
sMARE: An Enhanced Query Performance Prediction
Evaluation Approach
(Discussion Paper)

Guglielmo Faggioli
1
, Oleg Zendel

2
, J. Shane Culpepper

2
, Nicola Ferro

1
and

Falk Scholer
2

1University of Padova, Padova, Italy
2RMIT University, Melbourne, Australia

Abstract
QPP has been studied extensively in the IR community over the last two decades. Nevertheless, the

Query Performance Prediction (QPP) field still lacks sound theoretical evaluation methodologies. In this

work
∗

, we re-examined the existing evaluation methodology commonly used for QPP, and propose a

new approach. Our key idea is to model QPP performance as a distribution instead of relying on point

estimates. Our work demonstrates important statistical implications and overcomes key limitations

imposed by the currently used correlation-based point-estimate evaluation approaches. This, in turns,

enables the use of ANalysis Of VAriance (ANOVA) models for comparative analyses, permitting deeper

analyses on the QPP models performance, and allowing to measure interactions between multiple factors.

1. Introduction

The Information Retrieval (IR) community has long recognized the importance of applying

statistical tests to evaluation results. Although best practices continue to evolve, conference

and journal guidelines and discussion papers [2] have led the community to appreciate the

importance of a more theoretically grounded evaluation. While this has led to higher quality

analytical comparisons in many IR-related fields, not all areas have adopted the practice. An

example of a common IR problem that might benefit from alternative evaluation techniques

is Query Performance Prediction (QPP). The goal of QPP is to estimate the effectiveness of a

retrieval system in response to a query when no relevance judgments are available [3]. The most

widely-used method for evaluating QPP approaches is based on the strength of a relationship

between per-topic prediction scores, and the actual per-topic system effectiveness as measured

using a standard IR effectiveness metric, usually Average Precision (AP). Such association is

measured using a correlation coefficient: a QPP approach that achieves a higher correlation

value than another is taken to be the superior approach. This evaluation method compares QPP

effectiveness at a very high level, with the performance of a QPP approach over a whole set of

topics being summarized just by a correlation coefficient as a point value. In order to statistically

validate the results, by relying on repeated randomized topic sampling, we can test whether or
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not the correlation coefficients for two different QPP methods are significantly different from

each other. However, it is important to note that this approach is fundamentally different from

the pair-wise significance test used for system retrieval effectiveness, which is now common

practice in IR evaluation exercises. Motivated by these observations, we re-examine how QPP

efficacy can be analyzed using a more fine-grained approach – by modeling the performance of

QPP techniques as distributions. This approach has also previously been applied successfully in

system evaluation exercises. A distribution-based model can be constructed as follows. First, an

estimate of the performance for each system-topic combination is computed using a traditional

performance measure, such as AP. Then, all of the topics for a collection are used to model

the performance distribution. Note that this is fundamentally different from a classical QPP

evaluation approach.

In this work, we propose an evaluation approach (dubbed scaled Mean Absolute Rank Error

(sMARE)) which has several appealing properties: it allows formal inferential statistics to be

applied, which generalizes the results to the entire population of topics; it allows the behavior

of a QPP approach to be more clearly isolated, for example through confidence intervals; and, it

enables factor decomposition, which in turn allows us to measure the relative contributions to

observed effectiveness systematically. We also incorporate recent work in retrieval effectiveness

on query variation and reformulation of each topic [4] into our framework, which allows a more

fine-grained sampling of retrieval performance, and to estimate interaction between systems,

topics and query formulations, which is not possible using only a single point estimate.

Our work focuses on two related research questions: (RQ1) How can statistical analysis and

testing be applied to QPP evaluation exercises? (RQ2) What factors contribute to improving or

reducing the performance of a QPP model?

2. Related Work

Retrieval performance can vary widely across different systems, even for a single query [3].

Pre-retrieval predictors analyze query and corpus statistics prior to retrieval [5] while post-
retrieval predictors also analyze the retrieval results [6]. Predictors are typically evaluated by

measuring the correlation coefficient between the AP values attained with relevance judgments

and the values assigned by the predictor. Such evaluation methodology is based on a point
estimate and have been shown to be unreliable when comparing multiple systems, corpora

and predictors [7]. Hauff et al. [7] demonstrate that higher correlation does not necessarily

attest to better prediction, and used Root Mean Square Error (RMSE) in their evaluation. When

computing the Confidence Interval (CI) for Pearson’s linear correlation in the evaluation using

multiple previously reported pre-retrieval predictors, Hauff et al. [7] found that many of the

predictors had overlapping CIs, and concluded that they were not significantly different from

the best performing predictor. Also of interest, recent work using query variations for QPP [4]

has demonstrated that the relative prediction quality of predictors can vary with respect to

the effectiveness of the queries used to represent the topics, and we explore such observation

further using advanced statistical instrumentation.

One principled approach that can be used in IR evaluation is ANOVA[8, 9, 10]. ANOVA is

commonly used to assess the presence of statistically significant differences in mean performance



observed when using different experimental conditions. This technique can be operationalized

as a General Linear Mixed Model (GLMM), where a response variable, called 𝐷𝑎𝑡𝑎, is linearly

modeled into two parts: the experimental conditions (the 𝑀𝑜𝑑𝑒𝑙) and the 𝐸𝑟𝑟𝑜𝑟: 𝐷𝑎𝑡𝑎 =
𝑀𝑜𝑑𝑒𝑙 + 𝐸𝑟𝑟𝑜𝑟. The 𝑀𝑜𝑑𝑒𝑙 includes a subject component (which in IR evaluation often

corresponds to the topic), one or more factors, which are the different experimental conditions

(e.g, the entire system, or its components), and possibly their interactions. Specific factors might

be nested inside others: in the following analyses, query formulations are a nested factor of

the topic, since each formulation represents a single topic and cannot be used to represent

others. The ANOVA approach is particularly useful in our work as it allows us to break down

the variance observed in the data, assigning it to the factors that caused it [9].

3. Experimental Analysis

In our analyses, we use the TREC Robust 2004 (Robust04) Ad Hoc [11] collection. We enrich

the set of queries for the corpus using publicly available human-curated query variants for each

topic [12].
1

Our experiments use a Grid of Points (GoP) of runs, using 4 different stoplists (atire,

zettair, indri, lingpipe), plus the no stop approach and 2 different stemmers, (lovins,

porter) plus a no stem approach. All the runs were produced using the query-likelihood

model. We experimented with the following pre-retrieval qpp models: SCQ, AvgSCQ, MaxSCQ,

SumVAR, AvgVAR, MaxVAR [13], AvgIDF [14], MaxIDF [15]. Concerning post-retrieval qpp

models, we considered the followings: Clarity [5], NQC [16], WIG [17], SMV [18]. We duplicate

the number of post-retrieval methods, considering, for each of them, their UEF [19] counterpart.

Such QPP models have been selected since they are the most well-known and representative. In

total, 240 different predictor-system combinations were generated for the Robust04 collection.

For predictors which required hyper-parameters, we considered those previously observed to

be effective [16]. We apply Average Precision (AP) to measure the effectiveness of the different

retrieval pipelines.

3.1. Traditional QPP evaluation using correlations

Prior work on QPP has relied primarily on a single evaluation paradigm: the QPP generates a

candidate list where the queries are ranked by their prediction values. The correlation between

such list and a list induced using a reference measure, such as AP, is then considered as measure

of quality of the QPP model.

Figure 1a shows the performance of 16 different QPP models when using this common

evaluation approach – Kendall’s 𝜏 correlation in this case – with 95% confidence intervals

shown as well. In this example, the results are generated for a specific retrieval pipeline, using

the indri stoplist and porter stemmer. To compute the confidence intervals (at significance

level 𝛼 = 0.05), we used a bias-corrected and accelerated bootstrap procedure with 10,000
samples. Observe that when using title queries only (orange bars), there is a large degree of

overlap between the different QPP approaches. The pairwise comparison using the data from

Figure 1a (title queries only), shows that 57 pairs of predictors are found to be significantly
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(a) Prediction quality of the selected QPP models

on Robust04 (Confidence Intervals computed

with Kendall’s 𝜏 ), using either title queries or all

available formulations.

(b) Confidence Intervals of AP induced scaled

Mean Absolute Rank Error (sMARE𝐴𝑃 ) from

MD0micro on the Robust04 title queries.

Figure 1: Quality and Confidence Intervals of the selected QPP models using the traditional approach
(left) and the sMARE𝐴𝑃 measure (right).

different, out of 120 total pairs of QPP models (47.5%). This suggests that using confidence

intervals does indeed make it difficult to decide which QPP system is the best performing, as

suggested by [7].

In addition to using the traditional title queries, we also explore the scenario of using multiple

formulations, which allows us to produce replicas for the same experimental conditions (i.e.,

the retrieval system or the QPP model used) on the same subject (i.e., the topic). While the

performance is generally lower when using multiple topic formulations (the blue bars shown

in Figure 1a), there is a high degree of similarity between the ordering of the QPP models for

multiple query formulations to the ordering for title-only (Kendall’s tau correlation between

using title-only versus multiple queries per topic is 0.98, 𝑝 < 0.0001). Overall, the bootstrap

intervals are substantially larger if a traditional title-only evaluation approach is used, which

makes it less suitable for determining if any single system is a clear winner, while using

multiple queries does induce smaller intervals and better discriminative power between the

QPP approaches.

3.2. ANOVA modeling and analysis of QPP

To support a more detailed analysis of QPP methods and associated factors, we now explore the

use of ANOVA. Instead of computing the correlations between the complete lists, we measure

the difference, for each query, in the rank position assigned by a QPP method and the ground

truth rank position assigned by AP. Ties in ranks are broken using the average of tie rank spans,

as is the default in many statistical applications. Observe that this transitions us from point
estimates of a single correlation value for the two lists over a whole set of topics to a distribution
of the rank differences between the two lists for each query in the set. In order to scale the

scores to the range [0, 1] we divide them by the number of samples. The error, labeled as AP



induced scaled Absolute Rank Error (sARE𝐴𝑃 ), for each query is:

sARE𝐴𝑃 (𝑞𝑖) :=
|𝑟𝑝𝑖 − 𝑟𝑒𝑖 |

|𝑄|
, (1)

where 𝑟𝑝𝑖 and 𝑟𝑒𝑖 are the ranks assigned by the predictor and the evaluation metric respectively

for query 𝑖; 𝑄 is the set of queries. For each predictor 𝒫 , we can calculate the sMARE𝐴𝑃 as

follows:

sMARE𝐴𝑃 (𝒫) :=
1

|𝑄|
∑︁
𝑞𝑖∈𝑄

sARE𝐴𝑃 (𝑞𝑖). (2)

Note that sMARE𝐴𝑃 can be seen as a derivation of Spearman’s Footrule distance, making it

a metric for the full rankings instead of a correlation. Among the properties of Spearman’s

Footrule distance, Diaconis and Graham [20] list that it is bounded between [0, ⌊0.5𝑛2⌋], where

𝑛 is the length of the ranking. Since both sARE𝐴𝑃 and sMARE𝐴𝑃 are normalized by the

number of queries, sMARE𝐴𝑃 is bounded between [0, 0.5]. The proposed metric presents a

Kendall’s 𝜏 correlation coefficient with the original metric higher than 0.99 (𝑝 < 0.0001) for all

configurations.

We are in a position to introduce our first ANOVA model which will enable a more comprehensive

experimental analysis of the results.

𝑦iqrs = 𝜇+ 𝜏i + 𝛾q + 𝛿r + 𝜁s + 𝜀iqrs (MD0micro)

where: 𝑦i... is the performance (sARE𝐴𝑃 ) on the 𝑖-th topic (using the specified QPP pipeline); 𝜇 is

the grand mean; 𝜏i is the effect of the 𝑖-th topic (represented with the title query formulation); 𝛾q,

𝛿r , and 𝜁s are the effect of the 𝑞-th stoplist, the 𝑟-th stemmer, and the 𝑠-th QPP model; 𝜀iqrs is the

error component. Such ANOVA shows that all factors are significants. Furthermore, we observe

a large size 𝜔2
effect for the topic (𝜔2

<𝑡𝑜𝑝𝑖𝑐> = 0.410). Both the stoplist and the stemmer factors

are significant, but with a negligible effect (𝜔2
<𝑠𝑡𝑜𝑝𝑙𝑖𝑠𝑡> = 0.001 and 𝜔2

<𝑠𝑡𝑒𝑚𝑚𝑒𝑟> = 0.004),

while the QPP model displays a small effect (𝜔2
<𝑞𝑝𝑝 𝑚𝑜𝑑𝑒𝑙> = 0.036). Based on the results of this

analysis, we also ran a Tukey’s Honestly Significant Difference (HSD) post-hoc analysis to test

for pairwise differences. Figure 1b shows the Tukey’s HSD confidence intervals for sMARE𝐴𝑃

over the different QPP models.

When comparing Figure 1a (orange bars) and Figure 1b, we can observe that there is less

overlap between the CIs, in particular, we observe that, by computing the 𝑝-values for the

pairwise comparisons, out of 120 pairs of predictors, 96 of them are significantly different

(80.0%). Thus, compared to the results observed for the bootstrap-based approach, we are able

to differentiate between 68.4% more pairs of predictors. The “Topic” factor is responsible for

the largest part of the variance; this is in line with results from IR effectiveness evaluation (see

for example Tague-Sutcliffe and Blustein [21]). Thus, the estimation of the performance for a

specific QPP model can vary significantly as it is dependent on properties of the underlying

collection (performance differences in topics/queries). By removing the contribution of the

topics from the global variance, ANOVA removes any volatility in the underlying experimental

data allowing the relative performance of predictors to be compared more precisely. When using

only correlations aggregated across all topics, such information is lost, while an ANOVA analysis

facilitates more discriminative performance comparisons between systems by systematically

accounting for each factor separately.



Table 1
MD1𝑚𝑖𝑐𝑟𝑜 ANOVA applied on Robust04 collection. 𝜔2 for non-significant factors is ill-defined and thus
not reported.

Source SS DF MS F p-value �̂�2
⟨𝑓𝑎𝑐𝑡⟩

Topic 1840.082 248 7.420 1293.936 <0.001 0.518
Formulation(Topic) 1746.213 996 1.753 305.749 <0.001 0.504
Stoplist 1.179 4 0.295 51.402 <0.001 0.001
Stemmer 10.622 2 5.311 926.188 <0.001 0.006
QPP model 305.796 15 20.386 3555.233 <0.001 0.151
Topic*Stoplist 40.224 992 0.041 7.071 <0.001 0.020
Topic*Stemmer 154.200 496 0.311 54.216 <0.001 0.081
Topic*QPP model 2051.688 3720 0.552 96.182 <0.001 0.542
Frm.*Stoplist 87.110 3984 0.022 3.813 <0.001 0.036
Frm.*Stemmer 312.955 1992 0.157 27.398 <0.001 0.150
Frm.*QPP model 3348.894 14940 0.224 39.091 <0.001 0.656
Stoplist*Stemmer 0.059 8 0.007 1.288 0.2444 —
Stoplist*QPP model 0.901 60 0.015 2.618 <0.001 <0.001
Stemmer*QPP model 4.850 30 0.162 28.195 <0.001 0.003
Error 1555.757 271312 0.006

Total 11460.530 298799

3.3. ANOVA modeling of multiple queries and interactions

One of the most interesting aspects of our framework is the capability to compute the effect

sizes of interactions between factors. This is achieved using MD1micro

𝑦ijqrs = 𝜇+ 𝜏i + 𝜈j(i) + 𝛾q + 𝛿r + 𝜁s + (𝜏𝛾)iq + (𝜏𝛿)ir + (𝜏𝜁)is

+ (𝜈𝛾)j(i)q + (𝜈𝛿)j(i)r + (𝜈𝜁)j(i)s + (𝛾𝛿)qr + (𝛾𝜁)qs + (𝛿𝜁)rs + 𝜀ijqrs
(MD1micro)

which extends MD0micro to include 𝜈j(i) to represent the effect of the 𝑗-th query formulation for

the 𝑖-th topic. Moreover, this model considers all of the possible two-way interactions which

are now computable using the replicates provided by the multi-query topic formulations.

Table 1 presents the ANOVA summary statistics for MD1micro. In this analysis we add the

query formulations as a nested factor for each topic, in this case we randomly chose 5 for

each topic.
2

The table empirically shows that the largest differences in QPP performance are

due to the topics, and their formulations. The effect for the QPP factor is medium-sized. The

significance of the stoplist and stemmer factors suggests that they affect the overall prediction

quality, and practitioners should consider all possible factors when comparing and contrasting

QPP performance for a corpus. We are now in a position to observe the interaction between

topics (and their query formulations) and the predictors, which is large, indicating that important

differences between QPP model performance exists within reformulations of a single topic.

Finding the QPP model where interactions are smallest is valuable in practice as this corresponds

2
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to be choosing a model that is most robust to query reformulation. Additionally, this enables a

series of additional analyses, such as a failure analysis for topics with the largest interaction

with a QPP model.

4. Conclusion

We have presented a novel evaluation framework for QPP. The framework estimates the

performance of QPP on every topic as the distance between its predicted rank - computed using

the QPP – and the expected one – measured through AP (or any other traditional IR measure).

This allows us to obtain a distribution of performance for the QPP over the different topics.

Furthermore, our framework makes use of multiple query formulations for each topic to enhance

the power of our analyses. Together, the use of multiple query formulations and the distributional

representation of the performance enables carrying out more accurate studies. In particular, we

showed that it is possible to rely on the statistical properties of ANOVA and corresponding post

hoc procedures to better identify pairs of QPP approaches that are statistically significantly

different. The newly proposed framework also enables the analysis of interaction effects for

QPP models and topics, allowing failure analyses and a deeper understanding into how a QPP

model works. Our framework can be extended and adapted to different investigation needs. The

two-way ANOVA described in MD0micro is sufficient to determine if QPP models are significantly

different, and has the added benefit of relying on a statistically-sound framework. In future

work, we plan to study additional components of the evaluation framework, such as the impact

of the ranking methods which are used to establish “ground truth” performance; new factors

that influence QPP systems such as the ranking approach used in the post-retrieval QPP; and

the effects of using multiple corpora, in order to more comprehensively model and understand

corpus and QPP interactions.
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