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Abstract
The PAN 2021 authorship verification (AV) challenge is part of a three-year strategy, moving from a
cross-topic/closed-set AV task to a cross-topic/open-set AV task over a collection of fanfiction texts.
In this work, we present a novel hybrid neural-probabilistic framework that is designed to tackle the
challenges of the 2021 task. Our system is based on our 2020 winning submission, with updates to
significantly reduce sensitivities to topical variations and to further improve the system’s calibration by
means of an uncertainty adaptation layer. Our framework additionally includes an out-of-distribution
detector (O2D2) for defining non-responses. Our proposed system outperformed all other systems that
participated in the PAN 2021 AV task.
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1. Introduction
In this paper we are proposing a significant extension to the authorship verification (AV) system
presented in [1]. The work is part of the PAN 2021 AV shared task[2], for which the PAN
organizers provided the challenge participants with a publicly available dataset of fanfiction.

Fanfiction texts are fan-written extensions of well-known story lines, in which the so-called
fandom topic describes the principal subject of the literary document (e.g. Harry Potter). The
use of fanfiction as a genre has three major advantages. Firstly, the abundance of texts written
in this genre makes it feasible to collect a large training dataset and, therefore, to build more
complex authorship verification (AV) systems based on modern deep learning techniques, which
will hopefully boost progress in this research area. Additionally, fanfictional documents also
come with meaningful meta-data like topical information, which can be used to investigate the
topical interference in authorship analysis. Lastly, although the documents are usually produced
by non-professional writers, contrary to social media messages, they usually follow standard
grammatical and spelling conventions. This allows participants to incorporate pretrained models
for, e.g., part-of-speech tagging, and to reliably extract traditional stylometric features [3].

The previous edition of the PAN AV task dealt with cross-fandom/closed-set AV [4]. The
objective of the cross-fandom AV task is to automatically decide whether two fanfictional
documents covering different fandoms belong to the same author. The term closed-set refers to
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Figure 1: Our proposed hybrid neural-probabilistic framework for the PAN 2021 cross-fandom
open-set authorship verification task.

the fact that the test dataset, which is not publicly available, only contains trials from a subset
of the authors and fandoms provided in the training data.

To increase the level of difficulty, the current PAN AV challenge moved from a closed-set
task to an open-set task in 2021, while the training dataset is identical to that of the previous
year [5]. In this scenario, the new test data contains only authors and fandoms that were not
included in the training data. We thus expect a covariate shift between training and testing data,
i.e. the distribution of our neural stylometric representations extracted from the training data is
expected to be different from the distribution of the test data representations. It was implicitly
shown in [4], and our experiments confirm this analysis, that such a covariate shift, due to topic
variability, is a major cause of errors.

2. System Overview
The overall structure of our revised system1 is shown in Fig. 1. It expands our winning system
from 2020 as follows: Suppose we have a pair of documents 𝒟1 and 𝒟2 with an associated
ground-truth hypothesisℋ𝑎 for 𝑎 ∈ {0, 1}. The value of 𝑎 indicates, whether the two documents
were written by the same author (𝑎 = 1) or by different authors (𝑎 = 0). Our task can formally
be expressed as a mapping 𝑓:{𝒟1,𝒟2} −→ 𝑝 ∈ [0, 1]. The estimated label ̂︀𝑎 is obtained from a
threshold test applied to the output prediction 𝑝. In our case, we choose ̂︀𝑎 = 1 if 𝑝 > 0.5 and̂︀𝑎 = 0 if 𝑝 < 0.5. The PAN 2020/21 shared tasks also permit the return of a non-response (in
addition to ̂︀𝑎 = 1 and ̂︀𝑎 = 0) in cases of high uncertainty [4], e.g. when 𝑝 is close to 0.5. In this
work, we therefore define three hypotheses:

ℋ0 : The two documents were written by two different persons,

ℋ1 : The two documents were written by the same person,

ℋ2 : Undecidable, trial does not suffice to establish authorship.

In [1], we introduced the concept of linguistic embedding vectors (LEVs). To obtain these,
we perform neural feature extraction followed by deep metric learning (DML) to encode the
stylistic characteristics of a pair of documents into a pair of fixed-length and topic-invariant
stylometric representations. Given the LEVs, a Bayes factor scoring (BFS) layer computes the

1The source code is accessible online: https://github.com/boenninghoff/pan_2020_2021_authorship_
verification
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posterior probability for a trial. This discriminative two-covariance model was introduced in [6].
As a new component, we propose an uncertainty adaptation layer (UAL). This idea is adopted
from [7], aiming to find and correct wrongly classified trials of the BFS layer, to model its noise
behavior, and to return re-calibrated posteriors.

For the decision whether to accept ℋ0/ℋ1, or to return a non-response, i.e. ℋ2, it is desirable
that the value of the posterior 𝑝 reliably reflects the uncertainty of the decision-making process.
We may roughly distinguish two different types of uncertainty [8]: In AV, aleatoric or data
uncertainty is associated with properties of the document pairs. Examples are topical variations
or the intra- and inter-author variabilities. Aleatoric uncertainty generally can not be reduced,
but it can be addressed (to a certain extent) by returning a non-response (i.e. hypothesis ℋ2)
if it is too large to allow for a reliable decision. To accomplish this, and inspired by [9], we
incorporate a feed-forward network for out-of-distribution detection (O2D2), which is trained
on a dataset that is different, i.e. disjoint w.r.t. authors and fandoms, from the training set used
to optimize the DML, BFS and UAL components.

Additionally, epistemic or model uncertainty characterizes uncertainty in the model parame-
ters. Examples are unseen authors or topics. Epistemic uncertainty can be reduced through a
substantial increase in the amount of training data, i.e. an increase in the number of training
pairs. We capture epistemic uncertainty in our work through the proposed O2D2 approach
and also by extending our model to an ensemble. We expect all models to behave similarly for
known authors or topics, but the output predictions may be widely dispersed for pairs under
covariate shift [10].

The training procedure consists of two stages: In the first stage, we simultaneously train the
DML, BFS and UAL components. In the second stage, we learn the parameters of the O2D2
model.

3. Dataset Splits for the PAN 2021 AV Task
The text preprocessing strategies, including tokenization and pair re-sampling, are comprehen-
sively described in [11]. The fanfictional dataset for the PAN 2020/21 AV tasks are described
in [4, 5]. In the following, we report on the various dataset splits that we employed for our PAN
2021 submission.

Each document pair is characterized by a tuple (𝑎, 𝑓), where 𝑎 ∈ {0, 1} denotes the authorship
similarity label and 𝑓 ∈ {0, 1} describes the equivalent for the fandom. We assign each
document pair to one of the following author-fandom subsets2 SA_SF, SA_DF, DA_SF, and
DA_DF given its label tuple (𝑎, 𝑓).

As shown in [11], one of the difficulties working with the provided small/large PAN datasets
is that each author generally contributes only with a small number of documents. As a result,
we observe a high degree of overlap in the re-sampled subsets of same-author trials. We
decided to work only with the large dataset this year and split the documents into three disjoint
(w.r.t. authorship and fandom) sets. Overlapping documents, where author and fandom belong
to different sets, are removed. The splits are summarized in Fig. 2 and Table 1. Altogether,
the following datasets have been involved in the PAN 2021 shared task, to train the model
components, tune the hyper-parameter and for testing:

2SA=same author, DA=different authors, SF=same fandom, DF=different fandoms
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Figure 2: Disjoint splits of the large PAN 2020/21 training set.

Table 1: Numbers of (re-)sampled pairs for all datasets.

Dataset SA_SF SA_DF DA_SF DA_DF
Training set 16,045 28,500 64,300 42,730

Calibration set 2,100 2,715 4,075 4,075
Validation set 0 2,280 3075 0

Development set 0 5,215 7,040 0

• The training set is identical to the one used in [11] and was employed for the first
stage, i.e., to train the DML, BFS and UAL components simultaneously. During training
we re-sampled the pairs epoch-wise such that all documents contribute equally to the
neural network training in each epoch. The numbers of training pairs provided in Table 1
therefore vary in each epoch.

• The calibration set has been used for the second stage, i.e., to train (calibrate) the O2D2
model. During training, we again re-sampled the pairs in each epoch and limited the total
number of pairs in the different-authors subsets to partly balance the dataset.

• The purpose of the validation set is to tune the hyper-parameters of the O2D2 stage
and to report the final evaluation metrics for all stages in Section 5.

• The development set is identical to the evaluation set in[11] and was used to tune the
hyper-parameters during the training of the first stage. This dataset contains pairs from
the calibration and validation sets. However, due to the pair re-sampling strategy in [11],
documents may appear in different subsets and varied document pairs may be sampled.
It thus does not represent a union of the calibration and validation sets.

• Finally, the PAN 2021 evaluation set, which is not publicly available, has been used
to test our submission and to compare it with the proposed frameworks of all other
participants.

Note that both, the validation and development set in Table 1 only contain SA_DF and DA_SF
pairs, for reasons discussed in Section 5. The pairs of these sets are sampled once and then kept
fixed.

4. Methodologies
In this section, we briefly describe all components of our neural-probabilistic model. Sections 4.1
through 4.4 repeat information that is already provided in [11] to provide proper context.

4.1. Neural Feature Extraction and Deep Metric Learning
Feature extraction and deep metric learning are realized in the form of a Siamese network,
feeding both input documents through exactly the same function.



4.1.1. Neural Feature Extraction:

The system passes token and character embeddings into a two-tiered bidirectional LSTM
network with attentions,

𝑥𝑖 = NeuralFeatureExtraction𝜃
(︀
𝐸𝑤

𝑖 ,𝐸
𝑐
𝑖

)︀
, (1)

where 𝜃 contains all trainable parameters, 𝐸𝑤
𝑖 represents word embeddings and 𝐸𝑐

𝑖 represents
character embeddings. A comprehensive description is given in [12].

4.1.2. Deep Metric Learning:

We feed the document embeddings𝑥𝑖 in Eq. (1) into a metric learning layer, 𝑦𝑖 = tanh
(︀
𝑊 DML𝑥𝑖+

𝑏DML)︀, which yields the two LEVs 𝑦1 and 𝑦2 via the trainable parameters 𝜓 = {𝑊 DML, 𝑏DML}.
We then compute the Euclidean distance between both LEVs, 𝑑(𝑦1,𝑦2) = ‖𝑦1 − 𝑦2‖

2
2 . In [11],

we introduced a new probabilistic version of the contrastive loss: Given the Euclidean distance
of the LEVs, we apply a kernel function

𝑝DML(ℋ1|𝑦1,𝑦2) = exp
(︀
− 𝛾 𝑑(𝑦1,𝑦2)

𝛼
)︀
, (2)

where 𝛾 and 𝛼 can be seen as both, hyper-parameters or trainable variables. The loss then is
given by

ℒDML
𝜃,𝜓 = 𝑎 ·max

{︀
𝜏𝑠 − 𝑝DML(ℋ1|𝑦1,𝑦2), 0

}︀2
+ (1− 𝑎) ·max {𝑝DML(ℋ1|𝑦1,𝑦2)− 𝜏𝑑, 0}2 ,

(3)

where we set 𝜏𝑠 = 0.91 and 𝜏𝑑 = 0.09.

4.2. Deep Bayes Factor Scoring
We assume that the LEVs stem from a Gaussian generative model that can be decomposed as
𝑦 = 𝑠 + 𝑛, where 𝑛 characterizes a noise term. We assume that the writing characteristics
of the author lie in a latent stylistic variable 𝑠. The probability density functions for 𝑠 and
𝑛 are modeled as Gaussian distributions. We outlined in [1] how to compute the likelihoods
for both hypotheses. The verification score for a trial is then given by the log-likelihood ratio:
score(𝑦1,𝑦2) = log 𝑝(𝑦1,𝑦2|ℋ1) − log 𝑝(𝑦1,𝑦2|ℋ0). Assuming 𝑝(ℋ1) = 𝑝(ℋ0) = 1

2 , the
probability for a same-author trial is calculated as [1]:

𝑝BFS(ℋ1|𝑦1,𝑦2) =
𝑝(𝑦1,𝑦2|ℋ1)

𝑝(𝑦1,𝑦2|ℋ1) + 𝑝(𝑦1,𝑦2|ℋ0)
= Sigmoid

(︀
score(𝑦1,𝑦2)

)︀
(4)

We reduce the dimension of the LEVs via 𝑦BFS𝑖 = tanh
(︀
𝑊 BFS𝑦𝑖 + 𝑏

BFS)︀ to ensure numerically
stable inversions of the matrices [1]. We rewrite Eq. (4) as

𝑝BFS(ℋ1|𝑦1,𝑦2) = Sigmoid
(︀
score(𝑦BFS1 ,𝑦BFS2 )

)︀
(5)

and incorporate Eq. (5) into the binary cross entropy,

ℒBFS
𝜑 = 𝑎 · log {𝑝BFS(ℋ1|𝑦1,𝑦2)}+ (1− 𝑎) · log {1− 𝑝BFS(ℋ1|𝑦1,𝑦2)} , (6)

where all trainable parameters are denoted with 𝜑 =
{︀
𝑊 BFS, 𝑏BFS,𝑊 ,𝐵,𝜇

}︀
.



4.3. Uncertainty Modeling and Adaptation
Now, we treat the posteriors of the BFS component as noisy outcomes and rewrite Eq. (5) as
𝑝BFS( ̂︀ℋ1|𝑦1,𝑦2) to emphasize that this represents an estimated posterior. We firstly have to
find a single representation for both LEVs, which is done by 𝑦UAL = tanh

(︀
𝑊 UAL(︀𝑦1−𝑦2)︀∘2+

𝑏UAL
)︀
, where (·)∘2 denotes the element-wise square. Next, we compute a 2×2 confusion matrix

as follows

𝑝(ℋ𝑗 | ̂︀ℋ𝑖,𝑦1,𝑦2) =
exp

(︀
𝑤𝑇

𝑗𝑖 𝑦
BFS + 𝑏𝑗𝑖

)︀∑︀
𝑖′∈{0,1}

exp
(︀
𝑤𝑇

𝑗𝑖′ 𝑦
BFS + 𝑏𝑗𝑖′

)︀ for 𝑖, 𝑗 ∈ {0, 1}. (7)

The term 𝑝(ℋ𝑗 | ̂︀ℋ𝑖,𝑦1,𝑦2) defines the conditional probability of the true hypothesis ℋ𝑗 given
the hypothesis ̂︀ℋ𝑖 assigned by the BFS. We can then define the final output predictions as:

𝑝UAL(ℋ𝑗 |𝑦1,𝑦2) =
∑︁

𝑖∈{0,1}

𝑝(ℋ𝑗 | ̂︀ℋ𝑖,𝑦1,𝑦2) · 𝑝BFS( ̂︀ℋ𝑖|𝑦1,𝑦2). (8)

The loss consists of two terms, the negative log-likelihood of the ground-truth hypothesis and a
regularization term,

ℒUAL
𝜆 = − log 𝑝UAL(ℋ𝑗 |𝑦1,𝑦2) + 𝛽

∑︁
𝑖∈{0,1}

∑︁
𝑗∈{0,1}

𝑝(ℋ𝑗 | ̂︀ℋ𝑖,𝑦1,𝑦2) · log 𝑝(ℋ𝑗 | ̂︀ℋ𝑖,𝑦1,𝑦2),

(9)

with trainable parameters denoted by 𝜆 =
{︀
𝑊 UAL, 𝑏𝑓UAL,𝑤𝑗𝑖, 𝑏𝑗𝑖|𝑗, 𝑖 ∈ {0, 1}

}︀
. The regular-

ization term, controlled by 𝛽, follows the maximum entropy principle to penalize the confusion
matrix for returning over-confident posteriors [13].

4.4. Combined Loss Function:
All components are optimized independently w.r.t. the following combined loss:

ℒ𝜃,𝜓,𝜑,𝜆 = ℒDML
𝜃,𝜓 + ℒBFS

𝜑 + ℒUAL
𝜆 . (10)

4.5. Out-of-Distribution Detector (O2D2)

Following [9], we incorporate a second neural network to detect undecidable trials. We treat
the training procedure as a binary verification task. Given the learned DML, BFS and UAL
components, the estimated authorship labels are obtained viâ︀𝑎 = argmax

[︀
𝑝UAL(ℋ0|𝑦1,𝑦2), 𝑝UAL(ℋ1|𝑦1,𝑦2)

]︀
. (11)

Now, we can define the binary O2D2 labels as follows:

𝑙O2D2 =

{︃
1, if 𝑎 ̸= ̂︀𝑎 or 0.5− 𝜖 ≤ 𝑝UAL(ℋ1|𝑦1,𝑦2) ≤ 0.5 + 𝜖,

0, otherwise.
(12)

The model-dependent hyper-parameter 𝜖 ∈ [0.05, 0.15] is optimized on the validation set w.r.t
the PAN 2021 metrics. The input of O2D2, noted as 𝑦O2D2, is a concatenated vector of the LEVs,
i.e.

(︀
𝑦1−𝑦2

)︀∘2 and
(︀
𝑦1+𝑦2

)︀∘2, and the confusion matrix. This vector is fed into a three-layer
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Figure 3: Averaged accuracy curves (including mean and standard deviation) for the authorship
and fandom verification outputs during training.

architecture,

ℎ1 = tanh
(︀
𝑊 O2D2

1 𝑦O2D2 + 𝑏O2D21

)︀
,

ℎ2 = tanh
(︀
𝑊 O2D2

2 ℎ1 + 𝑏
O2D2
2

)︀
,

𝑝O2D2(ℋ2|𝑦1,𝑦2) = Sigmoid
(︀
𝑊 O2D2

3 ℎ2 + 𝑏
O2D2
3

)︀
.

(13)

All trainable parameters are summarized in Γ =
{︀
𝑊 O2D2

𝑖 , 𝑏O2D2𝑖 |𝑖 ∈ {1, 2, 3}
}︀

. The obtained
prediction for hypothesis ℋ2 is inserted into the cross-entropy loss,

ℒO2D2
Γ = 𝑙O2D2 · log {𝑝O2D2(ℋ2|𝑦1,𝑦2)}+ (1− 𝑙O2D2) · log {1− 𝑝O2D2(ℋ2|𝑦1,𝑦2)} . (14)

4.6. Ensemble Inference
As a last step, an ensemble is constructed from 𝑀 trained models, ℳ1, . . . ,ℳ𝑀 , with 𝑀 being
an odd number. Since all models are randomly initialized and trained on different re-sampled
pairs in each epoch, we expect to obtain a slightly different set of weights/biases, which in turn
produces different posteriors, especially for pairs under covariate shift. We propose a majority
voting for the non-responses. More precisely, the ensemble returns a non-response, if

𝑀∑︁
𝑚=1

1
[︀
𝑝O2D2(ℋ2|𝑦1,𝑦2,ℳ𝑚) ≥ 0.5

]︀
>

⌊︂
𝑀

2

⌋︂
, (15)

where 1[·] denotes the indicator function. Otherwise, we define a subset of confident models,
ℳ𝑐 = {ℳ| 𝑝O2D2(ℋ2|𝑦1,𝑦2,ℳ) < 0.5}, and return the averaged posteriors of its elements,

E
[︀
𝑝UAL(ℋ1|𝑦1,𝑦2)

]︀
=

1

|ℳ𝑐|
∑︁

ℳ∈ℳ𝑐

𝑝UAL(ℋ1|𝑦1,𝑦2,ℳ). (16)

Our submitted system consisted of an ensemble with 𝑀 = 21 trained models.



Table 2: Averaged results (including mean and standard deviation) of the UAL framework for
different subset combinations on the calibration dataset.

Model PAN 2021 Evaluation Metrics
AUC c@1 f_05_u F1 Brier overall

SA_SF + DA_DF 99.8± 0.0 97.5± 0.2 97.2± 0.3 97.5± 0.2 98.1± 0.1 98.0± 0.2
SA_SF + DA_SF 99.6± 0.1 95.9± 0.4 94.8± 0.6 96.0± 0.4 97.1± 0.2 96.7± 0.4
SA_DF + DA_DF 98.1± 0.1 92.4± 0.3 94.8± 0.3 92.1± 0.3 94.2± 0.2 94.3± 0.2
SA_DF + DA_SF 97.1± 0.1 90.9± 0.3 92.3± 0.6 90.6± 0.3 93.1± 0.2 92.8± 0.3

Table 3: Averaged calibration results (including mean and standard deviation) of the UAL
framework for different subsets on the calibration dataset.

Model Calibration Metrics
acc conf ECE MCE

SA_SF + DA_DF 98.4± 0.3 97.4± 1.0 1.1± 0.9 5.7± 3.6
SA_SF + DA_SF 96.1± 0.6 95.6± 1.0 1.3± 0.8 9.9± 4.0
SA_DF + DA_DF 92.4± 0.3 93.4± 1.2 1.6± 0.6 6.2± 2.5
SA_DF + DA_SF 90.9± 0.3 92.4± 1.2 2.0± 0.7 7.4± 2.9

5. Experiments
The PAN evaluation metrics and procedure are described in [4, 5, 14]. To capture the calibration
capacity, we also provide the accuracy (acc), confidence score (conf), expected calibration error
(ECE) and maximum calibration error (MCE) [15]. All confidence values lie within the interval
[0.5, 1], since we are solving a binary classification task. Hence, to obtain confidence scores, the
posterior values are transformed w.r.t. the estimated authorship label, showing 𝑝(ℋ1|𝑦1,𝑦2) if̂︀𝑎 = 1 and 1−𝑝(ℋ1|𝑦1,𝑦2) if ̂︀𝑎 = 0. For both metrics, the confidence interval is discretized into
a fixed number of bins. The ECE then reflects the average absolute error between confidence
and accuracy of all bins, while the MCE returns the maximum absolute error. For acc and conf,
we perform weighted macro-averaging w.r.t. the number of trials in each bin.

Inspired by the promising results in domain-adversarial training of neural networks in [16,
17], we also experimented with an adversarial fandom verifier : Starting with the document
embeddings in Eq. (1), we fed this vector into the author verification system (including DML,
BFS and UAL) and into an additional fandom verifier, which is placed parallel to the author
verification system. It has the same architecture but includes a gradient reversal layer and
different trainable parameters. However, in these experiments, we did not achieve any significant
improvements by domain-adversarial training. Therefore, we independently optimized the
fandom verifier by stopping the flow of the gradients from the fandom verifier to the authorship
verification components, so that the training of the fandom verifier does not affect the target
system at all. Fig. 3 shows the obtained epoch-wise accuracies during training. It can be seen
that the fandom accuracy stays around 55%, which indicates that the training strategy yields
nearly topic-invariant stylometric representations, even without domain-adversarial training.

5.1. Results on the Calibration Dataset
We first evaluated the UAL component on the calibration set (without non-responses) and
calculated the respective PAN metrics for different combinations of the author-fandom subsets.



Table 4: Results for PAN 2021 evaluation metrics on the validation datset.

Model PAN 2021 Evaluation Metrics
AUC c@1 f_05_u F1 Brier overall

si
ng

le
DML 97.2± 0.1 91.3± 0.3 90.5± 0.6 89.6± 0.4 93.2± 0.4 92.4± 0.2
BFS 97.1± 0.1 91.0± 0.3 90.7± 0.8 89.2± 0.5 93.2± 0.1 92.3± 0.2
UAL 97.2± 0.1 91.3± 0.3 90.7± 0.5 89.6± 0.4 93.5± 0.2 92.5± 0.2

O2D2 97.1± 0.1 93.8± 0.2 88.1± 0.6 93.5± 0.3 93.4± 0.1 93.2± 0.2

ensemble 97.8 92.5 92.1 90.9 94.3 93.5

ensemble + O2D2 97.7 94.8 90.0 94.5 94.2 94.2

Table 5: Results for the calibration metrics on the validation dataset.

Model Calibration Metrics
acc conf ECE MCE

si
ng

le

DML 91.3± 0.3 87.9± 2.7 3.4± 2.7 9.0± 3.6
BFS 91.0± 0.3 90.0± 2.3 2.3± 1.5 6.2± 3.0
UAL 91.3± 0.3 92.3± 1.2 1.6± 0.6 5.8± 2.2

O2D2 91.4± 0.3 90.9± 1.1 2.3± 0.5 10.7± 2.7

ensemble 92.5 91.2 1.2 2.9

ensemble + O2D2 92.6 91.8 1.5 10.2

Results are shown in Table 2. To guarantee that the calculated metrics are not biased by an
imbalanced dataset, we reduced the number of pairs to the smallest number of pairs of all
subsets. Thus, all results in Table 2 were computed from 2× 2, 100 pairs. Unsurprisingly, best
performance was obtained for the least challenging SA_SF + DA_DF pairs and the worst perfor-
mance was seen for the most challenging SA_DF + DA_SF pairs. We continued to optimize our
system w.r.t this most challenging subset combination in particular, even though we specifically
expect to see SA_DF + DA_DF pairs in the PAN 2021 evaluation set.

Table 3 additionally provides the corresponding calibration metrics. Analogously to the PAN
metrics, the ECE consistently increases from the least to the most challenging data scenarios.
Interestingly, our system is under-confident for SA_SF pairs, i.e. conf < acc. The predictions
then change to be over-confident (conf > acc) for SA_DF pairs.

5.2. Results on the Validation Dataset
Next, we separately provide experimental results for all system components on the validation
dataset, since O2D2 has been trained on the calibration dataset. The first four rows in Tables 4
and 5 summarize the PAN metrics and the corresponding calibration measures averaged over
all ensembles models.

The overall score of the UAL component in the third row of Table 4 is on par with the DML
and BFS components and slightly lower compared to the corresponding UAL score measured
on the calibration dataset in Table 2. Nevertheless, we do not observe significant differences in
the metrics for both datasets, which shows the robustness and generalization of our system.

Going from the third to the fourth row in Table 4, it can be observed that the overall score,
boosted by c@1 and F1, significantly increases from 92.5 to 93.2. Hence, the model performs
better if we take undecidable trials into account. However, the f_05_u score decreases, since it
treats non-responses as false negatives. The percentage of undecidable trials generally ranges
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(a) SA_DF pairs without O2D2.
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(b) DA_SF pairs without O2D2.
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(c) SA_DF pairs including O2D2.
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(d) DA_SF pairs including O2D2.

Figure 4: Posterior histograms on the validation dataset.

from 8% to 11%.
In Table 5, we see that both, the BFS and UAL components notably improve the ECE and

MCE metrics. However, an insertion of non-responses via O2D2 significantly increases the MCE.
This can be explained by the posterior histograms in Fig. 4. The plots (a) and (b) show the
histograms for SA_DF and DA_SF pairs without applying O2D2 to define non-responses. In
contrast, plots (c) and (d) present the corresponding histograms including the 0.5-values of
non-responses. The effect of O2D2 is that most of the trials, whose posteriors fall within the
interval [0.3, 0.7], are eventually declared as undecidable. Hence, the system correctly predicts
nearly all of the remaining as confidently assigned trials around 0.7/0.8 for same-author pairs
or 0.2/0.3 for different-author pairs. As a result, we see a large gap (i.e. conf<< acc) between
the confidence score and the averaged accuracy in these bins.

The last two rows in Tables 4 and 5 show the performance of the ensemble, first without and
then with non-responses, to show the effect of O2D2. On the validation set, our ensemble with
O2D2 returns non-responses in 9% of the test cases. Comparing the last two rows, we obtain
the highest overall score with our proposed framework, which ultimately presents our final
submission.

5.3. Results on the PAN 2021 Evaluation Dataset
To conclude this section, we present our results on the official PAN 2021 evaluation set. The
performance for both, the early-bird and the final submission, can be found in Table 6. We also
provide the reported result on the PAN 2020 evaluation set for the predecessor model.



Table 6: Results of the early-bird (first two rows) and the final submission runs.

Dataset Model type AUC c@1 f_05_u F1 brier overall
Validation dataset single-21 97.2 93.6 89.3 92.9 93.3 93.3

PAN 21 evaluation dataset single-21 98.3 92.6 94.6 92.1 92.7 94.0

Validation dataset ensemble-21 97.7 94.8 90.1 94.4 94.2 94.2
PAN 21 evaluation dataset ensemble-21 98.7 95.0 93.8 95.2 94.5 95.5

PAN 20 evaluation dataset ensemble-20 96.9 92.8 90.7 93.6 - 93.5

Unsurprisingly, the early-bird overall score (single model) on the PAN 2021 evaluation set is
slightly higher, since it contains DA_DF pairs instead of DA_SF pairs. The main difference is,
unexpectedly, given by the f_05_u score, which increases from 89.3% to 94.6%. In our opinion,
this is caused by returning a lower number of non-responses, which would also explain the
lower values for c@1 and F1.

Comparing the early-bird (2𝑛𝑑 row) with the final submission (4𝑡ℎ row), we can further
significantly increase the overall score by 1.5%. We assume that the ensemble now returns a
higher number of non-responses, which results in a slightly lower f_05_u score. Conversely,
we can observe improved values for the c@1, F1 and brier scores.

The last row displays the achieved PAN 2020 results. As can be seen, our final submission
ends up with a higher overall score (plus 2%) by significantly improving all single metrics,
although the PAN competition moved from a closed-set to open-set shared task, illustrating the
efficiency of the proposed extensions.

6. Conclusion
In this work, we presented O2D2, which captures undecidable trials and supports our hybrid
neural-probabilistic end-to-end framework for authorship verification. We made use of the
early-bird submission to receive a preliminary assessment of how the framework behaves
on the novel open-set evaluation. Finally, based on the presented results, we submitted an
O2D2-supported ensemble to the shared task, which clearly outperformed our own system from
2020 as well as the new submissions to the PAN 2021 AV task.

These results support our hypothesis that modeling aleatoric and epistemic uncertainty and
using them for decision support is a beneficial strategy—not just for responsible ML, which
needs to be aware of the reliability of its proposed decisions, but also, importantly, for achieving
optimal performance in real-life settings, where distributional shift is almost always hard to
avoid.
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