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Abstract

Populations around the world are rapidly ageing, and the need to ensure healthy aging is one of the main
priorities of modern society. Living and moving in environments that support and maintain intrinsic
capacity and functional ability are important aspects related to healthy ageing. Most of the daily life
actions of active elderly are related to walking activities, thus guaranteeing walking environments that
are elderly-friendly are nowadays a priority. This work proposes to assess walkability, evaluating the
safety perception of different walking conditions, relying on physiological responses. To this end a
proper experiment has been designed in a controlled environment, considering both young adults and
elderly, and adopting wearable devices. In this paper the analysis of the muscles activity acquired with
Electromyography is presented as a preliminary study.
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1. Introduction

In recent years, an increase of longevity in developed countries has been observed [1][2][3].
Growth of social welfare, education, medical care are only few of the possible reasons for this
increase[4]. In a world where the number of elderly people is expected to growth even more, the
creation of an environment suitable for active aging people is becoming a first priority problem.
In this situation, particular attention should be paid to walking activity. In fact most of the
daily life activities of the elderly, such as sports, consumer life, and social interactions, take
place in the neighborhood, and are mainly realized through walking activities [3]. Furthermore,
some studies underline that physical activity plays an important role in aging people’s health
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as its practice allows to avoid physical or mental illnesses[5]. A walking environment that
is elderly-friendly is thus a priority while planning the design of the cities of the future as
well as to improve the existing ones. Measuring if and to which extent an environment is
comfortable and walkable for ageing people is the first step towards this direction. One way
to obtain quantitative measures of walkability is to assess safety perception while moving
within an urban environment, in particular while walking, crossing and in general trying to
avoid collisions. The assessment of safety perception can be performed with experiments and
observations both through the design of the experimental setting in a protected space (in-vitro
experiments) and/or with data collections in the real world setups (in-vivo experiments), relying
on physiological responses, through the introduction of what can be defined affective walkability
[6].

Physiological responses, which are uncontrolled and autonomous reactions of our nervous
system, can be considered honest indicators of our emotions and mood, and are nowadays
widely adopted to recognize affective states [7]. Thanks to the development of the technology,
several sensors can be easily integrated into smartphones or wearable devices [8], making them
more comfortable and usable even in case of elderly people. So these signals could be valid
indicators to assess quantitatively the safety perception of the elderly while interacting with
the surrounding environment. To this end, an experiment has been carried out in an indoor
and controlled environment. Two different populations have been involved in the experiment:
young adults and elderly people, in order to compare different perception of safe walk, varying
the age. Different walking conditions have been also investigated, including dynamic collision
avoidance. Physiological signals such as Plethysmogram (PPG) and Galvanic Skin Response
(GSR) have been acquired using a wearable device. PPG and GSR are well indicated to detect
emotional arousal, related to sensory alertness, mobility, and readiness to respond, activated in
the interaction between subjects and the environment as a defensive reaction to preserve safety.
Moreover as we are dealing with a dynamic interaction we add motion data both physiological,
measuring the muscle activity with Electromyogram (EMG), and inertial (accelerometer and
gyroscope data).

The study presented in this paper focuses only on the analysis of the EMG physiological
signals in order to reveal differences in pace and leg movements between young adults and
elderly, trying to detect patterns that characterize their walking attitude in different walking
environments.

In Section 2, the in-vitro experiment performed to assess walkability is introduced. EMG signal
processing is described in Section 3, while the results of the analysis of different walking
conditions and the comparison of the behaviour of the two populations are detailed in Section
4. Finally conclusions and future works are reported.

2. Affective walkability assessment

The affective walkability assessment has been performed with a controlled laboratory ex-
periment at the University of Tokyo, composed of three within subject conditions (collision



Figure 1: Wearable devices adopted.

avoidance, forced speed walk and free walk) administered in one experimental session, per-
formed by two experimental groups: a population of young adults, composed of 14 Japanese
master and PhD students, with an average age of 24.7 years (22 - 34 years old, standard deviation
= 3.3, 4 women), and Japanese elderly people (retired), 20 subjects, with an average age of 65.15
years (60-70 years old, standard deviation = 2.7, 10 women). During the whole experiment,
physiological signals have been collected using wearable sensors produced by Shimmer1. Five
main signals have been acquired:

• Galvanic Skin Response (GSR): also known as Skin Conductance (SC), which is con-
nected to sweating and perspiration on the skin

• Photoplethysmography (PPG): that measures the blood volume registered just under
the skin, which can be used to obtain the heart rate of the subject

• Electromyography (EMG): which measures the muscle activity of the person by surface
sensors. In particular, activities related to the medial gastrocnemius muscle and to the
anterior tibial muscle have been acquired using the same device.

• Accelerometer and Gyroscope data

The adopted sensors are shown in Figure 1.

The experiment lasted about 30 minutes and it was set up to acquire data from the subjects in
different walking environments. The protocol of the experiment included three tasks:

• Collision avoidance. In the first task, two subjects at the same time walk with their
own pace along the path depicted in Figure 2, top left, clockwise and counterclockwise
respectively. At about half of the path, they reach the collision avoidance zone where

1https://www.shimmersensing.com/



Figure 2: Setting of the in-vitro experiment. Top left: the plant of the indoor controlled environment,
where a U path has been defined. The collision avoidance zone is identified by a red rectangle and
depicted also in the image at the top right. The two obstacles are controlled by one of the experimenter
and the two subjects have to avoid the collision (figure bottom right). During the rest of the U path,
subjects walk with their own natural pace.

they have to avoid the collisions with both the obstacles (swinging pendulum) and the
other subject. Then they complete the U path, with their natural pace and go back in the
opposite direction repeating the same actions.

• Forced speed walk. The second task is about stressful walking. In this part of the
experiment participants have to walk to a forced speed based on the metronome ticking,
along the same U path. Three speeds are considered: 70 bpm (F1), 85 bpm (F2) and 100
bpm F3). This task last about 2 minutes. At the end, a questionnaire is provided to the
participants to obtained information about the preferred walking frequency among those
constrained by the metronome.

• Free walk. A normal walking phase is performed along the U path, back and forth, for
about 40 seconds. In this task participants can walk freely without obstacles or speed
constraints.

The tasks are separated by a period of resting time (Baseline acquisition) of about 1 minute.
The whole procedure is repeated three times. GSR and PPG signals of all the subjects were
collected, EMG signals were acquired only on a subset of participants. In particular, in the first
experimental group EMG data were collected from 8 male subjects, while in the second group
from 10 subjects including 3 females and 7 males.



Figure 3: Example of the applied preprocessing procedure on the EMG signal of a subject. Top image:
the raw signal. Middle image: the results of the denoising procedure on the signal. Last image: Result
of the normalization.

3. EMG data analysis

This work focuses only on the analysis of the EMG signals. The two channel EMG signals have
been acquired with a sampling frequency of 512 Hz.

3.1. Subject based preprocessing

For each subject, the entire EMG raw signal for each channel have been preprocessed by applying
a denoising strategy based on the wavelet multi-resolution analysis described in [9]. After that,
to compare signals of different individuals, permitting both inter and intra subjects analysis, the
signals were normalized. Several different normalization strategies are reported in the literature,
[10]. In this study each channel of the denoised EMG signals have been normalized dividing by
the maximum peak activation level obtained from the signal under investigation. This value
has been selected after an empirical study, because it has been observed to be able to decrease
the variability between subjects. The normalization, as well as the denoising operation, have
been applied to the whole signal of each subject, before segmenting the data into single tasks.
An example of the preprocessing procedure on a subject’s signal is showed in figure 3.



Figure 4: Procedure applied to extract the stride frequency feature

3.2. EMG features extraction

To compare different walking conditions and different behaviours in the two considered po-
pulations, two features have been extracted from the denoised and normalized EMG signals
described in Section 3.1: walking frequency (known as Stride Frequency) and mean power of
the signal. The first feature describes the number of steps performed by a subject per second. It
was extracted from the EMG signal using a novel procedure described in this paper:

• Task based preprocessing. To further remove artifacts and noise, a task based denoising
has been performed. Once again it has been used a multi-resolution wavelet denoising
approach.

• Envelope calculation. To preserve only the main structure of the signal, root-mean-
square upper envelope has been calculated. For that purpose windows of 200 samples
have been used.

• Mean value removal. The signal modified so far had only positive values. In order to
make its mean equal to zero, a mean value removal has been applied.

• Extract frequency sub-band. Based on a priori knowledge [11], [12], only envelope
signal frequencies in the band [0.2, 1.4] Hz have been considered. It was observed, in fact,
that this range is the feasible interval for all possible stride frequencies while walking.
To evaluate the envelope frequencies a filter bank analysis using symlet wavelet with 13
levels of decomposition has been applied.

• Periodogram computation andmax peak evaluation. At the end the Periodogram of
the envelope so filtered has been calculated and the three max peaks have been extracted.

The entire procedure is depicted in figure 4.



The second feature has been used to identify when subject slows down or stops. During
these events, in fact, signal decreases its power that becomes near to zero when subject stops
walking. For this reason it has been decided to use the Root Mean Square of the signal as signal
power representative feature [13]. It has been calculated using the formula:
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4. Analysis of the results

In this section the three different tasks of the experiment are analyzed using the EMG features
described and a comparison between young and elderly people behavior is also performed. The
three tasks are listed below for the sake of clarity, recalling that each of them were repeated
three times:

1. Forced speed walk;
2. Free walk;
3. Collision Avoidance.

4.1. Forced speed walk

The novel feature here proposed to estimate the walking frequency has been initially validated
on EMG signals acquired during the forced speed task. During this task, participants were
forced to walk at three specific speeds, dictated by a metronome. The subjects repeated these
forced speed walks three times. Among all the processed signals, four of them related to the
first channel and two related to the second channel have been removed due to low quality and
absence of valuable information.
The three metronome speeds were F1=70, F2=85 and F3=100 bpm (beat/minute), and correspond
to 1.167, 1.417 and 1.667 step/second respectively, obtained dividing the metronome speed
values by 60.
These values refer to the stride frequency made moving both the legs. Since the EMG sensor
measures the muscle activity of one leg, these frequency values need to be halved to be compared
with the values extracted by the proposed feature. The new frequencies used as ground truth
become 0.583 step/second for 70 bpm, 0.708 step/second for 85 bpm and 0.833 step/second for
100 bpm.

Firstly the accuracy of the proposed feature in evaluating the real pace of the subjects was
evaluated. Due to the human nature of the participants, it has been observed that hardly they
walked exactly at the speed dictated by the metronome. For this reason, in the evaluation of the
performance of the proposed feature, we define the groundtruth following three steps: 1) the
frequency values of the metronome, admitting a deviation of +/- 0.04; 2) the coherence between
the activity of the two muscles; and 3) visual inspection. The overall accuracy of the measure is
98% considering both the experimental groups. In Table 1, the accuracy of the two population
groups obtained analyzing the activity of the two muscles are reported.



Gastrocnemius Muscle Tibial Muscle

Elderly 98% 95%
Young adult 98% 98%

Table 1
Accuracy reached by the feature Frequency Stride in evaluating the real pace of the subjects during forced
speed walk tasks. The two columns refers to the EMG channels on which the features have been extracted,
while the two rows regard the two population groups analyzed.

Gastrocnemius Muscle Tibial Muscle
F1 F2 F3 Total F1 F2 F3 Total

Young adult 95% 90% 90% 92% 95% 90% 85% 90%
Elderly 57% 52% 89% 66% 68% 58% 92% 72%

Table 2
Percentage of times in which the category of subjects indicated on the row respected the metronome frequency
imposed by the task indicated in the column. The first four columns are about signals acquired on the first
EMG channel while the last four columns regard the signals acquired on the second channel.

As a second analysis, the stride frequencies of the subjects were compared with the frequencies
of the metronome, in order to quantify with respect to the two different populations, their ability
in following a forced pace. In the dataset collected involving young adults, the percentage of
accordance between the stride frequencies and the metronome frequency is high. In details,
taking into account all the three tasks, corresponding to the three frequencies of the metronome,
92% of accordance has been obtained in the signal acquired from medial gastrocnemius muscle,
while 90% has been obtained from the analysis of the tibial muscle activity. In general, the
frequency with the highest accordance was F1 (95% in both the channels) while the worst one
was F3 (90%with signals acquired on the Gastrocnemius Muscle while 85%with signals acquired
on the Tibial Muscle).

Lower accordance has been noticed in the dataset concerning elderly people. In fact the overall
frequency accordance, evaluated on the first channel was 66%, while on the second one was
72%. The frequency more reproducible was F3 while the worst one was F2. These results differ
from what emerged in the analysis of the young adults. Actually, from a deeper study of the
values produced, it has been observed that the elderly struggle to respect the metronome forced
speeds (especially the half speed F2) tending instead to walk at a faster cadence, more similar to
their usual pace. Table 2 reports the accordance between the subject paces and the metronome
frequencies evaluated from the two muscles, in the three different tasks and comparing the two
experimental groups of young adults and elderly people.

Finally a comparison between the values produced by the feature on the two channels has been
performed. In many cases the values produced on the two signals appeared very similar even if,
sometimes, not the same. A distance analysis, performed to compare the results quantitatively,
showed that there is not a significant difference between them (root mean square distance =
0.002).



(a) Channel 1 (medial gastrocnemius muscle) (b) Channel 2 (tibial muscle)

Figure 5: Histograms of the stride frequencies calculated on the free walk task, on the two channel EMG
signal.

4.2. Free walk

The same feature was applied to study the free walk task. In figure 5 the histograms of the
walking frequencies evaluated on the two channel signals of the free walk task are reported.
Both the histograms highlight how in most of the cases the detected walking frequency is
around 0.90 step/second. This value agrees with the metronome frequency indicated by the
participants as the most preferred (F3) and with the normal pace speed reported in the literature
(between 0.90 and 1 step/second [12]). The lower frequencies in the histograms (0.35 and 0.54
step/second) regard signals where the noise and artifacts made difficult to identify the correct
stride frequency. Usually in these cases a feasible value of human pace could be evaluated from
the second or third peak extracted by the proposed feature. Moreover, it has been noted that
the presence of other high peaks could be associated to changes in walking pace during the
task.

4.3. Collision avoidance

To analyse changes in EMG signals during the stressful walking task related to collision avoid-
ance, the signal has been initially divided into five segments using non overlapped windows.
Segments 1, 3 and 5 refer to the free walking phases that preceded or followed the obstacle zone
crossing, while segments 2 and 4 refer to the effective pendulum avoidance zone.
The procedure has been applied to signals from both experimental groups and the stride fre-
quency of every segments has been calculated. In Table 3 the stride frequencies (step/second)
calculated for one subjects within the five segments are reported. The results of the analysis of
this task can be summarized as follow:

• For both experimental groups, during the free walking phases of the collision avoidance



Free Walk Obstacle Free Walk Obstacle Free Walk

0.94 0.37 0.94 0.5 0.94

Table 3
Stride frequencies in the five segments of the collision avoidance task, reported in step/second, evaluated for
one subject.

Figure 6: Analysis on a trial of collision avoidance task for one young subject. The signal has been divided
into fourteen uniform windows (top row). Purple windows correspond to the collision avoidance events.
Bottom row reports the trend of the energy values in different segments.

task (segments 1, 3 and 5), values of stride frequency similar to those detected during the
free walk task have been observed. The values related to these segments were usually
within the range [0.80 - 1] step/second. Therefore, from these results, it seems that, the
pace of walking is not significantly influenced by the presence of an obstacle within the
whole path.

• Analysing the values of the stride frequency during the free walking phases before and
after the obstacle, it has been also noticed how subjects tend to change their pace.

• Interesting information has been extracted from the analysis of the segments concerning
obstacle crossing (segments 2 and 4). In this cases, the stride frequency identified by the
algorithm is low with values near to 0.37 step/second, mainly related to real deceleration
or stop in subject’s walking. However, these signals are also often affected by noise and
artifacts.

To better understand how the walking pace changes within the collision avoidance zone crossing,
an analysis based on signal energy has been performed. This study has been carried out with
the idea of detecting stop points or deceleration patterns during this stressful task. The feature
chosen for this purpose is the RootMean Square (RMS), described in Section 3.2. For this analysis,



Figure 7: Analysis on a trial of collision avoidance task for one elderly subject. The signal has been divided
into fourteen uniform windows (Top row). Purple windows correspond to the collision avoidance events.
Bottom row reports the trend of the energy values in the different segments.

the EMG signal of each trial of the collision avoidance task has been manually segmented
obtaining fourteen uniform windows.

The energy of the EMG signal has been evaluated for each windows using the RMS feature.
From the analysis of the RMS values, the following observations can be drawn:

• When young adults were involved, it has been usually noticed an increase of the signal
power in correspondence to the collision avoiding events. Most of the time this growth
seems due to a strong muscle activation probably caused by the effort of the subject to
accelerate and safely passing the obstacle, see Figure 6. Only in few cases (5 out of 42),
participants decided to stop in front of the obstacle. Finally in only one case the subject
seemed to be able to pass the obstacle without changing its speed. These results are
coherent with what observed during the experiment, in which the young adults seemed
less inclined to stop than the elderly.

• Analyzing the power of the EMG signals for the elderly, in many cases (29 out of 37),
it has been observed a decreasing in signal power during collision avoiding events, see
Figure 7. These decrease is related to the observed evidence that, as already mentioned
above, the participants decelerated or even stopped, waiting for the pendulum to pass,
thus leading to a reduction in the electrical discharge produced by the muscle. This
analysis proves that elderly people are used to keep a more careful behavior than the
young ones.

A final observation regards the differences between the signals of the two channels. The analysis



has turned out that the EMG signals acquired from the tibial muscle appeared more affected
by noise that the ones recorded from the medial gastrocnemius muscle. Sometimes these
artifacts negatively affected the power detected on the signals analysed. For this reason the
analysis presented in this section has been carried out considering data collected from the first
channel.

Conclusions

The analysis reported in this paper is part of an extensive study where physiological signals
are adopted to assess walkability, especially in case of elderly. These studies are based on both
in-vitro (i.e. in a controlled laboratory environment) and in-vivo (i.e. in a real uncontrolled
scenario) experiments. In particular, the results obtained with the analysis of the EMG during
different walking conditions confirm that physiological responses can give significant hints
in studying pedestrian behaviour and their reactions and confidence within different urban
environments. Moreover this analysis permits to underline the different behaviour of the elderly
with respect to young adults. In future work the analysis on GSR and PPG as well as on inertial
data will be performed and merged with the analysis on EMG data. Further experiments will
be performed to collect more data that will permit classification of the tasks based both on
traditional machine learning techniques as well as deep learning approaches. These latter
approaches will be mainly related to adopt pre-trained networks, fed with properly adapted
data, for instance converting modimensional physiological signals into 2-D time frequency data,
that will permit to consider CNNs.
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