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Abstract
Tuberculosis has been a bacterial infectious disease known to humans for a long time, and different
types of tuberculosis cases have different treatment methods. Therefore, rapid and accurate positioning
of its classification is essential for the treatment of tuberculosis. This paper describes our experiment in
ImageCLEF 2021 Tuberculosis-TBT classification. We first use two versions of automatically extracted
masks of the lungs which are provided by the organizer to process all the CT images. Then the image is
transformed into a 2-dimensional through data preprocessing that is projection, and data enhancement
is used in the training process. Through the modified version of the EfficientNet network pre-trained
on Image Net, and the introduction of the ghost module, and fine-tuning the model after migration
learning, the one classification task with 5 labels required by this challenge was completed. The final
kappa score of our team in ImageCLEF 2021 Tuberculosis-TBT classification is 0.015, and the acc score
is 0.380.
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1. Introduction

Tuberculosis is a chronic, late-onset, highly morbid, and dangerous respiratory infectious disease.
It is a bacterial disease, an airborne disease that uses droplets released when a patient coughs to
attack the respiratory system. According to statistics, about 1.5 million people died of chronic
tuberculosis in 2018, and the number of people infected with tuberculosis is about 6 times
more than the number of people who die from tuberculosis. However, with the advancement
of medicine, most patients can be cured clinically if they can be diagnosed in time, treated
rationally, improved resistance, or reduced cell-mediated allergic reactions. Therefore, it is very
important to detect and diagnose tuberculosis cases quickly and accurately.

At present, the clinical diagnosis of tuberculosis is mainly a comprehensive analysis of the
patient’s clinical manifestations, imaging data, and laboratory test results. Among them, the use
of CT with higher resolution and more detailed evaluation is more common. When tuberculosis
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affects the lungs, several visual patterns can be seen in CT images. These models can better
reflect the characteristics of the type of tuberculosis, and using these characteristics to determine
the classification of the specific type of tuberculosis. Due to the large delay between the onset
of disease symptoms and the clinical manifestations or diagnosis of tuberculosis, it is important
to find a quick and convenient early diagnosis method within this delay. In this way, the use of
antibiotics, a general treatment method that harms the body, can be reduced, and the efficiency
of early diagnosis of tuberculosis can be improved.

ImageCLEF [1] began to organize image classification and retrieval challenges in 2003 [2].
Among them, the tuberculosis task only started in 2007 and the tasks vary from year to year.
The previous tasks include multidrug resistance (MDR) tuberculosis detection, tuberculosis type
(TBT) classification and severity score (SVR), etc. The other difference lies in the changes in
the data set. Due to the difficulty of each task, the official plan is to solve them one by one.
Therefore, the task of 2021 [3] was focused on the classification of tuberculosis types (TBT).

The rest of this article is organized as follows: In the second part, we briefly introduce the
literature review on ImageCLEF Tuberculosis. The third part introduces the specific tasks of
this competition and analyses the data set in detail. Then, in the fourth part, we introduce the
network model and transfer learning method. The fifth part introduces the relevant details
of the experiment. In the sixth part, we report the results of our experiment. Finally, in the
seventh part, we summarize and discuss the current and future development directions.

2. Related Work

Image recognition is considered to be the earliest application field of machine learning. In
recent years, deep learning [4] has achieved amazing results in the field of medical imaging, and
machine learning and deep learning have gradually appeared in tuberculosis diagnosis. Among
them, deep learning is also frequently used to diagnose CT scan images of lung diseases. With
the rapid development and improvement of the mathematics and computing power of human
computers, CNN is considered to be an advanced feedforward neural network containing con-
volution calculation and its deep structure [5]. It also has good image classification performance
and can be used for various image classification tasks. Therefore, CNN is also widely used in
the diagnosis of tuberculosis.

Since the appearance of the tuberculosis task in the ImageCLEF competition in 2017, the
approximate methods are to manually select meaningful axial CT slices first. Then using the
semantic features extracted by two-dimensional CNN to describe these slices. Finally, the neural
network sets the classifier to make the final category classification representation, such as the
method of the MostaganemFSEI group [6]. Or by dividing the lung field into several sub-regions,
and treating these sub-regions as nodes of a graph, the lungs can be modeled as a graph. Then,
they defined the weighted edges between adjacent sub-regions, where the weighted edges
encode the distance between the 3D texture descriptors obtained in each sub-region (node). To
compare the obtained pictures, they converted these pictures into a lung description vector and
used a support vector machine to classify them, such as MedGIFT [7].



Figure 1: The specific images of each TB category

3. Task and Dataset

The tuberculosis task in ImageCLEF 2021 is based on 1,338 chest 3D CT image data of TB patients.
There are 5 labels: Infiltrative, Focal, Tuberculoma, Miliary, Fibro-cavernous". Those types are
originally labeled manually, and the specific images of each category are shown in Figure 1.
Compared with 2017 and 2018, the data set has been updated. The training set provides metadata
items including LeftLungAffected, RightLungAffected, LungCapacityDecrease, Calculation,
Pleurisy, Caverns.

The tuberculosis classification task in 2021 is actually one of the 2017 and 2018 subtasks. The
original file stores the original voxel intensity and the corresponding image metadata. Among
them, there are 917 images in the training set and 421 images in the test set. In addition, the
organizer provides two different segmentation methods for us to use the data. The mask#1 [8]
provided by the first segmentation method is more accurate but the most severe TB cases
will miss larger lung abnormal areas. The second mask#2 [9]inaccurately provides rougher
boundaries, but it is more stable in terms of including the lesion area. In the experiment, we
conducted experiments on the data processed by the two methods and also proved that the
effect of the second method is better than the first one. Table 1 lists the number of metadata



Table 1
Metadata the amount of information in the training set

Filename In Training set

RightLungAffected 197
LeftLungAffected 181

LungCapacityDecrease 69
Calcification 28

Pleurisy 13
Caverns 104

Table 2
The number of classified label information in the training set

Filename In Training set

Infiltrative 420
Focal 226

Tuberculoma 101
Miliary 100

Fibro-cavernous 70

Figure 2: The image projected on the x, y, z axis with mask#1

information, and Table 2 lists the number of classified tag information.
The ImageCLEF2021 tuberculosis task initially provided a data set in the form of NIfTI 3D,

and we processed the data according to the two officially provided masks before starting the
experiment. Then project on each coordinate axis to transform into a two-dimensional image.
In this way, we can better invest in the neural network for training. Figure 2 is the image
projected on the x, y, z-axis with mask#1, and Figure 3 is the image projected on the x, y, z-axis
with mask#2.



Figure 3: The image projected on the x, y, z axis with mask#2

4. Methods

4.1. Model

In recent years, when dealing with image classification problems, we tend to choose networks
with a large number of calculations for processing. Facts have proved that network structures
like ResNet combined with DenseNet and Attention tend to show good results in the extraction
of image features. But those have some disadvantage such as the amount of calculation is
too large, and the network transmission speed will be much slower than that of a lightweight
network. Therefore, to meet the requirements of better feature extraction and improved speed,
we use the EfficientNet+Ghost module.

Convolutional neural networks are generally developed under limited hardware resources
and budgets. If more resources are available in the experiment, which can help us get better
accuracy by expanding the scale of the model. The expanded model is generally divided into
three aspects: model width, depth, and input image resolution. Most of the existing models
adjust these three aspects manually, but such a combination space is too large to exhaust
manpower, so the EfficientNet model came into being. It mainly uses a composite coefficient
to simultaneously enlarge the network from the three dimensions of model depth, width, and
resolution. Based on neural structure search technology, an optimal set of parameters (composite
coefficients) can be obtained [10]. Figure 4 is the basic model, and Figure 5 is the EfficientNet
model. We can see that the three dimensions have been expanded, and how much is expanded
is obtained through the compound model expansion method combined with neural structure
search technology.

Since the existing CNN extracts a large number of redundant features for image cognition,
Han [11]et al. proposed GhostNet, which effectively reduces the computational cost. They
found that there are many similar feature maps in the traditional convolutional layer, and
these feature maps are called ghosts. The main contributions are as follows: They divide the
traditional convolutional layer into two parts. In the first part, there are fewer convolution
kernels directly used for feature extraction, which is the same as the original convolution. Then,
these features are linearly transformed to obtain multiple feature maps, as shown in Figure 5.
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Figure 4: Comparison of basic model and EfficientNet

They proved that the Ghost module is also applicable to other CNN models. Ghost is different
from 1*1 convolution in that it can control the size of the convolution kernel without restriction
and use the same method of parallel mapping and linear transformation. We can use the Ghost
module as a simple and convenient and effective component to improve the convolutional
neural network.
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Figure 5: Comparison of basic model and Ghost

4.2. Transfer Learning

Due to the complexity of 3D CT image data and the diversity of data representation, including
changes in the size and shape of CT image voxels, many image analysis algorithms are difficult to
apply correctly, and the complexity and high cost of manually labeling 3D CT images, resulting
in a lack of a large amount of high-quality labeling data. So transfer learning can transform
existing data to acquire basic knowledge to assist future learning. Transfer Learning [12]aims to
use the knowledge gained from the current context as the main means to complete learning in



another context. It is also a method of machine learning. The parameters of the training model
developed for task A can be used as the initial point and transferred to the model developed
for task B to help train the new model. Initializing the network with migration parameters can
improve generalization performance. Even migrating from tasks that are not particularly similar
is better than using random filters (or random parameters). Because deep learning models
require a lot of training time and training data to get good results, and transfer learning can
alleviate this necessity. This method has shown remarkable performance in a variety of medical
image classification frameworks [13, 14].

In the experiment, we transfer the feature extraction capabilities learned by the neural
network on the ImageNet dataset as prior knowledge to the feature extraction of CT image
projection. After retaining the weights of EfficientNet on its data set, first, we choose to freeze
the weights of the first k layers in the pre-trained model. Then we train the remaining n-k
layers. Finally, it needs to be adjusted according to the corresponding output and format to
make it meet the output of the task.

5. Experiment

5.1. Data preprocessing

In the experiment, because the official data set is the 3D image, and more computational overhead
is required. In the case of limited GPU memory, heavy memory and computational requirements
need to be overcome. Therefore, it is necessary for us to first convert the image into the 2D
image in the image preprocessing, and it is also necessary to preserve the information of each
dimension of the 3D image as much as possible. The method we use is to first process the data
according to the two officially provided mask methods. Then the image is projected on the three
coordinate axes, namely sagittal, frontal and axial projection, which makes the image easier to
process and also increases the amount of data, which makes the training information richer.
In addition, some data enhancement methods are used to prevent overfitting and refine image
details, such as image enhancement by rotation, cropping, or whitening techniques. Since there
is no verification set, we will separate the training set from the training set for verification at a
ratio of 3:1.

The main steps that need to be performed to generate a CT projection image are: the voxel
intensity value of the CT image is increased by 1024 Hounsfield Units (HU) to ensure that it is
only a positive intensity value. To eliminate the effect of image segmentation defects on the
edge of the lung mask, an ellipsoid structure element with a radius of 10 is used to corrode the
lung membrane along the XY plane. The radius along the Z-axis is calculated as the inter-layer
distance of a specific CT image. The image intensity value outside the corroded lung mask is set
to zero. The intensity threshold can be used to filter low-intensity noise voxels. The advantage
of this method over traditional slice representation is that each projection obtained by averaging
the value of voxel intensity contains information about all slices in the image. On the one hand,
this method greatly reduces the complexity of input and training data transmission and greatly
reduces the task of learning on limited training data. On the other hand, generating projections
along different axes (X, Y, Z) provides additional "native" enhancements to the input data.
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Figure 6: The actual model we used in the competition

5.2. Experimental model and analysis

The experimental process is shown in figure 6. We first convert 3D images into 2D images
through preprocessing methods such as projection. Then through the EfficientNet network,
and the network uses transfer learning, and transfers the feature extraction capabilities learned
on the Image Net dataset as prior knowledge to the feature extraction of CT image projection.
Here we simplify the structure of the original EfficientNet, remove the final fully connected
layer, and use the new linear layer to implement the one classification task with 5 labels of this
year’s task. Subsequently, we unfroze the final convolutional layer of EfficientNet and iterated
normally. This prevents the network from overfitting during training and allows us to train
the model for a longer time for better generalization. In addition, we turn the 1*1 convolution
in EfficientNet into a ghost module to effectively reduce costs. Due to the official provision of
two masks, we use the processed data of the two masks to train separately, and the final results
show that mask2 performs better. The specific model structure of the experiment is shown in
Figure 6. Among them, the EfficientNet module has been streamlined and improved.

In our experiment, a total of 100 epochs were trained. The Adam used by the optimizer has a
learning rate of 1e-05 and a batch size of 32. During the training process, it stabilized at about
60 epochs, and then we fine-tuned the model, and finally performed best at 100 epochs.

6. Results

After all the CT images have been processed by the two masks, then the training set is divided
into the verification set according to 3:1, and the accuracy rates of the final verification sets of
the two mask data are shown in Table 3. The evaluation methods used in this ImageCLEF 2021
Tuberculosis-TBT classification task are kappa and acc. Our final kappa score is 0.015 and our
acc score is 0.380, as shown in Figure 7.



Table 3
Results achieved on local validation set for two mask types

ValidationSet Accuracy

MASK#1 0.416
MASK#2 0.432

Figure 7: The final official score of this challenge

7. Perspectives For Future Work

In this task, before experimenting with images, the way of preprocessing the data needs to be
improved. For example, the model used can only process 2D images, so that a lot of important
feature information is lost when the 3D projection is changed to 2D. In addition, the pre-training
before transfer learning is performed on the ImageNet dataset. However, general image data
sets and medical data sets are still quite different. Therefore, there is still much room for
improvement in these two specific aspects of data preprocessing.

In this competition, since we are only limited to the implementation of deep learning knowl-
edge. However, due to our lack of medical knowledge and in-depth understanding of CT images,
the importance of medical image features or label information has been neglected, resulting in
poor results. In addition, we should be aware of the latest developments in deep learning, and
we should not only limit the design of models to CNN. Recently, many excellent teams have
begun to study the work of visual Transformer. The Transformer module has achieved amazing
results in the field of natural language processing and has become a standard configuration in
the field of NLP, but in the field of imagery, CNN (such as ResNet, DenseNet, etc.) occupies
most of the SOTA results. In future work, we will apply the Transformer in the NLP field to the
image field as much as possible. I believe that shortly, Transformer can also achieve the same
excellent results in the image field as the NLP field.
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