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Abstract
BACKGROUND: Some studies showed filtering out old completed projects with a window was effective for preparing a train-
ing dataset of an effort estimation model. Other studies showed selecting completed projects similar to a target project was
also effective. The application of the similarity-based selection after the windowing approach was failed to synthesize their
effects. The shortage of similar projects in the windowed pool was a potential cause of the failure. AIMS: To examine whether
augmenting the window pool is effective to improve the estimation accuracy. METHOD: The moving windows approach was
used for preparing a window pool. The similarity-based selection was applied to augment the pool. The selection assumes
that projects in the pool form a set of virtual target projects. Old projects outside the pool were assumed to form a set of
cross-company projects to be selected. The empirical study with a single-company ISBSG data was conducted to evaluate
the effect. RESULTS: A positive synergistic effect was observed. The augmented window could synthesize the windowing
approach and the similarity-based selection. It could also be combined with the similarity-based selection without perfor-
mance degradation. CONCLUSIONS: Practitioners should consider adding projects similar to recently completed projects
when effort estimation is based on historical data.
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1. Introduction
The success of software projects relies on many fac-
tors. The accuracy of software effort estimation is an
serious influential factor at early project phase. Over-
estimation and underestimation have caused serious
consequences for decades. Researchers have studied
data-driven software effort estimation models while
experts’ judgment is still a primary choice in actual.
The accuracy of the software effort estimation models
is considered insufficient among not a few managers.

Software effort estimation models are affected by
the adequacy of historical data from past projects. For
instance, an organization’s productivity is not station-
ary nor monotonic due to changes in the environment
and the organization itself. Inaccurate effort estima-
tion models would be obtained with the historical data
that might not reflect the present productivity. A key
to accurate software effort estimation is to prepare his-
torical data that reflect the characteristics of a target
project to be estimated.

A past study [1] examined two filtering techniques,
namely, chronological filtering and relevancy filtering.
The chronological filtering [2] removes too old project
data. The relevancy filtering [3] removes dissimilar
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project data regarding metrics used for estimation. The
study found that the combination of those techniques
might be worse than the independent application.

The negative synergistic effect can be reasoned, at
least, in two aspects. First, the relevancy filtering was
applied after applying the chronological filtering. The
chronological filtering does not care about feature vari-
ables and may select a subset that does not hold enough
projects similar to a target project. It would be better
to augment the subset with old but resemble projects
using the relevancy filtering. Second, the simple aver-
age and median were used as effort estimation models
as discussed in [1]. The simple models only used the
effort variable for estimation and were insensitive to
the change in the distribution of feature variables af-
ter the relevancy filtering.

This paper proposed an augmented chronological
filtering based on the chronological filtering and the
relevancy filtering. Its effects were investigated with
a software effort estimation model using feature vari-
ables, in addition to the simple average and median
models. The augmented filtering was also evaluated
as alternative chronological filtering in the past com-
bination method. The following questions were asked:

RQ1: Does augmenting moving windows with a rele-
vancy filtering affects the estimation accuracy?

RQ2: Does using the augmentation as a chronologi-
cal filtering affect the estimation accuracy of the
past combination method?
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2. Related Work

2.1. Chronological Filtering
Although research in software effort estimation mod-
els has a long history, relatively few studies have taken
into consideration the chronological order of projects.
Therefore, chronological filtering has not been studied
well compared with other topics in effort estimation.

To our knowledge, Kitchenham et al. [4] were first
to suggest the use of chronological filtering. They built
four linear regression models with four subsets, each
of which comprised projects from different ranges of
time duration. As the coefficients of the models were
different from each other, they allowed to drop out
older project data. Lokan and Mendes [2] were the first
to study the effect of using moving windows in detail.
They used linear regression (LR) models and a single-
company dataset from the ISBSG repository. Training
sets were defined to be the 𝑁 most recently completed
projects. They found that the use of a window could
affect accuracy significantly; predictive accuracy was
better with larger windows; some window sizes were
particularly effective. Amasaki and Lokan also inves-
tigated the effect of using moving windows with Esti-
mation by Analogy [5] and CART [6]. They found that
moving windows could improve the estimation accu-
racy, but the effect was different than with LR.

Recent studies showed the effect and its extent could
be affected by windowing policies [7] and software or-
ganizations [8]. Lokan and Mendes [7] investigated
the effect on accuracy when using moving windows of
various ranges of time duration to form training sets
on which to base effort estimates. They also showed
that the use of windows based on duration could affect
the accuracy of estimates, but to a lesser extent than
windows based on a fixed number of projects [8].

2.2. Relevancy Filtering
Relevancy filtering is a type of transfer learning ap-
proach. While many filtering approaches have been
proposed for cross-project defect prediction (e.g., [9]),
a few studies on cross-company effort estimation have
evaluated the effects of relevancy filtering approaches.

Turhan and Mendes [3] applied brings a so-called
NN-filter [10] to cross-company effort estimation of
web projects. They showed that an estimation model
based on raw cross-company data was worse than that
based on within-company data but was improved as
comparable one by using the NN-filter. Kocaguneli et
al. [11, 12, 13] also introduced a transfer learning ap-
proach called TEAK for improving cross-company ef-

fort estimation. They applied it to transfer old project
to a new project and found that TEAK was effective
not only for cross-company effort estimation but also
for cross-time effort estimation [14].

NN-filter is based on a nearest neighbor algorithm.
In that sense, a study by Amasaki and Lokan [5] can
be considered an evaluation study of the combination
of the relevancy filtering and the chronological filter-
ing. In that study, the combination worked well to im-
prove estimation accuracy for a narrow range of win-
dow sizes. While that study used a wrapper approach
for feature selection and logarithmic transformation in
addition to the nearest neighbor algorithm, our study
aims to explore the effects of the combination with-
out such complicated factors. For that purpose, we
adopted two simple estimation techniques that were
not adopted in [5], described in the next section.

3. Methodology

3.1. Effort Estimation Techniques
In [1], average and median were used as software ef-
fort estimation models. The average was adopted be-
cause it uses the whole training set and is sensitive to
the distribution of effort values in the training set. The
median was adopted because it is robust to the distri-
bution and contrasts with the average. These models
estimate efforts without adjustments based on feature
variables of projects.

To examine the difference in the use of feature vari-
ables in software effort estimation, we also adopted
Lasso [15] for our experiment. Lasso is a kind of pe-
nalized linear regression models. Past studies on the
chronological filtering used Lasso and showed that the
chronological filtering was effective with it. Our ex-
periment used LassoLarsIC of scikit-learn library.

3.2. Chronological Filtering
This study adopted fixed-size moving windows [2] and
fixed-duration moving windows [8]. The latest 𝑁 fin-
ished projects were selected as a training set by the
fixed-size moving windows. The fixed-duration mov-
ing windows selected the latest projects finished within
𝑁 months. As 𝑁 influences on the effectiveness of
moving windows, we explored various values as well
as past studies.

3.3. Relevancy Filtering
This study used a nearest neighbor algorithm as a rele-
vancy filtering approach. It is also called NN-filter [10].
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The procedure of NN-filter is as follows:

1. Select 𝑘 closest instances of history data to each
instance of target project data in terms of un-
weighted Euclidean distance.

2. Combine the selected instances without dupli-
cation.

Note that each feature of project data was normalized
with min-max normalization before the distance cal-
culation.

As the synergistic effect could be observed with ef-
fective filtering, the relevancy filtering had to be con-
figured as effective. For average and mean effort esti-
mation models, we roughly fixed 𝑘 = 3, which is the
smallest number which can make average and median
estimations give distinct efforts. For lasso, we roughly
fixed 𝑘 = 10, half of the minimum of the window sizes
we explored. In general, increasing 𝑘 would lead to
worse estimation if NN-filter works well. Hence, these
values could not be the best but were expected more
reasonable than larger 𝑘s.

3.4. Augmentation
The augmentation adds old projects selected by the
relevancy filtering into a subset obtained by the chrono-
logical filtering as follows:

1. Recently completed projects are selected with
the moving windows approach.

2. NN-filter is applied to select projects from the
remained old projects. The most similar project
to each project of the recently completed projects
is selected. The set of selected projects has no
duplicate.

3. The selected projects and the recently completed
projects are combined.

4. The combined projects are used to train a soft-
ware effort estimation model.

Note that NN-filter uses the effort variable in addition
to feature variables. As efforts of the past projects are
known, it is possible to use the effort variable in the
augmentation process.

The augmentation shares the same assumption as
the chronological filtering that the recently completed
projects resemble a target project to be estimated. Re-
sults of NN-filter are also expected to pretend to be as
fresh as the recently completed projects. Therefore,
the selected projects are considered to keep the simi-
larity to the target project.

3.5. Combination
The combination of the chronological filtering and the
relevancy filtering was investigated in [1]. The chrono-
logical filtering and the relevancy filtering were com-
bined as follows:

1. Recently completed projects are selected with
the moving windows approach. The remained
old projects are discarded.

2. NN-filter is applied to select projects from the
recently completed projects. The selected projects
resemble a target project to be estimated.

3. The selected projects are used to train a software
effort estimation model.

The combination method was found less effective than
each of the filtering methods in [1] with mean and me-
dian models.

The augmentation can be considered a variation of
moving windows approach while it is a way to com-
bine moving windows and NN-filter. In this paper,
this combination was also examined using a subset ob-
tained by the augmentation. As the augmentation has
more projects, NN-filter might bring better neighbors
from an augmented subset.

3.6. Experiment procedure
As the chronological filtering relies on the time prox-
imity, our experiment needs to assume a situation that
a development organization needs to respond to con-
tinuously coming new projects. The size of windows
influences on where our experiment starts. As same as
the past studies, our experiment with a specific win-
dow size was conducted as follows:

1. Sort all projects by starting date.
2. For a given window size𝑁 , find the earliest project

𝑝0 for which at least 𝑁 + 1 projects were com-
pleted prior to the start of 𝑝0 (projects from 𝑝0
onwards are the ones whose training set is af-
fected by using a window, so they form the set
of evaluation projects for this window size. For
example, with a window of 20 projects, at least
21 projects must have finished for the window
to differ from the growing portfolio.)

3. For every project 𝑝𝑖 in chronological sequence,
starting from 𝑝0, form a training set using mov-
ing windows and the growing portfolio (all com-
pleted projects).

• For no filtering, the training set is all projects
that finished before 𝑝𝑖 started.
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Table 1
Summary statistics for ratio-scaled variables in data from
single ISBSG organization

Variable Min Mean Median Max StDev

Size 10 496 266 6294 699
Effort 62 4553 2408 57749 6212
PDR 0.53 16.47 8.75 387.10 31.42

• For fixed-size moving windows, the train-
ing set is the 𝑁 most recent projects that
finished before 𝑝𝑖 started. If multiple projects
finished on the same date, all of them are
included.

• For fixed-duration, the training set is the
most recent projects whose whole life cy-
cle had fallen within a window of𝐷 months
prior to the start of 𝑝𝑖 .

4. Estimate an effort of a target project based on
past project data.

• For no filtering, the training set from the
previous step is used.

• For relevancy filtering, a subset selected by
a nearest neighbor from the training set is
used.

• For the augment method, an augmented set
of the training set with the projects not se-
lected in the previous step is used.

5. Evaluate the estimation results.

This study used the single-company subset of the
ISBSG dataset that was analyzed in [2, 7, 8, 5, 6, 16]. Ta-
ble 1 shows summary statistics. We explored window
sizes from 20 to 120 projects for the size-based moving
windows and from 12 to 84 months for the duration-
based moving windows as well as the past study [17].
No filtering, called the growing portfolio in past stud-
ies, was used as a baseline for comparing the filtering
methods.

3.7. Performance Measures
The accuracy statistics that we used to evaluate the
effort estimation models are based on the difference
between estimated effort and actual effort. We used
Mean Absolute Error (MAE), which is widely used to
evaluate the accuracy of effort estimation models, as
it is an unbiased measure that favours neither under-
nor over-estimates.

We concentrate first on the statistical significance of
differences in accuracy that arise from using the filter-
ing approaches. To test for statistically significant dif-
ferences between accuracy measures, we use the two-
sided Wilcoxon signed-rank test (wilcoxon function
of the scipy package for Python) and set the statisti-
cal significance level at 𝛼 = 0.05. The setting of this
study is a typical multiple testing, and the p-values of
the tests must be controlled. Bonferroni correction is a
popular method for this purpose. However, the adop-
tion of this simple correction results in the lack of sta-
tistical power, especially for not large effects. We thus
controlled the false discovery rate (FDR) of multiple
testing [18] with the “multipletests” function of
the statsmodels package in Python. FDR is a ratio
of the number of falsely rejected null hypotheses to
the number of rejected null hypotheses.

4. Results and Discussion

4.1. Comparisons between Moving
Windows and Augmentation

Figure 1 has 6 plots showing the difference in mean
absolute error against window sizes using the fixed-
size moving windows (baseline) and the augmentation
with it. The x-axis of each figure is the size of the
window, and the y-axis is the subtraction of the accu-
racy measure value with the growing approach from
that with the moving windows at the given x-value.
The moving windows and the augmentation with it
were advantageous where the line is below 0. Circle
points mean a statistically significant difference, with
the moving windows or the augmentation with it, be-
ing better than the growing portfolio. At these points,
the corresponding FDR-controlled p-value was below
𝛼 = 0.05.

Figure. 1 revealed the effect of using the fixed-size
moving windows and the augmentation, compared to
always using the growing portfolio as follows:

• With average effort estimation, statistically sig-
nificant differences were found for almost all win-
dow sizes. The augmentation did not bring clear
changes except for small window sizes, where
additional statistically significant differences were
found.

• With median effort estimation, no statistically
significant difference was found for all window
sizes. The augmentation improved the perfor-
mance a bit for smaller window sizes but wors-
ened it a bit for larger window sizes. The ef-
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(a) MW (average)
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(b) MW (median)
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(c) MW (lasso)
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(d) Augmentation(average)
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(e) Augmentation (median)
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(f) Augmentation (lasso)

Figure 1: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-size MW and Aug-
mentation)

fects never caused a statistically significant dif-
ference.

• With lasso, statistically significant differences were
found when window size is between 85 and 95
or is more than 110. The augmentation made
the advantages in other window sizes statisti-
cally significant. The significant differences in
larger window sizes disappeared instead. Note
that lasso was more accurate than the others even
when used with the growing portfolio.

These observations suggested that the augmentation
could bring a positive synergistic effect on the estima-
tion accuracy when the augmentation was applied to
fixed-size windows with average or lasso.

Figure 2 plotted the same comparisons but using the
fixed-duration moving windows. In the figure, square
points mean a statistically significant difference, with
the fixed-duration moving windows being worse than
the growing portfolio. These figures revealed the ef-
fects of the fixed-duration moving windows and the
augmentation with it, compared to always using the
growing portfolio as follows:

• With average effort estimation, the effective win-
dow range was between 20 months and less than
30 months. The growing portfolio got advanta-
geous for more than 53 months. The augmenta-
tion extended the advantageous range to more

than 40 months. The growing portfolio was no
longer advantageous for larger window sizes.

• With median effort estimation, the effective win-
dow range was more than 60 months. Disadvan-
tageous window sizes are between 55 months
and 60 months. The augmentation made the sta-
tistically significant differences disappeared.

• With lasso, there was no significant difference.
There was no clear advantage nor disadvantage.
The augmentation made no statistically signifi-
cant difference while the difference got closer a
bit.

These observations suggested that the augmentation
could improve the estimation accuracy when the aug-
mentation was applied to fixed-duration windows with
average effort estimation.

The answer to RQ1 is yes: Augmenting moving win-
dows with a relevancy filtering was useful. It did not
cause an apparent negative synergistic effect, at least.
It sometimes made positive synergistic effects.

4.2. Evaluation of Combination of
Augmented MW and NN-filter

The combination of the augmented moving windows
and the NN-filter was evaluated under the same situ-
ations. The number of neighbors was set to 3 for av-
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(b) MW (median)
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(c) MW (lasso)
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(d) Augmentation(average)
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(e) Augmentation (median)
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(f) Augmentation (lasso)

Figure 2: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-duration MW and
Augmentation)
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(a) NN (average)
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(b) NN (median)
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(c) NN (lasso)
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(d) AG + NN (average)
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(e) AG + NN (median)
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(f) AG + NN (lasso)

Figure 3: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-size MW + Augmen-
tation + NN-filter)

erage and median effort estimation models and 10 for
lasso because lasso models, as described in Section 3.3.

Figure 3 has 6 plots showing the difference in mean
absolute error against fixed-size window sizes using
the NN-filter and using the combination of the aug-
mented windows and the NN-filter. These figures re-
vealed the effects of using the NN-filter and the aug-

mented moving windows with it, compared to always
using the growing portfolio as follows:

• With average effort estimation, the NN-filter made
statistically significant differences for almost all
window sizes. Combining the augmented mov-
ing windows with the NN-filter made no clear
change except for small window sizes, where the
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(b) NN (median)
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(c) NN (lasso)
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(d) AG + NN (average)
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(e) AG + NN (median)
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(f) AG + NN (lasso)

Figure 4: The difference in mean absolute error against moving windows (growing portfolio vs. fixed-duration MW +
Augmentation + NN-filter)

differences got smaller from about -30% to -20%.
The significance of the differences was retained,
though.

• With median effort estimation, the NN-filter made
no clear change while it caused positive effects
as depicted by the line running below the zero
line for a wide window range. Combining the
augmented moving windows with the NN-filter
made no clear change except for small window
sizes. No statistically significant difference ap-
peared.

• With lasso, the NN-filter made no statistically
significant change though it worsened the per-
formance. Combining the augmented moving
windows with the NN-filter mitigated the degra-
dation. Note that the augmentation made the
significant improvement as shown in Fig. 1(f).
The NN-filter canceled the improvement.

In [1], the combination of the moving windows and
NN-filter caused a negative synergistic effect. For ex-
ample, less than half of the window sizes could achieve
the improvement of -30% or more where mean effort
estimation was applied. The augmentation made the
performance improvement of -30% or more for more
than a half of the range as shown in Fig. 3(d). There-
fore, these observations suggested that the augmented
moving windows did not result in a negative synergis-

tic effect caused by the combination of fixed-size mov-
ing windows and NN-filter.

Figure 4 plotted the same comparison but using the
fixed-duration moving windows. These figures revealed
the effects of using the NN-filter and the augmented
moving windows with it, compared to always using
the growing portfolio as follows:

• With average effort estimation, NN-filter made
statistically significant differences for almost all
window sizes. Combining the augmented mov-
ing windows with the NN-filter made no clear
change.

• With median effort estimation, NN-filter made
no clear change while it caused positive effects
as depicted by the line running below the zero
line for a wide window range. Combining the
augmented moving windows with the NN-filter
made no clear change.

• With lasso, NN-filter made no statistically sig-
nificant change though it worsened the perfor-
mance. Combining the augmented moving win-
dows with the NN-filter mitigated the degrada-
tion by NN-filter.

Therefore, these observations suggested that the aug-
mentation did not result in a negative synergistic effect
caused by the combination of fixed-size moving win-
dows and NN-filter. Rather the degradation by NN-
filter could be mitigated.
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The answer to RQ2 is as follows: The combination
of the augmented chronological filtering and the rele-
vancy filter did not bring a negative synergistic effect
except for small window sizes. Rather, the negative ef-
fect caused by the relevancy filtering was mitigated by
the augmentation.

5. Conclusion
We explored the effects of the augmentation and its
combination with a relevancy filtering for effort esti-
mation. We confirmed the augmentation was a useful
way to bring a positive synergistic effect of the chrono-
logical filtering and the relevancy filtering. Combining
the augmented windows with the relevancy filtering,
as well as in [1] also diminished the negative syner-
gistic effect caused by the combination of the moving
windows and NN-filter found in a past study. We thus
concluded that the augmentation can be a good way to
combine the two filtering approaches and also a good
extension of the moving windows, which can be safely
combined with the relevancy filtering.

Further investigation considering other transfer learn-
ing approaches is in future work. The NN-filter used
for augmentation is a type of transfer learning, it is
interesting to examine the effects of other approaches
such as [14] for augmentation. Some transfer learning
approaches for cross-project defect prediction [19] can
also be applied. The threat to external validity can be
mitigated with additional project data.
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