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Abstract. Ensembling neural network models is a common practice to
increase model calibration and robustness. Likewise, data augmentation
is a set of techniques used to enhance model calibration and robustness
by introducing invariant feature transformations. However, the total ef-
fect of combining two methods is not well researched. There are contra-
dicting results presented in the literature showing that combining some
ensembling methods and data augmentation can result miss-calibrated
models. In this paper, we aim to show that data augmentation does not
degrade model calibration for ensembles of multi-input-multi-output sub-
networks. We find that combining ensembles of multi-input multi-output
subnetworks with data augmentation increases accuracy without harm-
ing model calibration. Moreover, combining subnetwork ensembles with
data augmentation also helps to achieve better uncertainty estimates.
We designed and performed a factorial experiment consisting of 3 fac-
tors; data sets (Cifar-10, Cifar-100, Tiny ImageNet), ensembling frame-
works (MIMO, Linear-MixMo, and Cut-MixMo), and data augmentation
methods (MixUp and CutMix).
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1 Introduction

Deep learning models are starting to be used widely in safety-critical tasks such
as autonomous driving [1] and medical applications. However, the data that
models are trained and tested on can be different to the data used when these
models are deployed in real-world scenarios. In such situations, these models
need to be well-calibrated [8]. Both ensembling and data augmentation tech-
niques have been shown to improve calibration, robustness, and model perfor-
mance [9,13,17]. However, we still do not fully understand the effects (positive
or negative) of combining ensembles with data augmentation methods.

Even simple averaging of the predictions can help reduce individual model
misclassifications and other errors. There are different methods for ensembling
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models which have been shown to be effective in improving accuracy and ro-
bustness while not changing the total number of parameters significantly. Among
others, Ensembles of multi-input multi-output subnetworks (Subnetwork Ensem-
bles), BatchEnsemble [19] and its variants, and MC-dropout [6] are examples of
such efficient ensembling methods [18]. The idea behind training subnetworks
comes from sparsity. Recent deep learning models have millions of parameters.
The overparametrization of deep learning models leads to the lottery ticket hy-
pothesis [5] and model pruning methods [14]. Instead of pruning a model to get a
subnetwork, Subnetwork Ensembles models take advantage of available neurons
and overparametrizaton with little structural changes turning a single network
into an ensemble of subnetworks. This method enables the generation of ensem-
bles while increasing the total number of parameters by less than 1%. However,
training such a model and ensuring independent subnetworks while sharing the
main network’s parameters with no explicit structural difference is a challenge.

Data augmentation methods encompass a diverse set of methods from basic
geometric transformations of images to utilization of GANs [17]. These tech-
niques try to emulate the distribution mismatch between the training and test
data by increasing diversity among training images. Increasing the quality and
quantity of image datasets helps to reduce neural networks’ errors stemming from
overconfidence. Consequently, models using data augmentation are less prone to
over-fitting and have better generalization capability [12]. Almost all state-of-art
vision models use one or a few data augmentation approaches.

In theory, data augmentation is orthogonal to ensembling [9,18]. Both ensem-
bling and data augmentation increase accuracy, generalizability, and calibration.
However, one can not directly combine ensembling and data augmentation with-
out further analysis. The findings analyzing the interaction between ensembling
and data augmentation are mixed in the literature. [18] shows how combining
three ensembling methods (BatchEnsemble, MC-Dropout, and Deep Ensembles)
with two Data Augmentation methods (Mixup and Augmix) without structural
change on the said methods can harm the calibration of the model. However, [16]
states that their findings do not confirm the pathology between ensembling and
data augmentation, but that combining the two methods increases calibration.

In this paper, we try to clarify this conflict in the literature combining MIMO
and MixMo neural networks (Subnetwork Ensembles) with data augmentation,
and illustrate this combination does not harm model calibration while increasing
accuracy. Moreover, ensemble and data augmentation combination also helps to
achieve better uncertainty estimates. We confirmed this behavior across 3 dif-
ferent Subnetwork Ensembles frameworks and two data augmentation methods
on three datasets. We also test all models on corrupted Cifar-10 and Cifar-100
datasets and find consistent results in the presence of corrupted data.

2 Related Work

2.1 Ensembles

Ensembling is a technique that takes advantage of diversity among different
models to improve their combined performance [4]. Even simple ensembling (av-
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eraging predictions of randomly initialized neural networks) outperforms more
complicated models. [13] show that deep ensembles trained independently im-
prove both accuracy and calibration. However, there are many approaches for
“ensembling” with BatchEnsemble, MC-Dropout, and Deep Subnetworks sug-
gested in the literature. In this paper, we focus on Subnetwork Ensembles models.

Subnetwork Ensembles: Subnetwork Ensembles frameworks are based on
the idea of sparsity. Recent neural network models are overparametrized. This
leads to distilling and pruning methods to get a smaller network (“subnetwork”)
of the original network without sacrificing performance. Subnetwork Ensembles
take advantage of these “free” subnetworks and utilizes them as an ensemble
of networks to improve model performances. Recently several Subnetwork En-
sembles frameworks have been proposed in the literature. MIMO and MixMo
frameworks are based on this idea: training subnetworks that independently
learn the task while utilizing a single model’s capacity. The most distinctive
feature of Subnetwork Ensembles is that these models take multiple inputs and
predict them simultaneously. This structure allows them to flexibly exploit the
base model’s capacity stemming from overparametrization. However, how to
train models under Subnetwork Ensembles frameworks and combine the inputs
into a shared representation are still active areas of research.

MIMO: In MIMO (Figure 1), the network takes M inputs and outputs M
outputs (predictions) where M is the number of desired subnetworks. MIMO
requires only two changes: input layer takes M images which are simply stacked
and output layer has M prediction vectors instead of a single one. In this sense,
MIMO uses channel-wise concatenation in pixels for the inputs. These inputs are
independently sampled from the training set and require no preprocessing. The
base network is trained to predict matching images simultaneously. Each subnet-
work learns to disregard features from other images. This ensures independence
of subnetworks. The loss is calculated according to corresponding labels. During
testing, the same input is repeated M times, and the outputs are averaged to get
the final prediction. Clearly, MIMO does not need the neural network to have
large structural changes. In terms of network structure, it is enough to change
the first convolutional and last dense layers.

Fig. 1. MIMO framework with M = 2. The network receives 2 input images, stacks
them and outputs a prediction for each image. All subnetworks share the same base
network. At test time, the same input is repeated M times and predictions are averaged
to obtain the final prediction.
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MixMo: MixMo (Figure 2) has a similar setting to MIMO but instead of
channel-wise concatenation of images in pixels, it first encodes each image and
then employs a mixing block to combine inputs [16]. Inspired by mixing data
augmentation methods, MixMo uses a generalized multi-input mixing block to
combine inputs. In this regard, MixMo can be seen as a generalized form of
MIMO. Using identity encoding layers and choosing channel-wise concatenation
turns the MixMo framework into MIMO. However, the mixing block is not lim-
ited to any specific augmentation method; changing the mixing block results in
a different framework. Following [16], we use MixUp and CutMix (see Figure 3)
to mix input images, which we refer to as Linear-MixMo and Cut-MixMo.

Fig. 2. MixMo framework with M = 2. The network receives 2 input images, encodes
them with convolutional layers, mixes them according to the mixing operation (CutMix
or MixUp) and outputs a prediction for each image. All subnetworks share the same
base network. At test time, the same input is repeated M times and predictions are
averaged to obtain the final prediction.

2.2 Data Augmentation

Data Augmentation (DA) increases the training data by introducing small per-
turbations or transformations (Figure 3). So models can be trained on more data.
DA helps capture invariant feature transformations and is also used to simulate
out-of-distribution data. Therefore, models utilizing DA tend to have better cal-
ibration and accuracy resulting in a large uptake of DA in the literature.

MixUp: MixUp is a simple data augmentation method which linearly inter-
polates pixels while manipulating the labels at the same time. The idea behind
MixUp is that linear interpolations of feature vectors should lead to linear inter-
polations of target labels [22]. By doing so, MixUp extends training distribution.
Given two random samples from training data (xi, yi) and (xj , yj), when Mixup
is applied, we get (x̃, ỹ) by:

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(1)

where λ is sampled from uniform distribution ∈ [0, 1].
CutMix: CutMix creates new images by cutting patches from images and

pasting them among training images. CutMix also mixes the true labels propor-
tional to the area of the patches while patching. So a new training sample (x̃, ỹ)
is generated by combining two training samples ((xa), (xb)) and ((xb), (yb)). The
combining operations are [20]:
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x̃ = M� xa + (1−M)� xb

ỹ = λya + (1− λ)yb
(2)

where M denotes a binary mask indicating where to drop out and fill in
from two images, 1 is a binary mask filled with ones, and � is element-wise
multiplication. Like MixUp, λ is sampled from the uniform distribution (0, 1).

Fig. 3. Common data augmentation methods [16]

2.3 Summary

Effects of ensembling and data augmentations on image classification tasks are
well studied in the literature. However, we observe limited knowledge and guid-
ance on what would be the total effect when these two seemingly orthogonal
methods are combined. Being one of the recent ensembling strategies, Subnet-
work Ensembles achieve ensembling by fitting diverse subnetworks inside a single
base network. In this paper, we seek to provide some clarity on the effects of
combining Subnetwork Ensembles with data augmentation methods and whether
this improves model accuracy without harming model calibration.

3 Methodology

3.1 Experimental Design

This paper seeks to understand the impact of combining Subnetwork Ensembles
with data augmentation. Ensembling and data augmentation are thought to
be independent of each other [9,18] while both methods are used to enhance
model performance. We try to verify [18]’s hypothesis on ensembling and data
augmentation pathology. To do this, we perform a structured 3 x 3 x 2 factorial
experimental design consisting of 3 factors; data sets (3), Subnetwork Ensembles
frameworks (3), and data augmentation methods (2).

We trained all models on the Cifar-10, Cifar-100, and Tiny ImageNet datasets.
Cifar-10 and Cifar-100 datasets both have 60k images (50k training and 10k test
images) and 10 and 100 classes respectively. To further push the models we use
Tiny ImageNet. Tiny ImageNet [2] is a downsampled variant of ImageNet as an
alternative to the Cifar datasets with 64x64 pixels and with 100k total images
and 200 classes (500 training, 50 validation, and 50 test images per class).

As Subnetwork Ensembles frameworks, we utilized Multi-input Multi-output
(MIMO) [9] and two variants of MixMo [16] (Linear-MixMo and Cut-MixMo)
as explained in section 2. [9] introduces input repetition and batch repetition
during training. Input repetition helps subnetworks share the same features but
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degrades diversity among subnetworks. Following the MixMo paper ([16]), we
don’t utilize input repetition. Batch repetition has a regularization effect on
the network training. MIMO finds batch repetition value b = 4 is optimal, and
MixMo also uses b = 4. Hence we do the same. One of the core components
of the subnetwork frameworks is the number of subnetworks. Since the original
network’s capacity is limited, as the number of total subnetworks increases, after
an optimal number of subnetworks, the performance of the network decreases.
Both MIMO and MixMo find that the optimal number of subnetworks is between
2 and 4 for the base models and datasets we utilized. Moreover, the number of
subnetworks also increases the training time. We choose the number of subnet-
works (M = 2) for all models. We follow the original papers for learning rate,
optimization algorithm, and batch size.

To combine with Subnetwork Ensembles frameworks, we chose two common
data augmentation methods: MixUp and CutMix. We go beyond simple data
augmentations like flipping, rotation, pixel padding and use stronger augmenta-
tions. Indeed, our data augmentation methods fall into Mixed Sample Data Aug-
mentation notion which basically manipulates both images and targets and cre-
ates virtual samples ((xnew), (ynew)) given two pairs of input images ((xi), (yi))
and ((xj), (yj)) (see: section 2). Data augmentations are performed during train-
ing with the probability of 0.5 that a new training sample is generated.

Setting aside effects on performance, MIMO and MixMo frameworks can uti-
lize almost all neural network models as base models, with the ResNet family as
one of the most commonly used. Wide ResNets are known to have more sparsity
than the original ResNets, and this helps Subnetwork Ensembles frameworks to
better exploit its capacity. Following the original papers [9,16], all our models are
based on a ResNet model, as they are sufficiently parameterized to enable good
performance for subnetwork models. For Cifar-10 and Cifar-100, the base model
is a WideResNet 28-10 (36.6 million parameters) [21] and for TinyImageNet the
base model is PreActResNet-18 (11.2 million parameters) [10].

Neural networks encounter a dramatic decrease in their performance when
they are tested against out-of-distribution data. After training all models with
the matching framework, in addition to IID test sets, we tested all models on
corrupted Cifar-10 and Cifar-100 test sets [11]. Images in this dataset are per-
turbed with 19 different common corruption types (e.g. added blur, compres-
sion artifacts, frost effects etc.) at 5 different severity levels. Thus, the Cifar-10
or Cifar-100 test set has 19x5=95 different unseen variations emulating out-of-
distribution data. A model which improves performance on this should indicate
general robustness gain and better calibration [11].

3.2 Performance Metrics: Calibration and Uncertainty Estimates

Calibration is a notion which measures how a model’s predictions match the
empirical frequency of the true probabilities [3]. We say that a model is well
calibrated when a prediction of a class with confidence p is correct p% of the time.
A model can have high accuracy yet be a miss-calibrated one. That is calibration
and accuracy are two distinct phenomena. Measuring the predictive uncertainty
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estimates and how well a model is calibrated is a challenging task since the
ground truth is not known. Therefore, we utilize two different metrics to measure
the calibration: Expected Calibration Error (ECE) and Negative Log-Likelihood
(NLL). We also use corrupted Cifar test sets to represent out-of-distribution
examples to evaluate model calibration from a domain shift perspective.

By binning the predictions toM equally-spaced intervals and taking a weighted-
average of each bins’ accuracy, Expected Calibration Error (ECE) [15] measures
the absolute difference between accuracy and predictive confidence, is widely
used in the literature, and defined as follows:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (3)

where acc(Bm) is the average probability of the predicted and true class for
the bin m and conf(Bm) is the average confidence within (Bm).

Negative log-likelihood (NLL) is a proper scoring rule [13]. Scoring rules
measure the quality of predictive uncertainty and rewards better calibrated pre-
dictions [7]. So maximizing likelihood (minimizing NLL) increases calibration.
Given a probabilistic model π and n samples, NLL is defined as:

L = −
n∑

i=1

log(π̂(yi|xi)) (4)

4 Evaluation

After setting the experimental design and training all models, we tested all
models on the respective test sets. We grouped our results for the metrics we
track according to datasets. Moreover, we tested all models on corrupted Cifar-
10 and Cifar-100. We report the accuracy metrics as well as the ECE and NLL
metrics as discussed in section 3, which are averaged over 3 independent runs.

4.1 Results on Cifar-10/100 and TinyImageNet

Table 1 reports all model results tested on Cifar-10. Subnetwork Ensembles
frameworks show a performance boost in terms of accuracy compared to the base
models. They also improve calibration (lower ECE) and have better uncertainty
estimates (lower NLL). When MIMO and MixMo are trained with MixUp and
CutMix, model performance across all three metrics also increases. That is when
ensemble models are combined with data augmentation, they better estimate
uncertainty (lower NLL) and are better calibrated (lower ECE).

Table 2 reports results for models trained and tested on Cifar-100. Improve-
ment in the metrics for Cifar-100 is similar to Cifar-10. Combining MixUp or
CutMix with one of MIMO or MixMo makes all models more performant (higher
accuracy) and better calibrated (lower NLL). Combining ensemble models with
data augmentation methods results in performance gains across all metrics.

Table 3 reports results for models trained and tested on Tiny ImageNet. We
see that results still have the general tendency to be improved when ensembling
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Model Data Augmentation Accuracy(↑) NLL(↓) ECE(↓)

Base Model – 96.31% 0.141 0.020
Base Model MixUp 97.00% 0.115 0.010
Base Model CutMix 97.21% 0.108 0.015

MIMO – 96.66% 0.136 0.019
MIMO MixUp 97.31% 0.103 0.008
MIMO CutMix 97.61% 0.092 0.013

Linear-MixMo – 96.78% 0.110 0.018
Linear-MixMo MixUp 97.32% 0.104 0.009
Linear-MixMo CutMix 97.50% 0.101 0.009

Cut-MixMo – 97.42% 0.084 0.012
Cut-MixMo MixUp 97.60% 0.083 0.001
Cut-MixMo CutMix 97.70% 0.082 0.001

Table 1. Performance results for WRN-28-10/CIFAR10.

Model Data Augmentation Accuracy(↑) NLL(↓) ECE(↓)

Base Model – 81.47% 0.762 0.065
Base Model MixUp 83.15% 0.673 0.016
Base Model CutMix 83.74% 0.661 0.050

MIMO – 82.74% 0.740 0.076
MIMO MixUp 84.04% 0.637 0.025
MIMO CutMix 85.37% 0.562 0.034

Linear-MixMo – 82.53% 0.685 0.067
Linear-MixMo MixUp 84.15% 0.629 0.019
Linear-MixMo CutMix 85.24% 0.564 0.035

Cut-MixMo – 85.32% 0.548 0.045
Cut-MixMo MixUp 85.41% 0.540 0.024
Cut-MixMo CutMix 85.59% 0.533 0.019

Table 2. Performance results for WRN-28-10/CIFAR100.

is combined with data augmentation(s). Both MIMO and MixMo models have
higher accuracy and lower calibration error when one of the data augmentations
of MixUp and CutMix is added to the training. However, none of these combined
models can outperform the base model combined with only CutMix in terms of
accuracy. On the other hand, combining the base model with CutMix or MixUp
outputs the worst calibrated models. This stands as an interesting case for data
augmentation effects on model accuracy and calibration.

The test metrics on all three datasets imply that combining Subnetwork
Ensembles with data augmentation improves accuracy, lowers NLL, and lowers
ECE, i.e. combining them results in better performance and more calibrated
models. This behavior is consistent across all combinations of Subnetwork En-
sembles and data augmentations. Furthermore, combining Cut-MixMo and Cut-
Mix tends to result in the highest performance and most robust model.
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Model Data Augmentation Accuracy(↑) NLL(↓) ECE(↓)

Base Model – 62.56% 1.53 0.100
Base Model MixUp 63.74% 1.62 0.121
Base Model CutMix 65.09% 1.58 0.119

MIMO – 62.40% 1.60 0.102
MIMO MixUp 62.70% 1.54 0.093
MIMO CutMix 64.50% 1.52 0.091

Linear-MixMo – 61.58% 1.61 0.109
Linear-MixMo MixUp 62.90% 1.5 0.092
Linear-MixMo CutMix 63.78% 1.48 0.089

Cut-MixMo – 62.91% 1.51 0.101
Cut-MixMo MixUp 63.40% 1.49 0.088
Cut-MixMo CutMix 64.44% 1.48 0.088

Table 3. Performance results for PreActResNet-18/Tiny ImageNet.

4.2 Models against image corruptions

Table 4 and Table 5 report results when all models are tested against corrupted
Cifar datasets. Clearly, compared to IID test sets (uncorrupted), performances of
all models on three metrics degrade. However, still, ensemble models with data
augmentations are more calibrated than models without data augmentations.

When compared to the base model, Subnetwork Ensembles improve model
performance. Linear-MixMo, on the other hand, outperforms Cut-MixMo and
MIMO for all three metrics, in contrast to uncorrupted test sets. Using a data
augmentation method on a corrupted Cifar-10 test set improves performance
and calibration. All models combined with a data augmentation have higher ac-
curacy and lower NLL and ECE. Applying MixUp improves performance metrics
for all models more so than applying CutMix. Using only ensemble models or
data augmentation on a corrupted Cifar-100 test set yields higher accuracy and
lower NLL and ECE. Combining one of the MIMO or MixMo variants further
improves performance. Unlike corrupted Cifar-10, CutMix performs marginally
better than MixUp when used on top of the base model or in combination with
one of the Subnetwork Ensembles.

To summarize, as in the case for uncorrupted test sets, utilizing Subnetwork
Ensembles or data augmentations alone still enhances accuracy and decreases
NLL and ECE. The best “combination” of Subnetwork Ensembles and data aug-
mentation for “any” dataset is not clear but combining Subnetwork Ensembles
with MixUp or CutMix almost always helps models further improve both model
accuracy and calibration (lower ECE). This implies combining Subnetwork En-
sembles with data augmentations will help model performance and calibration
in the presence of out-of-distribution data. The main takeaway of the experi-
ments with corrupted Cifar datasets is that combining Subnetwork Ensembles
with data augmentation improves calibration in line with accuracy and vice
versa. Finally, Figure 4 shows how ECE changes across each model family for all
datasets. Clearly, adding an ensemble framework or data augmentation method
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improves model calibration. Moreover, combining Subnetwork Ensembles with
data augmentation further improves model calibration measured via ECE.

Model Data Augmentation Accuracy(↑) NLL(↓) ECE(↓)

Base Model – 76.77% 1.03 0.148
Base Model MixUp 82.68% 0.64 0.058
Base Model CutMix 77.09% 1.01 0.147

MIMO – 77.06% 1.15 0.158
MIMO MixUp 82.47% 0.62 0.057
MIMO CutMix 78.41% 1.10 0.144

Linear-MixMo – 80.18% 0.85 0.123
Linear-MixMo MixUp 85.08% 0.51 0.032
Linear-MixMo CutMix 79.08% 0.96 0.126

Cut-MixMo – 79.36% 0.86 0.117
Cut-MixMo MixUp 82.62% 0.60 0.041
Cut-MixMo CutMix 79.45% 0.78 0.107

Table 4. Performance results for WRN-28-10/CIFAR10-corrupted.

Model Data Augmentation Accuracy(↑) NLL(↓) ECE(↓)

Base Model – 51.40% 2.70 0.239
Base Model MixUp 66.30% 1.42 0.180
Base Model CutMix 67.80% 1.38 0.132

MIMO – 53.70% 2.66 0.129
MIMO MixUp 69.80% 1.38 0.116
MIMO CutMix 70.10% 1.24 0.090

Linear-MixMo – 55.60% 2.33 0.13
Linear-MixMo MixUp 69.10% 1.39 0.115
Linear-MixMo CutMix 70.40% 1.22 0.110

Cut-MixMo – 57.00% 2.04 0.128
Cut-MixMo MixUp 70.60% 1.27 0.106
Cut-MixMo CutMix 71.10% 1.16 0.088

Table 5. Performance results for WRN-28-10/CIFAR100-corrupted.

5 Conclusion

Our experiments have illustrated that using Subnetwork Ensembles for data aug-
mentation alone improves model calibration and robustness. More importantly,
we find that combining Subnetwork Ensembles with MixUp or CutMix improves
accuracy while not harming model calibration. Thus, adding some clarity to the
literature on this point, as we did not observe any trade-off between ensembling
and data augmentation for Subnetwork Ensembles. Rather, in our experiments,
we observed that combining Subnetwork Ensembles and data augmentation im-
proved calibration and uncertainty estimates. Our experiments with benchmark
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Fig. 4. ECE vs models across all datasets. None all models without data augmentation,
Ens Subnetwork Ensembles models without data augmentation, Aug models using data
augmentation, Aug Ens Subnetwork Ensembles models using data augmentation.

corrupted datasets showed how the findings are also robust with respect to cor-
ruption since the minimum values for ECE and the NLL were obtained when
both data augmentation and Subnetwork Ensembles were used.

Hence, combining Subnetwork Ensembles with data augmentation methods
for image classification tasks helps to improve performance without sacrificing
calibration. This situation signals a divergence on the effects of combining dif-
ferent methods for ensembling with data augmentation. Models trying to boost
performance should consider this discrepancy. Exploring this behavior divergence
(as future research) among ensembling methods when combined with data aug-
mentation could yield a better understanding of seemingly uncorrelated methods.
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