditions in line 8.
Let γf be a substitution provided by (Z, c̄) (the existence of which we can
assume by induction assumption).
Now we use γf to account for bigger particles created in the variables in X−f .
We construct a substitution γf = {[X 7→ ∀vf.c] | [X 7→ ∀v.c] ∈ γf}.
Finally we define γ := γtemp ∪

⋃
f∈R γ

f

We observe here that γ satisfies all the conditions of Definition 1.
– Condition S1 is satisfied because constants are only assigned by γtemp.
– Condition S2 is satisfied as follows. For the constants:
• all flat subsumptions are satisfied by γtemp (which was checked by

algorithm),
• increasing subsumptions are satisfied by adding the assignments in
γf , for each f , as needed,



• decreasing rule is satisfied because the f -output for a used shortcut
is in (X , c̄),

For the higher particles of the form ∀vf.c, all flat subsumptions are satis-
fied by γf for every f , because γf satisfies all the flat subsumptions, and
then by Lemma 2, γf satisfies them too. The increasing subsumptions
and the decreasing rule are also satisfied by γf , because the adding of
a function symbol in the increasing subsumptions or deleting one in the
decomposition variables are always done at the top of a particle involved.

Hence all subsumptions in Γ are satisfied by γ except possibly some start
subsumptions.

Lemma 7 (Completeness of Alg. nextShortcuts 2). Let γ be a substitution
that satisfies the conditions of Definition 1. Then there is a c-shortcut S of some
height n that is returned by Algorithm 2, when t Sin contains all the c-shortcuts
of heights smaller than n.

Proof. The proof is by induction on the height n of γ in the lemma.

1. The base case is when n = 0. Hence γ assigns only constants. We define
(X , c̄), the c-shortcut as: X = {P | [P 7→ C] ∈ γ} and the vector c̄ is defined
as an array of sets of constants: c̄[i] = {C | [Pi 7→ C] ∈ γ} for Pi ∈ X .

It is obvious that Algorithm 2 will not fail on (X , c̄), because flat subsumptions
are satisfied and the decomposition variables are not in X . Hence it will return
the pair in the set of computed shortcuts.

2. Now we assume that for each substitution satisfying conditions in Definition 1,
with the height smaller than n, where n ≥ 0, there is a corresponding shortcut
in the input Sin. Let γ be such a substitution of height n + 1 that satisfies
the conditions of Definition 1.

We define X = {P | [P 7→ C] ∈ γ, and C is a constant }. And the vector c̄ is
defined as an array, assuming an order on variables: c̄[i] = {C | Pi 7→ C ∈ γ},
where Pi ∈ X .

Note that if X = ∅, the c-shortcut has the form (∅, ∅). This c-shortcut is of
height 0 and it is returned by the algorithm, as required. Hence let us assume
that X 6= ∅.
We have to show that (X , c̄) is computed in the set Sout output by Algo-
rithm 2. By the properties of the FL0 flat TBox, we know that γtemp defined
by the algorithm satisfies all flat subsumptions in Γ .

Now for each f ∈ R we define X−f as:
X−f = {P ∈ Var | P f ∈ X}.
We would like to show that (X−f , c̄) is a shortcut in S, but actually X−f
maybe a subset of a shortcut that we need here, because some flat subsump-
tions need more particles to be present in the substitution provided by the
shortcut to satisfy them. These additional particles are of the form ∀f.C and



they are assigned to variables Q, for which Qf is not defined, hence even if
Q 7→ ∀f.C is in γ, there is no decomposition variable Qf .9

Hence we look for a usable c-shortcut (Z, c̄), such that X−f ⊆ Z and the
f -output of (Z, c̄) is in (X , c̄). If f -output is as required, the decreasing rule
will be satisfied.
Since γ is a model for all subsumptions in Γ , by Lemma 2, we know that such
(Z, c̄) exists.
We can extract from γ the substitution γf = {[X 7→ ∀vf.C] ∈ γ} that
corresponds to such a shortcut. The particles of minimal height in γf are of
the form ∀f.C, where S is a constant. Hence this substitution satisfies pure
subsumptions in Γ . Thus the shortcut is usable.
It has smaller height than n+1, hence by induction it is provided in the input
Sin.
This is true for each function symbol f ∈ R, hence the algorithm will not fail
for (X , c̄) and it will be included in the output Sout.

Lemma 8 (Termination of Alg. nextShortcuts). Algorithm 2 terminates
in time at most exponential in the size of Γ and T .

Proof. The number of all possible pairs (X , c̄) is exponential in the size of T and
Γ .

There are polynomially many variables in Var and there are polynomially
many constants in Γ and T . Hence we have exponentially many choices for each
variable. Hence there are exponentially many such assignments.

Hence the output Sout cannot contain more than exponentially many short-
cuts. Hence the for-loop starting in line 2 is executed exponentially many times
and preforms polynomially many steps that take at most exponential time each.

9 Looking at Example 4, we can notice that S2 needs a shortcut to account for the
decomposition variable Y f , but there is not shortcut with {Y } alone as a variable
component, rather {Y } is a subset of variables in shortcut S1.
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