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Abstract
Traditional Information Retrieval (IR) models, also known as lexical models, are hindered by the semantic gap, which refers
to the mismatch between different representations of the same underlying concept. To address this gap, semantic models
have been developed. Semantic and lexical models exploit complementary signals that are best suited for different types of
queries. For this reason, these model categories should not be used interchangeably, but should rather be properly alternated
depending on the query. Therefore, it is important to identify queries where the semantic gap is prominent and thus semantic
models prove effective. In this work, we quantify the impact of using semantic or lexical models on different queries, and
we show that the interaction between queries and model categories is large. Then, we propose a labeling strategy to classify
queries into semantically hard or easy, and we deploy a prototype classifier to discriminate between them.

1. Introduction
The semantic gap is a long-standing problem in
Information Retrieval (IR) that refers to the difference be-
tween the machine-level description of document and
query contents and the human-level interpretation of
their meanings [1]. In other words, it represents the
mismatch between users’ queries and the way retrieval
models understand such queries [2].

The semantic gap affects any domain, but it is promi-
nent in medical search [3, 4, 1]. Within biomedical lit-
erature, the large presence of (quasi-)synonymous and
polysemous terms – along with the use of acronyms and
terminological variants – represents a critical challenge
for retrieval models. In this regard, a query containing
the word “tumor” might not be effectively answered if
the retrieval model does not identify the synonymy rela-
tionship between “tumor” and, for example, “neoplasm”.
Besides, given a query containing the term “cold”, a re-
trieval model might retrieve erroneous documents if it
does not distinguish between the different meanings the
term “cold” assumes depending on the context, such as
“common cold”, “cold temperature”, or even “Chronic Ob-
structive Lung Disease”. These queries are known as
semantically hard queries [5].

Traditional IR models, which are known as lexical mod-
els as they compute the relevance score using heuristics
defined over the lexical overlap between queries and
documents, fail to effectively address semantically hard
queries. Semantic models were thus introduced to bridge
the semantic gap [6] and to overcome the limitations of
lexical models. However, semantic models have been
shown to provide complementary signals to lexical mod-
els that prove effective for semantically hard queries, but
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less for other queries [7]. Thus, it becomes necessary to
identify what category of models – between lexical and
semantic – best suits a user query given the document
collection at hand. In other words, we need to understand
what are the inherent features of query and documents
that make lexical or semantic models more effective.

To this end, we address the following research ques-
tions:

RQ1 How and to what extent does the semantic gap
impact query performance?

RQ2 What features determine the prominence of the
semantic gap within queries?

For RQ1, we investigate and compare the impact of lexi-
cal and semantic models on different topics. How large is
the interaction between topics and model categories? To
what extent does this interaction reflect in the different
topic formulations (i.e., queries)?
For RQ2, we explore a different set of well-known fea-
tures that relate to lexical and semantic models. In par-
ticular, we seek to understand whether pre-retrieval fea-
tures – based on corpus statistics or synonymy/polysemy
aspects – can be used to categorize queries as semanti-
cally easy or hard. In other words, how effective are
well-known pre-retrieval features for category selection?

To address the research questions, we first perform
statistical analyses quantifying the interaction between
topics, queries, and lexical and semantic categories using
ANalysis Of VAriance (ANOVA) [8]. Based on the out-
comes of the statistical analyses, we propose a labeling
strategy to categorize queries into semantically easy or
hard. The labeled queries are used to train a category
selector. The selector serves as a proxy to evaluate the
effectiveness of the considered pre-retrieval features in
determining the prominence of the semantic gap within
queries.

We conduct an experimental evaluation on two test
collections for ad hoc medical retrieval: OHSUMED [9]
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and TREC-COVID (Round 1) [10]. For lexical models,
we adopt standard state-of-the-art retrieval models. Re-
garding semantic models, we focus on first-stage seman-
tic models, which are best suited to tackle the semantic
gap [11]. In particular, we consider unsupervised first-
stage semantic models, which have shown to be com-
petitive with lexical models in medical collections [5].
Besides, unsupervised semantic models rely on textual
signals only – and not on relevance signals – thus al-
lowing us to focus exclusively on semantic and lexical
features.

The results of the experimental evaluation show that
topics, queries, and model categories strongly interact to
determine retrieval effectiveness. This evidence further
highlights the need to adopt the proper model category
to improve retrieval performance. Therefore, identify-
ing the right features to distinguish between semanti-
cally easy or hard queries becomes necessary in domains
where the semantic gap is prominent – and this work
poses the cornerstone towards this direction.

The rest of the paper is organized as follows: Section 2
reports related work; Section 3 presents the experimental
analysis; and Section 4 concludes the paper and outlines
the future directions.

2. Related Work
The problem addressed in this work relates to two topics
in IR: Model Selection and Query Performance Prediction
(QPP). Below, we review prominent approaches in these
areas and we highlight differences with our work.

One of the first approaches to model selection in IR
was developed by He and Ounis [12], who proposed a
query-based pre-retrieval approach. In [12], the authors
cluster queries according to pre-retrieval features and
link the best performing model to each cluster. Then,
given a new query, they assign it to the closest cluster
and use the model associated to that cluster to perform
retrieval. Balasubramanian and Allan [13] proposed a
learning approach for query-dependent model selection.
The selection framework relies on rank-time features –
available to retrieval models during ranking – to select
between two models. Model selection approaches based
on rank-time features have been further explored by
Balasubramanian in [14]. Beyond model selection, Levi
et al. [15] addressed the problem of selective cluster re-
trieval [16, 17, 18], where the objective is to decide, on a
per-query basis, whether to apply cluster-based retrieval
or standard document retrieval. In [15], the authors pro-
posed different sets of features based on cluster-based
rankers, query performance predictors, and cluster prop-
erties. The different sets of features are then used to
decide between cluster-based and standard document
retrieval.

Compared to the approaches reviewed for model selec-
tion, in this work we want to understand whether queries
can be categorized as semantically easy or hard. In other
words, we want to determine which models category be-
tween lexical and semantic is best suited on a per query
basis. In this sense, our work shows similarities with
that of Levi et al. [15], where the objective is to select
the most effective approach between cluster-based and
document-based retrieval given the query. However, we
refrain from using rank-time or post-retrieval features
in our analyses, as we want to keep the approach model-
agnostic – and thus less dependent on the specific sets
of considered retrieval models.

QPP techniques are traditionally divided into pre-
retrieval and post-retrieval. Pre-retrieval techniques [19,
20, 21, 22, 23] exploit the distribution of the query terms
within the collection, providing coarse-grained infor-
mation on the expected performance of a given query.
On the other hand, post-retrieval techniques [24, 25, 26]
leverage the information on the retrieval scores assigned
by the retrieval model. Such techniques tend to perform
better compared to pre-retrieval QPP [27], but are depen-
dent on the considered models.

The typical task for a QPP model is ranking queries
based on their expected performance [27]. Thus, QPP
techniques cannot be directly applied to category selec-
tion. Nevertheless, the signals provided by QPP models
can be used as input features for such task. In this work,
we want to identify a query as semantically easy or hard
regardless of the retrieval model considered. Thus, we fo-
cus on pre-retrieval approaches and we adopt two types
of features in our analyses: lexical- and semantic-oriented
features. Regarding lexical-oriented features, we consider
features proposed by He and Ounis [23] and by Zhao et al.
[22]. He and Ounis [23] explore the possibility to use the
distribution of the Inverse Document Frequency (IDF) over
query terms to determine the ability of lexical models
to retrieve relevant documents. Similarly, Zhao et al.
[22] propose a re-weighting schema based on IDF, called
Similarity between Collection and Query (SCQ). As for
semantic-oriented features, we adopt features similar to
those proposed by Mothe and Tanguy [21], who consider
linguistic aspects – such as synonymy and polysemy –
linked to the query terms. Compared to [21], however, we
consider signals from both the query and its interaction
with documents.

3. Experimental Analysis
We consider two collections in the following analyses:
OHSUMED [9] and TREC-COVID (Round 1) [10].

OHSUMED contains 349K documents and 63 topics.
Topics in OHSUMED have two fields: title and description.
We use description as topic formulation since the title field



Table 1
Mean Average Precision (MAP) of the models on OHSUMED
and TREC-COVID collections. Models performance are com-
parable both within and across models categories.

Model OHSUMED TREC-COVID

Lexical

TF-IDF 0.524 0.362
BM25 0.620 0.488
QLM 0.577 0.434
DFR 0.641 0.496
DFI 0.592 0.467

Semantic

Word2Vec 0.568 0.482
NVSM 0.595 0.455
SAFIR𝑠 0.604 0.463
SAFIR𝑝 0.610 0.461
SAFIR𝑠𝑝 0.612 0.466

poorly describes the underlying information need. TREC-
COVID (Round 1) has 30 topics and relies on the CORD-
19 corpus [28], which includes around 51K papers. Each
topic in TREC-COVID has three fields: a short keyword
query, a description, and a narrative. In our experiments,
we consider each field as a different formulation of the
topic. We also include the concatenation of the keyword
query and the description. Thus, the total number of
queries we consider for TREC-COVID is equal to 120.

Regarding lexical and semantic models, we consider
five different models for each category. The lexical mod-
els used are: TF-IDF [29]; BM25 [30]; Query Likelihood
Model with Dirichlet Smoothing (QLM) [31]; Divergence
From Randomness (DFR) [32]; and Divergence From In-
dependence (DFI) [33]. All lexical models perform stop-
words removal and stemming. As for semantic models,
we adopt: a Word2Vec [34] based approach where query
and document representations are built by summing
up the IDF-weighted representation of the words con-
tained in them [35, 36]; the Neural Vector Space Model
(NVSM) [11]; and three variants of the Semantic-Aware
neural Framework for IR (SAFIR) [5]. The three variants
of SAFIR are SAFIRsp, which integrates both polysemy
and synonymy, SAFIRp which integrates polysemy but
not synonymy, and SAFIRs which integrates synonymy
but not polysemy. All semantic models have been trained
for 10 epochs with parameters set as in [5].

We evaluate models using Average Precision (AP) at cut-
off 1000, obtaining an experimental Grid of Points (GoP)
as defined in [37]. The performances of the retrieval
models in terms of AP are reported in Table 1 for both
OHSUMED and TREC-COVID collections.

3.1. RQ1: Topic and Category Interaction
Several works have shown that queries strongly inter-
act with retrieval models in determining their perfor-
mance [38, 39]. This means that two models might have
similar average performance on a set of queries but, when
looked at the query-level, their performance might vary
greatly. A similar consideration also applies to lexical
and semantic models. Some queries are best suited to
semantic models, while some others to lexical ones [7, 5].
We are thus interested in quantifying such an effect. In
other words, we want to evaluate the interaction between
queries and model categories.

To determine whether the models category – that is,
lexical or semantic – has a significant effect on perfor-
mance, we conduct an ANOVA on the runs obtained with
the considered retrieval models. ANOVA is a well-known
statistical technique that allows identifying statistically
significant differences among experimental conditions.
Several works in IR applied ANOVA to determine the ef-
fect of different factors on the overall performance of an
IR system [38, 40, 39, 41]. ANOVA models the explained
variable, which in our case is AP, as a linear combination
of the effect of each factor in the experimental setup, plus
an error component. The error term accounts for the
variance in the data unexplained by the model.

In our analyses we first consider the following model:

𝑦𝑖𝑗𝑘 = 𝜇... + 𝜏𝑖 + 𝛾𝑗 + 𝛼𝑘(𝑗) + 𝜏𝛾𝑖𝑗 + 𝜀𝑖𝑗𝑘, (MD1)

where 𝑦𝑖𝑗𝑘 is the performance (measured using AP) ob-
served on the 𝑖-th topic using the 𝑘-th model of the 𝑗-th
class; 𝜇... is the grand mean over all the data; 𝜏𝑖 is the
effect of the 𝑖-th topic; 𝛾𝑗 is the effect of the 𝑗-th class;
𝛼𝑘(𝑗) is the effect of the 𝑘-th model inside the 𝑗-th class;
𝜏𝛾𝑖𝑗 is the interaction between the 𝑖-th topic and the
𝑗-th class and 𝜀𝑖𝑗𝑘 is the prediction error. Note that the
model factor is nested inside the category one. In the
above-mentioned ANOVA model, a IR model is mean-
ingful only in relation to its category. In other words,
since we cannot consider, for instance, BM25 inside the
“semantic” category, nor we can consider NVSM in the
“lexical” one, we define the model factor as nested inside
the category, and thus each model contributes only to
the variance of its category.

For each ANOVA, we report the Sum of Squares (SS),
the Degrees of Freedom (DF), the Mean Squares (MS),
the F-statistic (F), the p-value and the Strength of Associ-
ation (SOA), using the 𝜔2 indicator. The SOA indicates
the impact of each factor on the variability of the data.
Typically, a factor with 0.01 ≤ 𝜔2 < 0.06 is consid-
ered small-sized, while 0.06 ≤ 𝜔2 < 0.14 indicates a
medium-size effect, and 𝜔2 ≥ 0.14 a large-size effect.
Table 2 reports the results of the ANOVA on OHSUMED
using the above-mentioned GoP of runs.

From the results in Table 2 we observe that the effect of



Table 2
ANOVA summary table on runs for the OHSUMED collection. Observe the large interaction between the topic factor and
category factor. 𝜔2 for not significant factors is ill-defined and thus not reported.

Source SS DF MS F p-value �̂�2
⟨𝑓𝑎𝑐𝑡⟩

Topic 19.740 62 0.318 79.831 < 1𝑒− 4 0.886
Category 0.007 1 0.007 1.805 0.1797 —
Model(Category) 0.584 8 0.073 18.306 < 1𝑒− 4 0.180
Topic*Category 1.583 62 0.026 6.403 < 1𝑒− 4 0.347
Error 1.978 496 0.004

Total 23.892 629

the sole models category is not significant (p-value>0.05)
– which means that lexical and semantic categories are
not statistically significantly different. In other words, we
cannot say that either lexical or semantic models perform
best in absolute terms. Nevertheless, the interaction be-
tween topic and category is significant and the 𝜔2 value
indicates a large effect. This means that the category sig-
nificantly impacts on how good the results on a specific
topic will be. Such a finding suggests that the semantic
gap is an inherent property of the topics, less related to
the specific retrieval models and more on their category.
To further support this intuition, the interaction between
the topic and the category is larger than the effect of
the sole model. Thus, if we understand when a topic is
lexical or semantic, we can achieve large performance
improvements.

As for TREC-COVID, each topic is represented by four
different formulations: the keyword query, the descrip-
tion, the narrative and the concatenation of query and de-
scription. Each formulation of a topic can only be used in
relation to that topic and therefore the formulations have
to be treated as a nested factor inside the topic. Therefore,
we define a second ANOVA model, called MD2:

𝑦𝑖𝑙𝑗𝑘 = 𝜇...+𝜏𝑖+𝜑𝑙(𝑖)+𝛾𝑗+𝛼𝑘(𝑗)+𝜏𝛾𝑖𝑗+𝜑𝛾𝑙(𝑖)𝑗+𝜀𝑖𝑗𝑙𝑘,
(MD2)

which also includes 𝜑𝑙(𝑖), the effect of the 𝑙-th formula-
tion, nested inside the 𝑖-th topic, and 𝜑𝛾𝑙(𝑖)𝑗 , the interac-
tion between the 𝑙-th formulation of the 𝑖-th topic with
the 𝑗-th class. Table 3 summarizes the ANOVA results
with MD2 on TREC-COVID.

From the results on TREC-COVID we observe that
both the topic and its formulations have a large effect.
The importance of the formulation factor indicates that,
with an appropriate topic formulation, the performance
on the topic can change greatly. Similar to what we ob-
served in Table 2, the interaction between the topic and
the models category is large (𝜔2 = 0.390), larger than
the effect of both the sole category and the model. Also
the interaction between the topic formulation and the
models category is large (𝜔2 = 0.197), although not as
large as the one between topic and category. This sug-

gests that the semantic gap relates more to the underlying
information need than the different topic formulations.

Overall, we hypothesize that the relation between top-
ics and model categories, highlighted by ANOVA, links
to the semantic gap and the association of a topic with
its relevant documents. For instance, if a topic has many
relevant documents containing synonyms of the query
terms, then a semantic model might be best suited to
perform retrieval. In fact, in this case, most of the topic
formulations will not contain all the possible query syn-
onyms and will thus be affected by the semantic gap.
Conversely, topics that can be easily represented by few
keywords – likely to be found within relevant documents
– will have less ambiguous formulations, which are best
suited to lexical models.

3.2. RQ2: Features Importance for the
Semantic Gap

Section 3.1 showed the impact of choosing the proper
models category depending on the query at hand. If we
could classify queries as semantically hard or easy, we
might also adopt an IR model from the right category.
To properly train a classifier capable of doing that, we
need i) to label queries as “semantic” or “lexical”, and ii)
to find a set of features that correlate with such aspects
of the queries. The next two paragraphs tackle the above-
mentioned challenges.

Labeling queries The first aspect we address is the
labeling of queries as “semantic” or “lexical”. The absence
of a rigorous definition of semantically hard or easy for
a query prevents us from manually labeling queries as
“semantic” or “lexical”. In this regard, also the definition
of “hard” topic is a debated aspect [42]. Therefore, we
propose to label queries according to how the two models
categories perform on them. To the best of our knowl-
edge, this is the first automatic approach to address this
problem.

To this end, we first compute the average performance
of each model. Then, for each query, we perform the fol-



Table 3
ANOVA summary table on runs for the TREC-COVID collection. Observe the high �̂�2 effect for the interaction
topic*category that shows the importance of selecting the proper model category for each topic.

Source SS DF MS F p-value �̂�2
⟨𝑓𝑎𝑐𝑡⟩

Topic 24.100 29 0.831 301.291 < 1𝑒− 4 0.879
Query(Topic) 15.568 90 0.173 62.712 < 1𝑒− 4 0.822
Category 0.074 1 0.074 26.732 < 1𝑒− 4 0.021
Model(Category) 1.470 8 0.184 66.628 < 1𝑒− 4 0.304
Topic*Category 2.200 29 0.076 27.506 < 1𝑒− 4 0.390
Query(Topic)*Category 1.060 90 0.012 4.270 < 1𝑒− 4 0.197
Error 2.626 952 0.003

Total 47.098 1199

lowing three steps. Firstly, we compute for each model
the relative improvement over its average performance.
Secondly, we determine whether the relative improve-
ment is, on average, greater for lexical or semantic mod-
els. Finally, we label the considered query as “semantic”
if the improvement over the average model performance
is greater for semantic models than for lexical ones; vice
versa, we label the query as “lexical”.

Note that we do not consider absolute performances
to label queries, since even a poorly performing lexical
method like TF-IDF (cfr. Table 1) might prove effective
when the query is semantically easy. Thus, we focus
on relative improvements, which provide more robust
signals to performance outliers.

Let 𝒮 be the set of models and 𝒬 the set of queries. We
call𝐴𝑃𝑠(𝑞) the AP observed for the model 𝑠 on the query
𝑞, andMAP𝑠(𝒬) and std𝑠(𝒬) respectively the MAP and
the standard deviation of the AP observed for the model 𝑠
over the queries 𝒬. We define 𝑍𝑠,𝑞 = 𝐴𝑃𝑠(𝑞)−MAP𝑠(𝒬)

std𝑠(𝒬)

the relative improvement over the mean performance.
By standardizing relative improvements, we account

for the variability in models performances. Then, let 𝒮𝑠

be the set of semantic models, and 𝒮𝑙 the set of lexical
models.

Definition 3.1. A query 𝑞 is labeled as “semantic” iff∑︀
𝑠∈𝒮𝑠

𝑍𝑠,𝑞

|𝒮𝑠|
>𝛼

∑︀
𝑠∈𝒮𝑙

𝑍𝑠,𝑞

|𝒮𝑙|
,

where >𝛼, with 𝛼 ∈ [0.5, 1), indicates that the mean
relative improvement for semantic models is statistically
significantly higher than that for lexical models at signif-
icance level 𝛼. Queries are labeled as “lexical” using the
opposite ordering relation (<𝛼).

Therefore, using the above-mentioned definition we
can label queries as either “semantic” or “lexical” at a
specific level of 𝛼. In practice, given a query 𝑞, we
call 𝒵𝑞,𝑠𝑒𝑚 = {𝑍𝑠,𝑞 ∀ 𝑠 ∈ 𝒮𝑠} the set of relative im-
provements of the semantic models for 𝑞, and 𝒵𝑞,𝑙𝑒𝑥 =

Table 4
OHSUMED queries classification.

Label Confidence

𝛼 > 0.95 𝛼 > 0.90 𝛼 ≤ 0.90 Total

Semantic 13 3 10 26
Lexical 13 6 18 37

Both 26 9 28 63

Table 5
TREC-COVID queries classification.

Label Confidence

𝛼 > 0.95 𝛼 > 0.90 𝛼 ≤ 0.90 Total

Semantic 27 7 26 60
Lexical 27 8 25 60

Both 54 15 51 120

{𝑍𝑠,𝑞 ∀ 𝑠 ∈ 𝒮𝑙} the set of relative improvements of the
lexical models for 𝑞. Using an unpaired t-test, we deter-
mine whether 𝒵𝑞,𝑠𝑒𝑚 has greater mean than 𝒵𝑞,𝑙𝑒𝑥. If
so, then 𝑞 is labeled as “semantic”. On the other hand, if
𝒵𝑞,𝑙𝑒𝑥 has statistically significantly greater mean than
𝒵𝑞,𝑠𝑒𝑚, then 𝑞 is labeled as “lexical”. Otherwise, 𝑞 is
labeled as “neutral”.

Tables 4 and 5 report the statistics of our labeling ap-
proach for OHSUMED and TREC-COVID collections,
respectively, at different levels of confidence. We can ob-
serve that, in both collections, queries labeled with con-
fidence above 𝛼 = 0.90 (𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.1) make up more
than half of the total queries (i.e., 55.6% and 57.5% respec-
tively). Another interesting observation is that queries
labeled with high confidence split evenly between lexical
and semantic categories. This confirms what we observed
in Tables 2 and 3, where the effect of the sole category
plays a marginal role on performance. Focusing on TREC-
COVID queries, we observe that different formulations



of the same topic are either classified always in the same
category or, when this is not the case, such formulations
are labeled with low confidence1. This further explains
the magnitude of the effects observed in Table 3, where
the topic formulation showed a lower, although signif-
icant, interaction with the models category compared
to that of the topic. The only exceptions are topics 16
and 23, where the narrative formulation is lexical while
concatenation and query, for topic 16, and concatenation,
description, and query, for topic 23, are semantic with
confidence > 0.95. In this regard, it is interesting to note
that, for both topics, the formulation labeled as “lexical” is
always the narrative one. We attribute the reason for this
to the richer linguistic structure of the narrative formula-
tion, which, in both topics, presents a better description,
as well as several relevant concepts, of the underlying
information need – thus limiting the semantic gap and
reducing the need for semantic models.

In the following, we restrict to queries labeled with
confidence above 0.90, as we want to focus on queries
that have been labeled with a high degree of confidence.
Moreover, queries labeled as “neutral” for 𝛼 = 0.90 have
been discarded.

Features andCategory Selection To address the sec-
ond aspect of RQ2 – that is, classifying a query as “se-
mantic” or “lexical” – we explore two different sets of
pre-retrieval features: Lexical- and Semantic-oriented fea-
tures. Lexical-oriented features are based on query and
corpus statistics and depend on the distribution of terms
within the collection. Regarding semantic-oriented fea-
tures, we first perform semantic indexing on OHSUMED
and TREC-COVID collections as in [5]. Then, we adopt
features similar to those proposed by Mothe and Tan-
guy [21], but, instead of considering only query-based
features, we take into account both query- and corpus-
based features. The considered features are reported and
described in Table 6.

We employ three well-known classification models
to understand the effectiveness of the considered pre-
retrieval features when used to classify queries into lex-
ical and semantic categories. The adopted models are:
Decision Tree (DTr), Support Vector Machine (SVM), and
Multi-Layer Perceptron (MLP). To perform experiments,
we label queries using the process described above and
we restrict to “semantic” and “lexical” queries that present
a significance score greater than 0.90. For each classi-
fier, we perform grid search with cross-validation to ob-
tain the best hyper-parameters. We adopt 5-fold cross-
validation for TREC-COVID, whereas we use 3-fold cross-
validation for OHSUMED to avoid obtaining single-class
folds due to the low number of samples. The results of
the different classifiers are reported in Table 7, where we

1we omit these statistics, due to space reasons

report mean and standard deviation over the different
folds. To determine results significance (marked as †), we
apply a randomization test with Bonferroni correction
for multiple comparisons [43].

Regarding OHSUMED, we first highlight that MLP is
the best performing method. However, MLP is also the
method with the largest standard deviation for F1. This is
likely due to the small number of samples – i.e., 35 queries
labeled with confidence above 0.90. On top of this, none
of the considered methods perform statistically better
than the random classifier. Conversely, results for TREC-
COVID are more stable – highlighting the impact the
number of samples has on the stability of the classifiers
performance. Also in TREC-COVID, both SVM and MLP
are not statistically better than the random classifier. On
the other hand, however, DTr obtains preliminary yet
promising performance (i.e., 67% for accuracy and 66%
for F1) and it is significantly better than the random
classifier for both measures. This suggests the presence of
underlying patterns within data and the potential of the
considered features to distinguish between semantically
hard (“semantic”) and easy (“lexical”) queries.

Relying on the results of the decision tree, we further
investigate the features importance to determine which
features correlate the most with the semantic gap, caus-
ing the query to be either semantically easy or hard. We
only consider the decision tree built for TREC-COVID,
since results on OHSUMED are not statistically signifi-
cant. The first two features by importance are QDF (num-
ber of documents containing at least one query term)
and WSDF (number of documents containing only query
terms and no synonyms). Their importance is, respec-
tively, 17.6% and 16.7%. These features are both related
to the distribution of the query terms in the collection.
For this reason, they are likely used by the classifier to
identify semantically easy queries. Indeed, a large num-
ber of documents containing query terms is a potential
indicator for the performance of lexical models. Besides,
the fact that WSDF is the second most important feature
is a further evidence of this: if several documents contain
query terms, but only few of them present also synonyms
of such terms, then the semantic gap will likely be small
and lexical models will be effective. The third feature
by importance is meanSCQ (12.1%): a pre-retrieval score
based on IDF. A query having a high meanSCQ score indi-
cates that lexical models are likely to perform well. This is
due to the fact that most of the lexical approaches rely on
heuristics based on IDF. Note also that SCQ is considered
a “low performing” feature for predicting queries perfor-
mance [27]. Nevertheless, in our scenario, it gains rele-
vance in determining which models category performs
best for the query. The fourth feature is stdNCPQT (the
standard deviation over the number of concepts for each
polysemous word in the query). This feature has impor-
tance 10.1%, which indicates the relevance of polysemy in



Table 6
Pre-retrieval features considered for the category selection task.

Name Description

Lexical-oriented features

QL Number of terms in the query [21]
{std,mean,max}IDF Features based on the distribution of the IDF over the query terms [23]
{sum,mean,max}SCQ Features based on the similarity between corpus [22]
QDF Number of documents containing at least one query term

Semantic-oriented features

QPD Number of polysemous words within the query
{sum,std,max}NCQT Sum, standard deviation, and max over the number of concepts related to query terms
{sum,std}NCPQT Sum and standard deviation over the number of concepts related to polysemous query terms only
QSD Number of synonymous words within the query
{sum,std,max}NSEQC Sum, standard deviation, and max over the number of different synset elements related to query concepts
{sum,std}NSQC Sum and standard deviation over the number of different synonyms related to query concepts
SDF Number of documents containing at least one synonym of a query term
WSDF Number of documents containing at least one query term and no synonyms of the query terms
WTDF Number of documents containing at least one query synonym and no query terms

Table 7
Classifiers performance. We report mean and standard deviation over 3- and 5-folds for OHSUMED and TREC-COVID,
respectively. † indicates statistical significance over the random classifier, according to a permutation test with significance
0.95 and Bonferroni correction.

OHSUMED TREC-COVID

Accuracy F1 Accuracy F1

DTr 0.626 (0.089) 0.586 (0.057) 0.668 (0.093)† 0.659 (0.141)†
SVM 0.687 (0.074) 0.611 (0.079) 0.623 (0.053) 0.610 (0.136)
MLP 0.740 (0.081) 0.675 (0.146) 0.628 (0.217) 0.590 (0.269)

determining the models category: having (several) query
words with different concepts associated makes the query
ambiguous and semantic models best suited to address
it.The two subsequent features are sumNSEQC (8.8%) and
maxNSEQC (7.3%). They represent, respectively, the sum
and the maximum of the number of synset elements re-
lated to the query concepts. Both features are related to
synonymy, which is another relevant aspect that identi-
fies the presence of the semantic gap between queries and
documents. Similarly to our intuition about polysemy,
having query words with several synonyms suggests that
semantic models are best suited to retrieve relevant doc-
uments. Other features with decreasing, but significant,
importance are SDF (5.7%) and sumNCPQT (5.2%). As for
the remaining features, they are negligible according to
the classifier.

Thus, even though the results are preliminary and indi-
cate there is large room for improvement, they still high-
light that the considered lexical- and semantic-oriented
features relate with models categories. Therefore, they
can be used as a starting point to investigate the presence
of the semantic gap within test collections and to build
better approaches for category selection.

4. Conclusion
In this work, we investigated the impact of the seman-
tic gap on query performance, which features can be
used to determine this gap, and whether we can exploit
them to classify query as semantically easy (“lexical”) or
hard (“semantic”). Using ANOVA, we quantified the in-
teraction between topics, queries, and models categories.
The results showed that such interaction is large, high-
lighting the importance of choosing the proper models
category for retrieval performance. Surprisingly, the anal-
yses indicated that topics interact more than queries with
models categories. This suggests that the semantic gap
relates more to the underlying information need than
the different topic formulations. Then, we proposed a
labeling strategy, based on relative improvements, to
annotate queries as “semantic” or “lexical”. Finally, we
explored two different sets of pre-retrieval features and
we deployed a prototype classifier to understand the ef-
fectiveness of such features when used to classify queries.
We obtained promising results, which suggest a corre-
lation between the considered features and the models
categories.

As future work, we plan to further explore features ex-



traction and selection. In this regard, the preliminary re-
sults suggested that the considered features relate to mod-
els categories, but also highlighted that such correlation
is weak and needs to be improved. Beyond pre-retrieval
features, we also plan to investigate features related to
retrieval models – thus getting closer to a post-retrieval
setup. In this sense, we plan to adopt a pseudo-relevance
strategy that considers retrieved documents and looks
at the distribution of lexical- and semantic-oriented fea-
tures in such documents. Finally, we plan to consider
other domains besides the medical one, such as the news
or Web domains.
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