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Abstract
In Hybrid AI, machine learning and knowledge engineering are combined to have the best of both
worlds. Insights obtained from data are combined with complementary expert knowledge, which can be
represented in a graph structure. Graph networks are a recently new development in machine learning
and cover methods that learn on graph structured data. This paper researches how knowledge can be
incorporated in graph networks for the use case of scene classification. The aim is to detect novel scenes,
of which only a few examples and noisy object detections are available. The results show that both
using a graph network and adding knowledge can improve performance, however, this is not always
necessarily the case. The novelty of this paper is threefold: 1. Using GNNs for scene classification; 2.
Combining data and knowledge in GNNs by constructing one input graph; 3. Using GNNs in cases with
few training samples and noisy inputs.
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1. Introduction

Past AI approaches have not been very successful in open world situations [1]. Systems fail
due to a high sensitivity to deviations from assumptions about the external world. Recurrent
updating of the world models is necessary, as the world changes. Case-based reasoning is
employed to adapt previous solutions to current situations, however in practice this approach
becomes a retrieval of similar past cases without adaptation. Deep learning based methods for
situational awareness are characterized by a dependence on massive amounts of training data
and often lack transferability to unseen situations.

An approach to overcome these problems is the use of Hybrid AI, which combines data
driven approaches with expert knowledge. The knowledge is used to fill the information gaps
that are present in the data and can be updated in an iterative manner. Expert knowledge can
be represented in a knowledge graph, by representing entities as nodes and their relations as
edges. The knowledge is combined with actual data (observations of the entities) in a graph
structure. We combine this graph structured knowledge with Graph Neural Networks (GNNs),
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Figure 1: Our Hybrid AI approach in which the image data is combined with expert knowledge.

a machine learning technique that operates on graphs. This new Deep Learning technique
showed a lot of potential and the link with graph-structured knowledge enables possibilities
for explainability. GNNs are able to handle new nodes, which makes them suitable for dynamic
knowledge graphs.

Our research focuses on scene classification in an open world setting; predict the type of
room based on an image, with minimal human involvement. The number of training images
is low, to mimic the open world setting where for new scenes only a few training images are
available. Expert knowledge and scene images are the input of our hybrid approach, which is
shown in Figure 1. The knowledge determines which objects are expected in a scene and for
these objects detectors are trained on the fly, using images scraped from the internet. Because
of this automatic process, the resulting object detections will be noisy. In our research, we
mimic these noisy object detections by taking the predictions of a Faster-RCNN finetuned on
the MSCOCO dataset [2] with a confidence threshold of 0.1. The object detections are combined
with the human knowledge into one graph. In this graph, all detected objects in an image are
represented as nodes (attributed with the number of detections) and all-to-all edges are used
to link the nodes. Knowledge is added as a separate scene node for which an edge between the
object nodes which are evidence for that scene is drawn. The graph is the input of the GNN,
the machine learning part of the system. The GNN makes a prediction about the scene type,
and is tested on the ADE Scene dataset [3].

The novelty of this paper is threefold: 1. Using GNNs for scene classification; 2. Combining
data and knowledge in GNNs by constructing one input graph; 3. Using GNNs in cases with
few training samples and noisy inputs.

This paper is organised as follows. The next section describes the related work, mainly
focused on graph neural networks. Section 3 contains the experimental setup, with explanation
of the dataset, how knowledge is created, which methods are compared, and the evaluation
metrics. Section 4 presents the results, section 5 follows with the discussion and the paper is
concluded in section 6.

2. Related Work

Current state of the art in deep learning methods use (Convolutional) Neural Networks ((C)NN)
[4, 5], where the multi-layer filters used for feature extraction are automatically learned using



Figure 2: Representation of the GNN processing structure. An embedded representation of the graph
is calculated (indicated by the ’s), by applying neural networks on the graph structured data.

back-propagation. There has been some work on scene or scene related classification using
methods that are or resemble graph networks. All of it is quite recent work, and none is yet
done on the ADE dataset, to the best of our knowledge. Dornadula et al. [6] focus on few-
shot scene graph prediction. They use an image as input and output a set of relations in the
form of a subject, predicate and object. Mylavarapu et al. [7] use a Multi Relational Graph
Convolutional Network (MRGCN) to model on-road vehicle behaviours from a sequence of
temporally ordered frames as grabbed by a moving monocular camera. Chen et al. [8] combine
local (convolutional) and global features (graph-based) to do an attention-based prediction of a
scene based on an image. None of these methods were specifically suited for the dataset and/or
our use case, because either the output was not a scene prediction or moving images were used.

2.1. Graph Neural Networks

Graph Neural Networks are a relatively new type of Deep Learning networks and operate on
graphs. A graph contains nodes (𝑣) (which represent entities), edges (𝑒) (which represent rela-
tions) and possibly a global attribute (𝑢) (which represents a property of the whole graph). The
nodes contain attributes; a vector representing their data. The edges could contain attributes,
but this is not required. Information is propagated through the graph, based on connectivity
between nodes, to calculate an embedded representation of the attributes (see Figure 2). These
representations can be used to make predictions on different levels: node-level, edge-level and
graph-level. Node-level is often used for regression and classification, such as reasoning about
physical systems. Edge-level is often used for classification and link prediction, such as pre-
dictions about interactions among entities. Graph-level is used for higher-level classification,
such as predict the potential energy of a physical system or in our case scenes.

Currently a few overview papers are already present [9] [10] [11]. There are several ways
to categorize the different types of GNNs, of which the categorization into model architecture
is the most relevant, since it determines the way information is processed. Wu et al. [11]
distinguish four categories of GNN models: Recurrent Graph Neural Networks (RecGNNs),
Convolutional Graph Neural Networks (ConvGNNs), Graph Autoencoders (GAEs) and Spatial-



temporal Graph Neural Networks (STGNNs). In this paper, a ConvGNN is used, which updates
node attributes based on their neighborhood and are commonly used in supervised learning
settings.

The ConvGNNs translate the CNNs to the graph domain. They stack multiple graph neural
layers to extract the high-level node representation and aggregate their own features and their
neighbors’ features. The ConvGNNs use a fixed number of layers, but have different weights
in each layer. There are two ways to exploit the convolutional properties; via spectral-based
or spatial-based approaches.

2.1.1. Spatial Methods

Spatial-based approaches use convolutions directly on the graph, by operating in the spatial
neighborhood of a node. Within the spatial approaches, there are several approaches. Mes-
sage Passing Neural Networks (MPNNs) use a general framework of spatial-based ConvGNNs.
Graph Isomorphic Networks (GINs) [12] tackle the problem that many ConvGNN approaches
cannot distinguish different graph structures based on the graph embedding. With isomorphic
information, this is possible. Graph Attention Networks (GATs) [13] use attention mechanisms
to learn the relative weights between two nodes. In the comparison by Wu et al. [11] it is stated
that spatial methods are preferred over spectral methods because of efficiency, generality and
flexibility.

2.1.2. Spectral Methods

Spectral-based approaches apply the graph convolution in the Fourier domain, by using the
eigenvalues of the graph Laplacian. They are founded in the signal processing field.

Kipf et al. [14] proposed a Graph Convolutional Network (GCN) for learning on graph-
structured data and the task of node classification. They propose a first-order approximation
of the operations in the Fourier domain and their GCN is state-of-the-art in Graph Networks.
Node features are updated in hidden layers, using convolutional approximation. Every hid-
den layer has its own weights and nodes are updated based on their own features and their
neighbors’. In the loss only the labeled nodes are taken into account.

2.1.3. Graph Network blocks

Battaglia et al. [15] propose a general Graph Network framework (GN block) that generalizes
various approaches for networks that operate on graphs. The framework takes a graph as input,
performs computations and returns a graph as output. A graph is represented by nodes (𝑉 ),
edges (𝐸) and a global attribute (𝑢). The GN block contains update functions 𝜙 to update the
attributes in the graph and aggregation functions 𝜌 to aggregate information edges to nodes
and from edges and nodes to the global attribute (see Figure 3). The update functions can be
non-neural functions, however, in practice most networks do use neural layers.

GN-blocks are a generalization of all kinds of GNN models and allow the usage of node, edge
and global attributes. They support all kind of aggegration and update functions. GCNs can
be seen as a specific implementation of a GN block; they use the node updates, which they
implemented as a convolutional function. GCNs are designed for node classification, where



Figure 3: Full GN block as proposed by Deepmind (directly taken from [15].

the flexibility of the GN blocks allows the usage of edge and global features as well and can,
therefore, be used for graph classification.

Because scene classification is about classifying the whole graph into a scene category, the
GN-block with neural layers is implemented as our Graph Neural Network.

3. Experimental Setup

3.1. Data & Knowledge

As explained in the introduction, first an object detector is applied on the input images, result-
ing in images with detections, similar to those of Figure 4. The object label and the number of
occurrences per label of all detected objects with a confidence of 0.1 or higher (see the Intro-
duction for a motivation), on average 42 detections per image, are the data-driven input of the
graph.

The dataset used in the experiments is the ADE Scene dataset [3], of which a subset is used
for the experiments (see Table 1). This dataset is state of the art for scene classification and
contains images, object segmentations with labels and a scene label per image. Four scene
classes are selected for the experiments: Living Room, Office, Home Office, Dorm Room. These
classes are selected based on our use case, and the scenes are similar enough to make it not too
easy to detect.

Based on the ADE-given training and validation set, two splits for the training set and the
test set are created. Table 1 shows the number of samples per set used in the splits. With these
splits, three dataset splits are created (named as training split-test split):

• Small-Small: Training set of 24 samples, to reflect the open world use case. Test set as
given by the original ADE validation set.

• Small-Big: Training set of 24 samples. Test set expanded with (a selection of) the unused
training samples to create a bigger (balanced) test set.

• Full-Small: Using the original ADE training and test set.



Figure 4: Object Detections on an image from the ADE dataset.

Scene Small Training Full Training Small Test Big Test
Dorm room 24 61 6 41
Living room 24 697 70 100

Office 24 112 11 98
Home office 24 95 10 81

Table 1
Number of samples in the dataset splits.

3.1.1. Creating Knowledge

One of the most important factors in a hybrid AI system is the knowledge. Preferably this
knowledge is complementary to the data, and therefore, add information that increases the
performance. World knowledge or expert knowledge is preferably used. However, since the
automatically trained object detectors are mimicked by a pretrained object detector, the avail-
able knowledge is bounded towards these classes. This means only 80 object classes, of which
many are unrelated to our scene classification, can be linked in the knowledge. On the one
hand, this scopes the knowledge, on the other hand only a few known relations can be ex-
ploited as knowledge.

The expert knowledge in the experiments is based on the statistics of the training set, in-
stead of crafting the knowledge ourselves. Using the statistics as the knowledge, resulted in
the best knowledge for this dataset, however, might not be the most general knowledge. The
assumption is that especially in the dataset split with little training samples, the statistics could
be used to help the network to learn the statistics using the knowledge. The average number of
object occurrences per scene is counted and added to as a knowledge-indicator for that scene
if the average is above 0.7. The object ‘book’ was the only exception, since it appeared in all
scenes, but much more in office (5) and home office (8). The knowledge about object-indicators
for a scene is used as ‘evidence’ for that scene. The knowledge is used as a strong indication
for a scene if indicator-objects are detected.

The following scene-indicator knowledge is used:
Living Room: couch, potted plant, dining table, vase,
Office: keyboard, book,
Home Office: tv, book,
Dorm Room: bed, bottle.



Figure 5: Simplified example of the input for the MLP Data only (left) and MLP Data + Know (right).

3.2. Methods

This section describes the different methods that are compared in the results. The baselines are
the first four methods, and our proposed method is a GNN with a data-knowledge combined
input graph (GNN Data + Know). Ablation studies are used to determine the best parameter
settings, such as batch size, learning rate and number of epochs. Due to the limited space, these
results are not included in this paper. The epoch selection is done by choosing the best number
of epochs after a run of 2000 epochs, based on the loss on a validation-split (20%) of the training
set.

3.2.1. Knowledge only

The first baseline is Knowledge only, in which the evidence for each of the scenes is counted
using the knowledge. This method is, thus, not learned but inferred. The detected occurrences
of the different objects are counted and the scene with the highest knowledge-based evidence
is chosen as the predicted scene.

3.2.2. MLP Data only

In the MLP Data only experiment, the table with object occurrences is fed to a 3 layer neural
network (MLP) (for an example see Figure 5 left). The dense layers have a size of 64 and a
RELU activation. The final layer contains a Softmax activation. The learning rate for the small
training set is set to 0.005 with a RMSprop optimizer and binary cross-entropy loss, the batch
size is 32 and the number of epochs is set to 50. The network is implemented using Keras [16].
For the full training set the learning rate is set to 0.0001 and the number of epochs is set to 100.

3.2.3. MLP Data + Know

This MLP has the same model as the previous section, but the evidence from the Knowledge only
is used as an additional columns in the input (one per scene; all objects detected as evidence
are summed in the column, see Figure 5, right). The learning rate for the small training set is
set to 0.005, the batch size is 32 and the number of epochs is set to 12. For the full training set
the learning rate is set to 0.0001 and the number of epochs is set to 25.

3.2.4. GNN Data only

For the GNN, we base our code on Pytorch Geometric [17]. The dataset is converted in a way
that each image is represented as a graph. Within each graph, each node represents a detected
object. Each node has a N-HotEncoding node attribute, encoding two types of information:
the name of the object and the number of occurrences of that object (N). Objects that are not
detected in the image, are not part of the graph. All nodes are connected to all other nodes,



Figure 6: Simplified example of an input graph in GNN Data only (left) and GNN Data + Know (right)
is used as input.

representing that they all occur in the same image. An example of these graphs is shown in
Figure 6 (left). In that figure 3 chairs, 1 couch, 1 tv and 2 beds are detected. The scene label is
predicted by the GNN model and represented by a global attribute of length four (one for every
scene labels), which is initialized with zeros.

The GNN model used for classification, is based on the general GN model structure from
Deepmind as described by Battaglia et al. [15] (see Figure 3). Since our graph does not contain
edge attributes, we only constructed a Node block and a Global block. Our GNN model design is
shown in Figure 7. The N-HotEncoded node attributes are passed through a MLP (Multi-Layer
Perceptron) to obtain updated node attributes. In order to apply aggregation of the neighbors,
the mean of the updated neighbors and the original node attributes are concatenated and passed
through another MLP. This provides updated node attributes. The updated node attributes of
all nodes are averaged and used together with the global attribute itself to update the global
attribute in another MLP. This whole cycle of updating the node attributes and global attribute,
is repeated for 3 three times. This is comparable to message passing of three times with shared
weights. Sharing the weights reduces the number of parameters to train, while still allowing
for the information to flow through the graph structure. The three single MLP modules consists
of 2 layers of 32 nodes. Between the two layers a ReLU activation function is used.

The updated global attributes are used to determine the loss. The cross-entropy loss is used
after applying a softmax to the output of the global attributes. The learning rate for the small
training set is set to 0.005, the batch size is 16 and the number of epochs is set to 125. For the
full training set the learning rate is also set to 0.005 and the number of epochs is set to 150.

3.2.5. GNN Data + Know

In the GNN model with knowledge, the knowledge is added as a node to the graph and an
indicator whether the node is a knowledge or a data node. This means that the N-HotEncoding
is, in the case of our 4 scenes, 5 longer. For each image, if there is evidence for a certain scene,
a node with the scene name and the total amount of evidence is added. An edge between the
evidence-object and the scene is created. This means that for the knowledge, the graphs are
not fully connected any more, as can be seen in Figure 6 (right). Compared to the graph on the



Figure 7: Overview of the GNN model containing a Node block and a Global block.

left, evidence for a living room (1), home office (1) and dorm room (2) is added.
The same model as in the GNN Data only experiment is used. The learning rate for the small

training set is set to 0.001, the batch size is 16 and the number of epochs is set to 200. For the
full training set the learning rate is set to 0.005 and the number of epochs is set to 175.

3.3. Evaluation Metric

We use accuracy as evaluation metric, defined as the number of correct classifications divided
by the total number of samples. We run the MLP and GNN 5 times and report the mean accu-
racy. We also calculate the confusion matrix to gain insight in the mistakes made.

4. Results

Table 2 shows the results of the methods on the different dataset splits. The results show that
for the Small-Small dataset the performance of the MLP is lower with knowledge (MLP Data
+ Know) compared to without knowledge (Data only), whereas the performance of the GNN
increases with knowledge. Furthermore, the performance of the GNN with knowledge is higher
than all other models, including the Knowledge only. The results on the dataset Small-Big are
slightly different. Both the MLP and the GNN benefit from using knowledge, but performance
is not higher compared to the Knowledge only baseline. The results on the dataset Full-Small
show that when a lot of training data is present, the increase of performance with knowledge is
not better compared to using the data only (for MLP). The GNN is also not able to outperform
the MLP methods.

Table 3 shows performance per scene for the Small-Small dataset split (most related to our
use case), which is part of the confusion matrix (full matrix is omitted due to space limitations).
It shows that the type of mistakes differ, based on the source of information used. For example,
the knowledge model works well for the living room, but bad for the dorm room. Both the MLP
and GNN data only work well for the dorm room. Combining the data and knowledge in the
GNN outperforms both the data only and knowledge only for dorm room (all models) and office
(compared to only GNN). For home office and living room, performance of GNN Data + Know
is similar to knowledge only, whereas with the MLP performance is only similar or drops.



Small-Small Small-Big Full-Small
Model Mean StDev Mean StDev Mean StDev
Knowledge only 0.58 0.58 0.59
MLP Data only 0.63 0.06 0.53 0.01 0.86 0.01
MLP Data + Know 0.50 0.09 0.57 0.03 0.77 0.02
GNN Data only 0.51 0.13 0.46 0.08 0.52 0.03
GNN Data + Know 0.65 0.07 0.56 0.02 0.69 0.10

Table 2
Mean Accuracy for the models on the different datasets

Model Dorm room Home office Living Room Office
Knowledge only 0.4 0.5 0.75 0.36
MLP Data only 0.8 0.34 0.68 0.51
MLP Data + Know 0.76 0.34 0.58 0.36
GNN Data only 0.72 0.24 0.57 0.18
GNN Data + Know 0.84 0.5 0.72 0.52

Table 3
Mean accuracy per scene on dataset Small-Small

5. Discussion

In the results, the potential of using GNNs as well as the potential of adding knowledge is
shown. For the Small-Small dataset, both GNN and knowledge are adding value. In the Small-
Big experiment the knowledge is adding value to methods, but not better than using knowledge
only. For the Full - Small experiment the performance on the data only for the MLP is good
and the GNN cannot outperform the MLP data only. In this discussion, we want to critically
discuss these results.

First, results are only shown on one task and data splits based on one dataset. From this
dataset only 4 scenes are chosen. The performance has not been tested on other scenes, with
other (or more) object detectors, nor on other datasets, which limits the conclusions about
GNNs and knowledge to this specific setting.

Second, the knowledge currently used, is very limited. Only a few object classes are used
as knowledge, and no normalization towards the number of indicator-objects per scene, is
applied. This could have influenced the performance, because the biggest class also had the
most knowledge objects. The way of choosing, representing and using knowledge could, thus,
be improved and experimented with.

Third, with the current implementation is seems that the GNN can differentiate between
the sources (data and knowledge) and benefit from the information, but there is still room for
improvement. According to the literature, graph networks profit from graph-structured data
and the choice for all-to-all combinations in the graphs could limit the ability to learn from it.
More information could be added to the graphs when, for example, a hierarchy based on object
types is put into the graph structure or spatial information is added. Although we belief that
our GNN implementation is suited for our use case, other GNN models can also be suited and
performance should be compared.



Finally it should be noticed that not every type of knowledge and data can be represented
by a graph structure and, therefore, the application is limited to specific domains. In order to
construct a graph there should be relational information in the data and the knowledge should
be linked to that in a relational way. Ideally these relations add new information to the data.

6. Conclusion and Future Work

This paper covers a use case in which novel scenes have to be detected using noisy concept
detectors. For that use case, we propose to use a GNN because it can handle input with a
different length, and we propose to combine data and knowledge within the GNN.

Three different splits on the ADE dataset are used to compare performance of methods using
knowledge only, data only and knowledge and data for both a MLP and a GNN. The results
show that the GNN with knowledge can outperform all other models, but only in specific
settings. If the performance of the data only is already high, it is hard to gain even higher
performance by adding the knowledge. This is often the case in situations where there is lot of
training data available. When there is only limited data available, adding knowledge could im-
prove performance in specific settings. If the knowledge and the data are not complementary,
it is hard to improve performance.

In future research, we would like to improve the GNN by for example using hierarchical
information and making more use of the graph structure. We want to explore the combination
of GNNs with knowledge on other datasets, such as one without images, to get further insight
in which cases this combination is benificial and in which not. We would like to integrate our
data and knowledge based predictions with work that is currently performed on user-specific
explainability and experiment whether the added knowledge improves the interpretation of the
explanations. Additionally, we would like to explore the usage of knowledge in more traditional
ML approaches such as a naive Bayes classifier or Latent Dirichlet Allocation (LDA), either
as inspiration for our method or as an additional baseline. Finally, we would like to further
explore the different GNN types. For example use the GCN convolutional properties for the
graph classification setting or use Graph Attention Networks. Learning with attention would
enhance the possibilities for explaining the predictions.
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