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Abstract
In contrast to basic items such as movies, books, and songs, configurable items consist of individual subcomponents that
can be combined following a predefined set of constraints. Due to the increasing size and complexity of configurable items
(e.g., cars and software), a simple enumeration of all possible configurations in terms of a product catalog is not possible.
Configuration systems try to identify a solution (configuration) that takes into account both, the preferences of the user and a
set of constraints that defines in which way individual subcomponents are allowed to be combined. Due to time limitations,
cognitive overloads, and missing domain knowledge, configurator users are in many cases not able to completely specify their
preferences with regard to all relevant component properties. As a consequence, recommendation technologies need to be
integrated into configurators that are able to predict the relevance of individual components for the current user. In this paper,
we show how the determination of configurations can be supported by neural network based recommendation. This approach
helps to predict user-relevant item properties using historical interaction data. In this context, we introduce a semantic
regularization approach that helps to take into account configuration constraints within the scope of neural network learning.
Furthermore, we demonstrate the applicability of our approach on the basis of an evaluation in an industrial configuration
scenario (high-voltage switchgear configuration).
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1. Introduction
In contrast to basic items such as books, movies, and
songs, configurable items are composed of subcompo-
nents which must be combined conform to a set of pre-
defined constraints [1]. For reasons of combinatorial
explosion, it is in many cases impossible to enumerate
the individual items (configurations) in terms of a prod-
uct catalog. Related example domains are automotive [2],
software (e.g., configuration of operating systems) [3],
and telecommunication infrastructures [4]. Due to the
increasing size and complexity of configurable items, it
becomes important to integrate recommendation algo-
rithms into configuration processes to support users in
component and/or parameter selection.

Informally, configuration can be regarded as a product
design activity where the resulting item (also denoted as
product or configuration) is composed of elements of a
pre-defined set of basic components/parameters [1]. In
this context, the chosen components must be consistent
with a given set of constraints that define restrictions
regarding the possible component combinations. On the
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knowledge representation level, configuration problems
can be defined, for example, as a constraint satisfaction
problem (CSP) [5] or in terms of a rule-based represen-
tation [6]. Using CSP representations, possible combi-
nations of individual components are defined in terms
of constraints with a strict separation of domain knowl-
edge and problem solving knowledge [1]. In contrast, in
rule-based approaches product domain knowledge and
problem solving knowledge are intermingled. In this
paper, we use a rule-based knowledge representation
which is applied in the reported application domain of
high-voltage switchgear configuration.
Due to the increasing size and complexity of config-

urable items, recommendation technologies are needed,
that proactively support underlying choice processes.
There exist a couple of approaches that already support
the recommendation of complex items. First, knowledge-
based recommender systems [7] support recommenda-
tion processes on the basis of a product catalog and de-
termine recommendations either on the basis of a set
of strict selection criteria (constraints) [8] or similarity
metrics [9]. The ranking of items is often implemented
on the basis of a utility analysis [10] or further evaluation
criteria that measure to which extent the preferences of
the user are satisfied by individual decision alternatives
[11, 9, 12]. Importantly, with a few exceptions [13, 14, 15],
the approaches to the handling of user preferences in
configuration-related scenarios do not take into account
the preferences of other users but focus more on different
types of decision-theoretic optimizations. An overview
of existing integration approaches of recommendation
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technologies into configuration systems is provided a.o.
in Falkner et al. [13]. Existing integrations focus on a
2-phase process where recommendations of feature set-
tings are predetermined and then recommended to the
user. In the case of inconsistent recommendations, alter-
native recommendations are calculated repeatedly until
a consistent recommendation can be presented.
Compared to existing approaches to the integration

of recommendation algorithms with configuration, we
show how to take into account configuration constraints
already in the learning phase and thus minimize the prob-
ability of inconsistent recommendations to be detected in
the subsequent configuration phase. In this paper, we fol-
low the idea of case-based recommendation [16] where
historical configurations with similar parameter settings
as those already specified by the current user are used as
a basis for identifying nearest-neighbor configurations.
In our work, we use such a case-based approach as a
baseline version. This version is then compared with two
different versions of a feed-forward neural network based
configurator integration. The first version focuses on the
prediction of configuration parameter settings relevant
for the user. The second version follows the same goal
but also takes into account the fact that recommenda-
tions should be consistent with the underlying constraint
set. To support this goal, we propose a semantic regular-
ization of a feed-forward (multi-class and multi-branch)
neural network that is used as a configuration parameter
prediction model.
The major contributions of this paper are the follow-

ing. (1) we introduce a semantic regularization approach
specifically useful for integrating case-based recommen-
dation with rule-based configuration environments, (2)
we compare the predictive quality of the developed ap-
proach on the basis of a real-world dataset from a complex
industrial configuration task (high-voltage switchgear
configuration) with regard to the evaluation criteria of
prediction quality and recommendation consistency, and
(3) we show how the presented results can be further
generalized to be applicable for configuration scenarios
beyond rule-based configuration.
The remainder of this paper is organized as follows.

In Section 2, we introduce a working example in terms
of a simplified configuration knowledge base from the
automotive domain. In this context, we also introduce
the concepts of a configuration task and a corresponding
configuration. Thereafter, in Section 3, we introduce our
neural network based approach to the recommendation
of configuration parameter settings. In Section 4, we sum-
marize our evaluation approach and report the results
of an evaluation conducted on the basis of a real-world
dataset from the domain of high-voltage switchgear con-
figuration. The paper is concluded with an overview of
future research issues (Section 5).

2. Working Example
As a basis for the following discussions on integrating
neural network based predictions of user preferences, we
first introduce the definition of a configuration task (see
Definition 1).

Definition 1. A configuration task can be defined by a
tuple (𝑉 , 𝐷, 𝑅, 𝑅𝐸𝑄) where 𝑉 = {𝑣1, 𝑣2, .., 𝑣𝑛} is a set of fi-
nite domain variables, 𝐷 = {𝑑𝑜𝑚(𝑣1), 𝑑𝑜𝑚(𝑣2), .., 𝑑𝑜𝑚(𝑣𝑛)}
is a set of corresponding domain definitions, and 𝑅 =
{𝑟1, 𝑟2, .., 𝑟𝑚} is a set of rules that define how a configura-
tion can be derived from a given set of customer require-
ments 𝑅𝐸𝑄 = {𝑣𝛼 = 𝑣𝑎𝑙𝛼, .., 𝑣𝛾 = 𝑣𝑎𝑙𝛾} where elements of
𝑅𝐸𝑄 are regarded as variable value assignments.
A simple example of a configuration task definition

is the following (see Example 1) where 𝑝𝑑𝑐 represents
a park distance control feature and 𝑓 𝑢𝑒𝑙 represents fuel
consumption in gallons/100miles.

Example 1: Configuration Task.

• 𝑉 = {𝑡𝑦𝑝𝑒, 𝑝𝑑𝑐, 𝑓 𝑢𝑒𝑙, 𝑠𝑘𝑖𝑏𝑎𝑔, 4-𝑤ℎ𝑒𝑒𝑙, 𝑐𝑜𝑙𝑜𝑟}
• 𝐷 = {𝑑𝑜𝑚(𝑡𝑦𝑝𝑒) =
{𝑐𝑖𝑡𝑦 , 𝑙𝑖𝑚𝑜, 𝑐𝑜𝑚𝑏𝑖, 𝑥𝑑𝑟 𝑖𝑣𝑒}, 𝑑𝑜𝑚(𝑝𝑑𝑐) = {𝑦𝑒𝑠, 𝑛𝑜},
𝑑𝑜𝑚(𝑓 𝑢𝑒𝑙) = {1.7, 2.6, 4.2}, 𝑑𝑜𝑚(𝑠𝑘𝑖𝑏𝑎𝑔) =
{𝑦𝑒𝑠, 𝑛𝑜}, 𝑑𝑜𝑚(4-𝑤ℎ𝑒𝑒𝑙) = {𝑦𝑒𝑠, 𝑛𝑜}, 𝑑𝑜𝑚(𝑐𝑜𝑙𝑜𝑟) =
{𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒}}

• 𝑅 = {𝑟1 ∶ 4-𝑤ℎ𝑒𝑒𝑙 = 𝑦𝑒𝑠 → 𝑡𝑦𝑝𝑒 = 𝑥𝑑𝑟 𝑖𝑣𝑒, 𝑟2 ∶
𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑦𝑒𝑠 → 𝑡𝑦𝑝𝑒 ≠ 𝑐𝑖𝑡𝑦 , 𝑟3 ∶ 𝑓 𝑢𝑒𝑙 = 1.7 →
𝑡𝑦𝑝𝑒 = 𝑐𝑖𝑡𝑦 , 𝑟4 ∶ 𝑓 𝑢𝑒𝑙 = 2.6 ∧ 𝑡𝑦𝑝𝑒 = 𝑥𝑑𝑟 𝑖𝑣𝑒 →
𝑓 𝑎𝑙𝑠𝑒, 𝑟5 ∶ 𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑚𝑏𝑖 → 𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑦𝑒𝑠, 𝑟6 ∶
𝑡𝑦𝑝𝑒 = 𝑙𝑖𝑚𝑜 → 𝑝𝑑𝑐 = 𝑦𝑒𝑠}

• 𝑅𝐸𝑄 = {𝑡𝑦𝑝𝑒 = 𝑐𝑖𝑡𝑦 , 𝑝𝑑𝑐 = 𝑦𝑒𝑠, 𝑓 𝑢𝑒𝑙 = 1.7}

Given the definition of a configuration task
(𝑉 , 𝐷, 𝑅, 𝑅𝐸𝑄), we are able to introduce the definition
of a corresponding configuration (solution for a
configuration task) – see Definition 2.

Definition 2. A configuration for a given configuration
task definition (𝑉 , 𝐷, 𝑅, 𝑅𝐸𝑄) is a set of variable assign-
ments 𝐶𝑂𝑁𝐹 = {𝑣1 = 𝑣𝑎𝑙1, .., 𝑣𝑛 = 𝑣𝑎𝑙𝑛} where ∀{𝑣𝑖 = 𝑣𝑎𝑙𝑖}
⊆ 𝐶𝑂𝑁𝐹 ∶ 𝑣𝑎𝑙𝑖 ∈ 𝑑𝑜𝑚(𝑣𝑖) and 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝐶𝑂𝑁𝐹 ∪𝑅∪𝑅𝐸𝑄).
A configuration is complete if each variable in 𝑉 has an
assignment in 𝐶𝑂𝑁𝐹.

An example configuration 𝐶𝑂𝑁𝐹 for the configuration
task of Example 1 is the following (see Example 2).

Example 2. 𝐶𝑂𝑁𝐹 = {𝑡𝑦𝑝𝑒 = 𝑐𝑖𝑡𝑦 , 𝑝𝑑𝑐 = 𝑦𝑒𝑠, 𝑓 𝑢𝑒𝑙 =
1.7, 𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑛𝑜, 4-𝑤ℎ𝑒𝑒𝑙 = 𝑛𝑜, 𝑐𝑜𝑙𝑜𝑟 = 𝑟𝑒𝑑}

We regard a configuration as complete if each of the
variables in 𝑉 is associated with a corresponding value
assignment and these assignments are consistent with the
rules in 𝑅. As already mentioned, in many configuration
scenarios users are not able or do not want to specify
values for all the defined variables in 𝑉 but are interested
in recommendations that help to more easily complete a



Table 1
A simple example of a collection of already completed configuration sessions (one hot encoding). The abbreviation pdc denotes
a park distance control feature. Furthermore, fuel denotes the fuel consumption in gallons/100 miles. Finally, session current is
an ongoing session where variable settings for {𝑠𝑘𝑖𝑏𝑎𝑔, 4-𝑤ℎ𝑒𝑒𝑙, 𝑐𝑜𝑙𝑜𝑟} should be recommended.

attribute type pdc fuel skibag 4-wheel color

session city limo combi xdrive yes no 1.7 2.6 4.2 yes no yes no red blue
1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0
2 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1
3 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1

current 0 0 1 0 0 1 0 1 0 ? ? ? ? ? ?

configuration session [13]. We now introduce a definition
of a recommendation in the context of a configuration
task (see Definition 3).

Definition 3. Given the definition of a configuration
task (𝑉 , 𝐷, 𝑅, 𝑅𝐸𝑄), a corresponding recommendation
𝑅𝐸𝐶 = {𝑣𝛽 = 𝑣𝑎𝑙𝛽, .., 𝑣𝛿 = 𝑣𝑎𝑙𝛿} is a set of variable value
assignments of 𝑣𝑖 ∈ 𝑉. A recommendation 𝑅𝐸𝐶 is consis-
tent if 𝑅𝐸𝐶 ∪ 𝑅𝐸𝑄 ∪ 𝑅 is consistent, i.e., a solution can be
found.

Example 3. 𝑅𝐸𝐶 = {𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑛𝑜, 4-𝑤ℎ𝑒𝑒𝑙 = 𝑛𝑜, 𝑐𝑜𝑙𝑜𝑟 =
𝑟𝑒𝑑}
Following the approach of case-based reasoning [16],

it can be the case that recommended variable value as-
signments are inconsistent with the already defined user
requirements and the rules (constraints) defined in the
knowledge base. This is the case if recommendations
are determined from already completed configuration
sessions without taking into account configuration con-
straints (rules in 𝑅). In the following, we provide a simple
example of a case-based reasoning approach and then
focus on how to take into account configuration rules
in terms of a semantic regularization when optimizing a
neural network responsible for recommending variable
settings.

3. Recommending Configurable
Items

As already sketched in the previous section, recommenda-
tions in the context of configuration scenarios are repre-
sented by a set of attribute assignments, i.e., a recommen-
dation could include a single attribute setting but also
numerous settings recommended at the same time. In this
section, we discuss different approaches to recommend
variable value settings in the context of knowledge-based
configuration scenarios.

Case-based Recommendation Table 1 represents a
simple example of a set of already completed configu-
rations that can be used as a basis for determining rec-
ommendations. In this example, configuration sessions

1–3 have already been completed. The current session
is ongoing and we are interested in a recommendation
for the variables skibag, 4-wheel, and color. For the pur-
poses of this example and also for discussing the neural
network based recommendation approach, we apply a
one hot encoding of the configuration variables, for exam-
ple, in session 1, the configured car is of type city. In the
scenario shown in Table 1, a simple case-based reason-
ing recommender would search for one or more nearest
neighbors (NN) and recommend the variable settings that
were choosen most often by the nearest neighbors. In
our example, the nearest neighbor (session) of the current
session is session 3 (in terms of the number of equivalent
variable values). If we assume |NN|=1, we would recom-
mend 𝑅𝐸𝐶 = {𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑛𝑜, 4-𝑤ℎ𝑒𝑒𝑙 = 𝑛𝑜, 𝑐𝑜𝑙𝑜𝑟 = 𝑏𝑙𝑢𝑒} to
the user in the current session (if we intend to predict all
unspecified variable values at the same time).
Importantly, since the current user is interested in a

car of type combi which requires the inclusion of a skibag
(see Example 1), such a recommendation (𝑅𝐸𝐶) induces
an inconsistency between the user requirements and the
configuration knowledge base (the set of rules 𝑅). A
traditional approach to deal with such a situation is to
test the next recommendation for consistency and do this
until a consistent recommendation could be found [13].
Our approach (that will be introduced in the following)
to deal with such a situation is to introduce a semantic
regularization into the neural network learning phase
which helps to avoid inconsistent recommendations as
far as possible.

Neural Network based Recommendation Our ba-
sic approach to recommend variable values in the context
of rule-based configuration is based on the feed-forward
neural network structure depicted in Figure 1. In such
networks, the input layer consists of possible values (rep-
resented in terms of a one hot encoding) that have already
been specified by a user. For example, the variable values
(preferences) that have already been specified by the user
in session 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are {𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑚𝑏𝑖, 𝑝𝑑𝑐 = 𝑛𝑜, 𝑓 𝑢𝑒𝑙 = 2.6}.
Networks as those depicted in Figure 1 can be trained
in a domain-dependent fashion on the basis of a dataset



type = city

𝑡𝑦𝑝𝑒 = 𝑙𝑖𝑚𝑜
...

fuel = 1.7

𝑓 𝑢𝑒𝑙 = 2.6

𝑠𝑘𝑖𝑏𝑎𝑔 = 𝑦𝑒𝑠(0.3)

skibag = no(0.7)

...

color = red(0.8)

𝑐𝑜𝑙𝑜𝑟 = 𝑏𝑙𝑢𝑒(0.2)

Figure 1: A simple neural network architecture with an input layer representing specified (e.g., type and fuel) and un-specified
(e.g., skibag andcolor ) variables, one hidden layer, and an output layer that helps to estimate variable values of relevance.

comprised of already completed configuration sessions
(see Sessions 1–3 in Table 1). Furthermore, the hidden
layer is used for learning dependencies between input
values selected by the user and corresponding variable
values of potential relevance for the user. The number of
nodes in the hidden layer is regarded as hyper-parameter
to be optimized in an item domain dependent fashion (in
[17] an equal amount of neurons in the input layer and
the hidden layer showed the best performance). Finally,
the output layer supports a multi-branch approach (one
branch per variable) where each branch 𝑏 is splitted into
𝑏𝑜 output nodes representing the different domain val-
ues of variable 𝑣𝑏. In contrast to the input and hidden
layer which use a ReLU activation function, classification
is implemented using softmax. The choice of the train-
ing hyper-parameters has been made based on several
test executions. Optimizer “Adam” [18] has shown the
best performance compared to other gradient decent op-
timizers like “ADAGRAD”, “RMSProp” and “SGD” [19].
“Adam” uses adaptive estimation of first order and sec-
ond order moments, which slows down the adjustment
of neuron weights the more steps have been done. The
selected parameters for the “Adam” optimizer were an
initial learning rate of 0.001, 𝛽1 = 0.9 and 𝛽2 = 0.999.
Please note that this network architecture assumes cate-
gorical variables (e.g., similar to our Example 1) – other
variable types require preprocessing such as binning or
alternative architectures. Our neural network derived
from the knowledge base introduced in Section 2 consists
of 6 output nodes and also 9 input nodes (assuming the
example from above).

In the basic version of our approach, neural networks
are trained on the basis of training dataset (see, e.g., ses-
sions (1–3 in Table 1).The usage scenario of this basic
neural network approach is the following: if a user inter-
acts with a configurator and has already specified a set of
initial requirements (𝑅𝐸𝑄), the neural network can be ex-
ploited for the recommendation of variable values. Since
the basic version of the neural network can only learn
constraints/rules from the available set of completed con-
figurations, it can be the case that predictions induce an
inconsistency with the underlying rule set.

Constraint-Aware Recommendation For reasons
of potentially inconsistent recommendations, we have
introduced an enhanced neural network learning phase
including a semantic regularization where inconsistent
recommendations are taken into account as regulariza-
tion term. In other words, although parts of the domain-
specific rules/constraints can be learned from the under-
lying training dataset, it can be the case that some or
even many constraints are neglected and the resulting
variable value recommendations induce an inconsistency.
We denote this approach as constraint-aware neural net-
works which are extremely relevant in recommendation
scenarios where domain-specific constraints/rules have
to be taken into account by the recommender. To re-
duce the probability of inconsistent variable value rec-
ommendations, knowledge base rules/constraints are
taken into account in the learning process. This goal
is achieved by integrating the results of a consistency
check of the proposed recommendation 𝑅𝐸𝐶 (more pre-
cisely, 𝑅𝐸𝑄 ∪ 𝑅 ∪ 𝑅𝐸𝐶) into a corresponding loss function
as shown in Formula 1.

𝐿(𝜃) ← 𝐿𝑡𝑟𝑎𝑖𝑛(𝜃) + Ω(𝜃) + 𝜇 × Π(𝜃) (1)

In this context, 𝐿(𝜃) denotes a loss function on the vec-
tor 𝜃 of weights in the neural network, 𝐿𝑡𝑟𝑎𝑖𝑛(𝜃) denotes
the prediction loss, Ω(𝜃) represents a corresponding 𝐿2
regularization term, 𝜇 represents a hyper-parameter that
controls the impact of an inconsistency on the overall
loss, and Π(𝜃) indicates whether the recommendation re-
sulting from 𝜃 is consistent (0 is returned) or inconsistent
(1 is returned). As Π(𝜃) is a discrete non-differentiable
function, the optimization of our loss function has to
resort to approximation of gradients via computation of
finite differences.

User Interaction and Knowledge Representation
Our approach to neural network based variable value rec-
ommendation for knowledge-based configuration helps
to reduce the probability of inconsistency-inducing rec-
ommendations (see Section 4) and thus also can help to
make configuration processes less time-consuming for
users. The proposed recommendation approach is flexi-
ble in the sense that recommendations for single-variable
assignments as well as combined variable assignment



recommendations can be supported. In our working ex-
ample, we did not take into account settings, where a
configuration task is organized in phases where in each
phase a specific subcomponent of the product is config-
ured (e.g., software configuration as part of the configu-
ration of a whole computer). On the user interface level,
recommendations are mostly related to variables within
a specific phase. However, recommendations can also
be determined on the basis of existing variable settings
from different phases.

Recommendation Consistency The achievable de-
gree of recommendation consistency also depends on
the used knowledge representation. In the case of a rule-
based knowledge representation [6], it is not always fea-
sible to correctly predict if it is possible to complete a
partial configuration, i.e., given a (consistent) set of cus-
tomer requirements, is it possible to find assignments
for the remaining variables in such a way that a consis-
tent and complete configuration can be achieved. If a
more compact representation of all satisfiable variable
assignments is available [20], our approach can be ap-
plied to recommend the most relevant option among the
consistent ones. In a similar fashion, constraint-based
approaches [5] can be applied to infer remaining vari-
able assignments that are still consistent with 𝑅𝐸𝑄 and
𝑅. In the following, we present the results of an empir-
ical analysis of our constraint-aware recommendation
approach using a real-world dataset from the domain of
high-voltage switchgear configuration.

4. Evaluation
The configurator application for the high-voltage
switchgear domain has been developed with the goal to
reduce engineering effort during the offering stage of
these highly complex systems. The underlying dataset
includes 𝑁 = 720 complete configurations developed by
skilled sales employees from Siemens Energy AG. Each
entry of the dataset consists of 𝑀 = 60 attribute settings
(assignments), i.e., each configuration is described by 60
variables (representing features and subcomponents). In
this context, 10 out of the 60 variables have been defined
as basic switchgear features which are assumed to be
selected by the user before a recommendation can be
triggered (e.g., basic switchgear category to be installed).
The focus of recommendation are the remaining 50 more
specific features with a sometimes lower degree of un-
derstandability where it is often an issue for users to find
good or even optimal settings (e.g., AC supply voltage).
The dataset is composed of consistent configurations that
have been built on the basis of a rule-based configuration
system.1 As a baseline in our evaluation, we have de-

1www.camos.de.

veloped a case-based reasoning approach (see Section 3)
that recommends variable value settings on the basis of
the preferences of the 𝑁 nearest neighbors (in the given
setting, 𝑁 = 1 achieved the highest prediction quality).
Furthermore, the two versions of the neural network
based approach have been implemented on the basis of
the Keras API [21]. 2 The learning of the neural network
model is based on 32 iterations during the learning phase
of the model where 80% of the data is used for training
purposes and 20% for testing. The first version of the
neural network model has been trained without taking
into account the rules in the configuration knowledge
base whereas the learning of the model for the second
version is based on the loss function included in Formula
1. For validation of the models they have been applied
separately to 20 configurations which where not part of
the training or testing data.

Prediction Quality Our first goal was to analyze the
prediction quality of the three variable value recommen-
dation approaches discussed in this paper: (1) case-based
recommendation, (2) neural network based recommenda-
tion, and (3) neural network based recommendation with
semantic regularization. To measure the prediction qual-
ity, precision has been chosen as the key performance
indicator. The precision of the recommendation of a
configuration 𝐴𝑅𝑒𝑐 has been measured in terms of the
share of predictions part of the configuration accepted by
the user 𝐴 in relation to the total number of predictions
contained in 𝐴𝑅𝑒𝑐, see equation 2. In the context of our
evaluation, we were specifically interested in the predic-
tive performance depending on the number of already
known attribute values. The prediction taskwas specified
in such a way that given a chosen set of input attributes
(the known settings representing 𝑅𝐸𝑄), the task was to
predict all other missing attributes to complete the con-
figuration. Since our configurator is organized in 5 con-
figuration phases, the phase number of a to be predicted
variable had to be equal to the number of the current
configuration phase and the phase number of known
variables (𝑅𝐸𝑄) had to be lower or equal to the phase
number of the to be predicted variable. Consequently, the
missing attributes were iterative predicted by selecting in
each iteration the values for those attributes part of the
configuration phase with the lowest phase number. In
the following iteration the previously predicted variables
have been utilized as known variables for predicting the
variables of the next configuration phase. This has been
repeated till the configuration was complete.

𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐴𝑅𝑒𝑐 ∩ 𝐴|
|𝐴𝑅𝑒𝑐|

(2)
2https://github.com/MaUt89/ConLearn



Figure 2 provides an overview of the outcome of our
evaluation by averaging the precision achieved for each
of the 20 validation configurations applied to the models.
The results clearly indicate the potential of prediction
quality improvements that can be achieved by the in-
clusion of semantic regularization concepts. Whereas,
(1) case-based recommendation achieves only a preci-
sion of 60.5% when starting with ten initially specified
variable values, the neural network based recommenda-
tion approaches predict the variable values with 74% (2)
and 76.33% (3) precision. Noticeable is that, the neural
network based recommendation with semantic regular-
ization (3) outperforms the approach without semantic
regularization (2) in every validation scenario. Finally,
with 50 out of 60 variable values given as an input for
the configuration both neural network based approaches
reach a precision of 100%.

Consistency We were also interested in the degree of
consistency of the determined recommendations 𝑅𝐸𝐶,
i.e., consistent(𝑅𝐸𝐶 ∪ 𝑅𝐸𝑄 ∪ 𝑅). The consistency of the
recommendation of a configuration 𝐴𝑅𝑒𝑐 has been mea-
sured in terms of the share of knowledge base consistent
predictions 𝐴∗ part of the recommendation in relation
to the total number of predictions contained in 𝐴𝑅𝑒𝑐, see
equation 3. As can be seen in Figure 3, the semantic reg-
ularization helps to decrease the inconsistency degree of
recommendations (compared to the CBR and the basic
neural network based approach). Starting with a consis-
tency of 95.27% (ten variables values already known) the
neural network based approach with semantic regulariza-
tion (3) reaches already with 30 initially known variable
values a consistency of 100%. Both other approaches (1)
and (2) achieve poorer results with ten initially given vari-
able values 93.59% (1) and 94.88% (2) and reach a consis-
tency of 100% not until 40 variables are initially specified.
All in all, the higher consistency of approach (3) includ-
ing the semantic regularization has been expected since
this approach is penalizing non-consistent predictions
during the learning phase of the model. Nevertheless,
the impact could have been higher and the consistency
especially with a low number of initially known variable
values is improvable. To achieve this an optimization
of the hyper-parameter 𝜇 is desirable and part of future
work.

𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =
|𝐴∗ ∩ 𝐴𝑅𝑒𝑐|

|𝐴𝑅𝑒𝑐|
(3)

5. Conclusions and Future Work
We have introduced an approach to the integration of
recommendation features into knowledge-based configu-
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Figure 2: Precision of high voltage switchgear related predic-
tions (SR = semantic regularization, CBR = case-based reason-
ing).
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Figure 3: Consistency of high voltage switchgear related
predictions (SR = semantic regularization, CBR = case-based
reasoning).

rators and compared it with cased-based and basic neural
network based recommendation. To improve the predic-
tion quality and consistency of recommendations, we
have introduced a semantic regularization approach that
helps to further increase the consistency degree of rec-
ommendations especially in the context of rule-based
configuration scenarios. The presented approach has
been integrated into a industrial rule-based configuration
environment that focuses on the configuration of high-
voltage switchgears. The presented approach can in-
crease both, prediction quality and consistency of the de-
termined recommendations. Furthermore, the approach
is generalizable to other types of configuration knowl-
edge representations such as constraint satisfaction prob-
lems (CSPs).
Future work will focus on the integration of the de-

veloped concepts into model-based configuration knowl-
edge representations such as CSPs [5]. Furthermore, we
will extend the scope of considered machine learning ap-
proaches a.o. with an integration of matrix factorization
based variable value prediction. The dataset size used for
the evaluation presented in this paper can be considered
as a limitation of this work, in particular w.r.t. neural
network models. A major focus of future work will be
the evaluation of our approach with larger industrial con-
figuration datasets. The neural network based prediction
models will also be evaluated for their applicability in



the context of diagnosis scenarios, i.e., scenarios where
users receive recommendations regarding requirements
changes that help to get out from an inconsistent situa-
tion. Also, we plan to investigate alternative formulations
of the optimization problem, for example, with consis-
tency conditions being (partially) defined as optimization
constraints. Finally, although already integrated into the
configuration environment of Siemens Energy, the evalu-
ation of the proposed recommendation approach will be
further extended especially with regard to the quality of
the user interface and the need of additional explanations
for the proposed recommendations.
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