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Abstract
Fake information poses one of the major threats for society in the 21st century. Identifying misinfor-
mation has become a key challenge due to the amount of fake news that is published daily. Yet, no
approach is established that addresses the dynamics and versatility of fake news editorials. Instead of
classifying content, we propose an evidence retrieval approach to handle fake news. The learning task
is formulated as an unsupervised machine learning problem. For validation purpose, we provide the
user with a set of news articles from reliable news sources supporting the hypothesis of the news article
in query and the final decision is left to the user. Technically we propose a two-step process: (i) Aggre-
gation-step: With information extracted from the given text we query for similar content from reliable
news sources. (ii) Refining-step: We narrow the supporting evidence down by measuring the semantic
distance of the text with the collection from step (i). The distance is calculated based on Word2Vec and
the Word Mover’s Distance. In our experiments, only content that is below a certain distance threshold
is considered as supporting evidence. We find that our approach is agnostic to concept drifts, i.e. the
machine learning task is independent of the hypotheses in a text. This makes it highly adaptable in
times where fake news is as diverse as classical news is. Our pipeline offers the possibility for further
analysis in the future, such as investigating bias and differences in news reporting.
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1. Introduction

Although its negative influence and its weaponizing usage is known for ages [1], fake news
(in non-political context also known as false news [2]) and its negative impact was globally
recognized, during the U.S. elections in 2016, as one of the major challenges for the society of the
21st century [3, 4]. Importantly, it was used to promote both political campaigns in the election.
Beside the promotion of political campaigns [5, 6], fake news occurs with various purposes or
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due to various circumstances, e.g. to destabilize governments in third countries, accidentally
due to unconscious misinterpretation of facts [7] or as a worthwhile revenue stream based on
advertisement [8, 9, 10].

Following [7] the term fake news is used twice (a) to discredit and downgrade media and
journalism; and (b) to summarize various forms of wrong, misguided, or fabricated information.
Throughout this manuscript we are speaking about (b) when discussing fake news. Fake news
articles, as just described, are to a large extend published, maintained, circulated and promoted
in social media [11, 12, 13, 14]. On a high level, two strategies of potential interventions have
been highlighted [15], (i) empowering of individuals to evaluate and assess fake news and
(ii) structural changes preventing exposure of fake news to individuals. Most likely, machine
learning based intervention strategies can be categorized into the second class of strategies.
However, our intent is to propose an approach, while mainly based on state-of-the-art machine
learning methodology, that can be categorized into the first class. Because we believe that
the most sustainable strategy to fight the impact of fake news is to empower individuals to
evaluate and assess fake news, we propose to assess content with evidence from reliable news
sources supporting the hypotheses in the articles. We leave the final decision to the user
which helps to improve acceptance because no actual censorship is happening. However, a
quantitative statistical evaluation is still possible by simply adding a threshold from cross-
validation experiments on top of the mechanism.

In summary our contribution can be structured into the following aspects:

• Modular system for the comparison of news articles from various sources.
• Unsupervised approach for verification of a queried article and its content.
• Automatic querying for supporting articles using News API.
• An intuitive user interface which allows to individualize the collection of reliable sources

and to receive visual feedback for the queried article.

The outline of the paper is as follows: Section 2 summarizes the main related work, highlighting
prior approaches towards verification. In section 3, we outline the relevant machine learning
building blocks of our approach. Section 4 introduces our system for news verification and
describes the workflow, architecture and user interface. The deployment of the solution ar-
chitecture is described in section 5 as well as a discussion of the approach in general and its
advantages in section 6. Finally, in section 7 we summarize the approach.

2. Related Work

Following the line of argumentation of [16], approaches to identify fake news can be structured
into four major categories: knowledge-based, style-based, propagation-based and source-based
Propagation-based analyses are concerned with how fake news spread online which is mostly
formulated as a binary classification problem. The input can be either a news cascade [17] or
a self-defined graph [18]. For style-based analysis, the writing style is assessed according to
malicious intent. Perez et al. [19] point out stylistic biases that exists in text in order to automate
fake news detection. Source-based approaches assess the credibility of a news source [20, 21]
while knowledge-based approaches compare news content with known facts [22]. According to
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the scheme from Zhou et al. [16], our proposed approach combines two categories of fake news
detection: source-based and knowledge-based analysis. For both, we highlight prior work.

The most prevalent source-based approach is to rate news sources on their credibility. Tradi-
tional source-based approaches are Web ranking algorithms which rely on website credibility to
improve search results for user queries [23]. Two current resources for news publisher credibility
are MediaBias/FactCheck [24] and NewsGuard [20], a browser extension that displays ratings of
news websites. The ratings are manually curated by journalists. Since the ratings go through a
manual review process the list of rated websites is prone to be incomplete and quickly outdated.
Therefore, recent efforts aim for automating source reliability ratings. Based on expert-features
including for example web-traffic, the existence of a verified Twitter account or textual infor-
mation, the authors of [21] classify the news sources in a supervised manner using a Support
Vector Machine. Another approach to evaluate credibility of the knowledge is proposed by
Esteves et al. [25]. The proposed approaches are based on supervised learning to automatically
extract source reputation cues and to compute a credibility factor. A further approach that also
taps into style-based methods is to analyse text and metadata in the article. Rashkin et al. [26]
assess the reliability of entire news articles by predicting whether the document originates
from a website classified as hoax, satire or propaganda by comparing the language of real news
with those three categories to find linguistic characteristics of untrustworthy text. Wang et al.
showed that significant improvements can be achieved for fine-grained fake news detection
when meta-data is combined with text [27].

Knowledge-based approaches mostly tackle the process of fact-checking. Several fact-check-
ing organizations such as CORRECTIV [28], PolitiFact [29] and Snopes [30] operate by manually
verifying claims (see [16] for more expert-based fact-checking websites). A drawback of manual
verification is that it may reach readers too late. An approach tackling this issue was recently
published [22] where the authors approached fact-checking with machine learning methods
and focuse on claim verification. Another related approach is presented in [31] where the
authors introduce a Fact Extraction and VERification (FEVER) Shared Task. The aim is to
classify whether a claim is factual or not by retrieving evidence from Wikipedia. Both works
treat the task as a classification problem, and a critical challenge with this approach is that we
can not guarantee that the system is able to give suggestions to very recent claims. An approach
geared towards misinformation detection for social media treating exactly this challenge is
presented in [32] by including a retrieval step. While the authors still include classification as
a second step, i.e. for stance detection, we completely omit any supervised task and focus on
retrieval and an expert-knowledge-based scoring.

3. Building Blocks of the Approach

As presented in more detail in section 4 we propose an evidence retrieval approach to handle fake
news instead of classifying content. The learning task is formulated as an unsupervised machine
learning problem. The evidence supporting the hypothesis of the queried article is gathered
from a collection of reliable news sources which we provide to the user. It is individualized
by selecting an arbitrary number of sources out of a curated list of reliable news sources for
evidence-gathering purposes. Technically, we propose a two-step process:
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1. Aggregation-step: Extract information from the given article and query for similar content
from reliable sources

2. Refining-step: Narrow the supporting evidence down by calculating the semantic distance
of the text with the collection that was retrieved in step 1.

In the following subsection we briefly introduce the most relevant machine learning concepts,
forming the basis of the proposed approach. To calculate the semantic distance of news articles
we rely on distributed word embeddings and the Word Mover’s distance.

3.1. Word Embedding

Mikolov et al. [33] proposed the Word2Vec algorithm to learn vector representations of words.
The method is based on the distributional hypothesis [34, 35] that words get their meaning
from the context in which they appear. Mikolov et al. propose two different variations of the
Word2Vec algorithm, both typically trained on large text corpora. The Continuous Bag-of-
Words Model (CBOW) and the Continuous Skip-gram Model (skip-gram) which predict target
words from source context words and source context words from target words, respectively.
Specifically, they propose a shallow neural network architecture, which trains continuous word
vectors representations to maximize the log probability of neighboring words in a corpus. For a
given sequence of words 𝑤1, 𝑤2, ..., 𝑤𝑁 , it models the probability of this particular sequence as
follows

1

𝑁

𝑁∑︁
𝑛=1

∑︁
𝑗∈𝑛𝑏(𝑛)

log 𝑝(𝑤𝑗 | 𝑤𝑛) (1)

Here, 𝑛𝑏(𝑛) is the set of neighboring words of the word 𝑤𝑛. The unsupervised training is done
by optimizing the maximum likelihood of a corpus of sentences (sequences of words) such that
the word embeddings capture the semantic information of words and relations between them,
given a particular context. In their original work [33], the authors approximated the objective
above by more efficiently trainable objectives.

A flaw of Word2Vec is its inability to infer continuous representations for words not seen
during training. Especially in domains such as news, new vocabulary can emerge rapidly. A
simple way to account for that is to incorporate morphological information about words in the
text representations. Bojanowski et al. [36] proposed fastText, an extension of the skip-gram
model, which learns word representations by including sub-word information. This is achieved
by not only representing words with vectors but also the sub-word parts they consist of, bag
of character n-grams. Word vector representations are built as the sum of their sub-word and
their own representation.

In this work, we experimented with two embedding models, Word2Vec and fastText embed-
dings. Although there are by far more than two approaches available in the literature (also
more advanced approaches like Transformers [37]), see [38, 39] for comprehensive reviews,
we focus on those because they can be efficiently implemented on standard hardware and
are well-established in the NLP community. Nevertheless, there is freedom in experimenting
with other word embeddings as it only requires a change of the distance threshold. Hence, the
approach can be easily adapted to support news verification for different languages.
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3.2. Word Mover’s Distance

Earth mover’s distance (EMD), also known as the Wasserstein distance, is a distance measure
between two probability distribution. Kusner et al. [40] proposed a version of EMD applicable
to language models, the Word mover’s distance (WMD) which evaluates the distance between
two documents represented in a continuous space using word embeddings such as the afore-
mentioned Word2Vec and fastText embeddings. For any two documents A and B, WMD is
defined as the minimum cost of transforming document A into document B. Each document is
represented by the relative frequencies of its words relative to the total number of words of the
document, i.e., for the jth word in the document,

𝑑𝐴,𝑗 = 𝑐𝑜𝑢𝑛𝑡(𝑗)/ | 𝐴 | (2)

where | 𝐴 | is the total word count of document A and 𝑐𝑜𝑢𝑛𝑡(𝑗) is number of occurrences
of the word with vocabulary index 𝑗. The jth word is represented by its corresponding word
embedding, say v𝑗 ∈ R𝑛. The 𝑛-dimensional word embeddings are obtained from a pre-trained
model, e.g. Word2Vec or fastText. The distance between two words can easily be measured
using Euclidean distance,

𝛿(𝑖, 𝑗) = ‖v𝑖 − v𝑗‖ (3)

Based on this choice, the Word mover’s distance is defined to be the solution of the following
linear program,

𝑊𝑀𝐷(𝐴,𝐵) = min
T≥0

𝑉∑︁
𝑖=1

𝑉∑︁
𝑗=1

T𝑖,𝑗𝛿(𝑖, 𝑗)

such that
𝑉∑︁
𝑖=1

T𝑖,𝑗 = 𝑑𝐴,𝑗

and
𝑉∑︁
𝑗=1

T𝑖,𝑗 = 𝑑𝐴,𝑖

(4)

Here, T ∈ R𝑉×𝑉 is a non-negative matrix, where T𝑖,𝑗 denotes how much of word i in document
A is assigned to tokens of word j in document B. Empirically, WMD has reported improved
performance on many real world classification tasks as demonstrated in [40]. The WMD
has intriguing properties. The distance between two documents can be broken down and
represented as the sparse distances between few individual words. The distance metric is
also hyper-parameter free. The most important feature is that it incorporates the semantic
information encoded in the word embedding space and is agnostic to arbitrary word embedding
models.

4. A Retrieval-Based Approach Supporting Fake News
Identification Methods

We constructed a pipelined system which helps in extracting semantically similar articles from
reliable news sources. Its core is the analysis of the credibility of news articles based on the
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(pre-processed)

Figure 1: Overview of the system’s workflow with aggregation and refining step.

overall evidence collected from a set of automatically retrieved articles published by reliable
news sources. Figure 1 gives an overview of the components and workflow. The system consists
of three components: a news content extractor, a search engine query and a content analyzer.
All of these components can easily be exchanged and extended depending on the language and
the list of reliable news sources.

4.1. Article Extractor

Given a link to an article that should be verified the article extractor component extracts
information from the link such as the publication date, the article title, its authors and the
textual content. For most of the news sources, the python library Newspaper3k1 is suitable
and manages to extract all of the above information. However, at least for some sources,
we built our own article extractors by parsing the HTML page of the article and extracting
certain tags. We extract relevant keywords and entities from the title and body of the article
using the Newspaper API keyword extractor. The goal of this step is to get as much relevant
information characterizing the article as possible. This extracted information is used in building
an automated query.

1https://newspaper.readthedocs.io/en/latest/
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4.2. Querying the Google News API

To obtain news articles from reliable news sources we use a query component which queries the
Google News API. Using the keywords and entities we obtained in the step before, we construct
a query. We structure the query so that we can filter the articles based on date, number of
requested news articles from the sources, location and language. The API returns ten article
links based on the search criterion from every source selected. The number of articles returned
by the API can be changed based on individual requirements and computation power. The
article extractor component extracts the content of the articles obtained from the search API.
The system offers six news sources and we can easily add new sources or remove existing ones
from the list. Automatic querying used here is different from manual news search using search
engines as we aggregate news based on dates, keywords extracted from the article, and selected
reliable sources.

4.3. Content Analysis: Semantic Distance Analysis

The content analysis component computes the semantic distance between the query article
and the articles returned by the query component. Before computing the distance score, we
clean the article titles and bodies by removing stop words and special symbols and computing
their bag of n-grams representations. The semantic distance of articles is calculated using
word embeddings and the WMD. For the word embeddings, we experimented with different
word embeddings such as fastText and the pre-trained Google news embeddings. The quality
of the word embeddings depends on the size of training data, thus, we use pre-trained word
embeddings.

Since the original WMD is computationally expensive, we approximate the distance by using
the Regularized Wasserstein distance proposed by [41] and only keep the five closest articles.
The five articles with the least distance are then selected for computation with the original
WMD. The WMD returns a distance score for each remaining article from the individual sources.
The smaller the distance, the more related the articles are. Only articles that are below a
predefined threshold are considered as similar to the given article. We set the distance threshold
by empirically checking the distances of a couple of articles. Similar news articles, i.e. articles
that fall below the distance threshold, are then displayed with a message that closely related
articles were found. If the system does not return similar articles the reader is informed that
the given article is potentially fake.

Our prototype was exemplary tested on a small set of articles. A systematic evaluation with
a self-curated dataset and the FakeNewsNet [42] dataset is planned. The semantic distance
analysis in our approach is based on unsupervised models which in turn make the system highly
adaptable to different languages. We just need to replace the word embeddings and adapt the
threshold. Furthermore, the unsupervised nature renders the approach agnostic to concept
drifts which means that the machine learning task is independent of the hypotheses in a text.
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Figure 2: The technical architecture of the Fake News Detector with three docker components.

5. Architecture and Deployment

To showcase our approach we build a "Fake News Detector" system. The Fake News Detector
system consists of a few technical components. Its technical architecture is based on a set of
docker components (see Figure 2). In detail, there are the following three docker components:

1. A container with simple django running the python code of our application and serving
the frontend.

2. A container serving the data for the backend - the model container.
3. A container that includes data pre-processed by several NLTK functions.

The Fake News Detector application can be accessed via web UI (see Figure 3). In the UI,
we can insert a link of a news article to be verified, in this example, we want to verify an
article titled Gatorade banned and fined $300k for bad-mouthing water. Next, we select the news
sources to check and match against. By clicking on the verification button the analysis process
is started at the backend running all the components. After the analysis, the results are shown
as a list of potentially matching articles. If no matching articles are found after the analysis, a
message is displayed that the article might be potentially fake. In the example shown in Figure 3,
we selected all six sources. The system queried against all sources and analysed the potentially
matching articles using semantic similarity and found that CNN has published a similar news
article during the same time frame.

6. Discussion and Future Work

In the previous sections, we have addressed various benefits of following such an unsupervised
approach. These benefits are the plasticity of the system, its modularity and user-driven decision
making. In this section, we discuss several challenges and insights for the future work.

One challenge for the demonstrator is to deal with very recent news. The system will not
be able to collect semantically similar articles from other reliable news sources that might not
have published yet on the subject. Here, date as well as publishing time become important. For
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Figure 3: The User Interface of the Fake News Detector. In this example, the query article is titled
Gatorade banned and fined $300k for bad-mouthing water. The user pastes the URL into the text box,
selects sources and receives a matching article from the source CNN.

future work, we propose to highlight this fact to the user to avoid perceiving recent news as
potentially fake.

Another challenge in analyzing news articles is novel words which are out-of-vocabulary.
For these words no word vectors exist which in turn affects the WMD score. The system can
handle this scenario but the performance may be impaired. To overcome this we are crawling
news from major news sources every hour to build a text dataset. We propose to update word
embedding models frequently to avoid an increased number of out-of-vocabulary words in
recent news articles.

Recently, Yokoi et al. [43], proposed an improvement on Word Mover’s Distance, namely
Word Rotator’s Distance (WRD) which measures the degree of semantic overlap between two
texts using word alignment. This approach is designed such that the norm (a proxy for the
importance of word) and angle of word vectors (a proxy for dissimilarity between words)
correspond to the probability mass and transportation cost in EMD, respectively. This approach
outperforms the WMD in several semantic textual similarity tasks. This alternative might help
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in improving the document distance threshold and is subject for our planned evaluation.
We also propose to use the approach of document similarity for related use cases where

we see potential in two directions. The first direction is helping fact-checkers by providing
adequate evidence to verify hypotheses. By providing them similar content, e.g. evidence in the
form of news but also scientific articles, the system can support their task. Second, reviewers in
several domains, e.g. medical health news review, need to determine how comprehensible a
text document is. By comparing a text to scientific or more simple language it is possible to
provide a comprehensibility score. Since the system alone does not guarantee news verification
or falsification we recommend considering combining it with fact-checking methods.

7. Conclusion

We presented a system to find semantically similar articles to a given news article from selected
reliable sources. For the system, we propose an evidence retrieval approach to handle fake news
instead of treating it as a classification task. This way, we aid the users in finding supporting
evidence and, thus, manual search work can be reduced. The benefits of our system are that (i)
it is unsupervised and therefore agnostic to concept drifts, (ii) it gives the user decision power
and (iii) it is modular, i.e. the system can be easily adapted to other languages, extended and
improved with further components.
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