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Abstract
Sentiment analysis is highly important in social media monitoring since it helps us to see how the
general population feels about a certain issue. Several studies have been published in recent years
that attempt to extract sentiment from social media messages. However, the majority of the work is
verified using just English language datasets. Machine learning algorithms do not perform equally
well when social media posts are written in multilingual and code-mixed script. This paper presents
an ensemble-based model to classify Kannada-English, Malayalam-English, and Tamil-English social
media postings into five different sentiment classes using character-level TF-IDF features as input. The
proposed ensemble-based model achieved the weighted 𝐹1-scores of 0.62, 0.73, and 0.62 for Kannada-
English, Malayalam-English, and Tamil-English datasets, respectively. The code for the proposed models
is available at: https://github.com/Abhinavkmr/Dravidian-Sentiment-Analysis-.git
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1. Introduction

Sentiment analysis helps in the recognition of opinions or responses on a given topic. Due to its
enormous influence on companies such as e-commerce, recommendation systems, hate speech
detection [1, 2], and disaster management [3, 4], and social media monitoring, it is one of the
most explored subjects in natural language processing. English is the most popular and widely
accepted language on the world, and it is widely used over Internet. However, in a nation like
India, where over 400 million people use the internet, people utilise more than one language
to express themselves, resulting in a new code-mixed language [5]. Dravidian languages such
as Malayalam and Kannada are spoken in the Indian states of Kerala and Karnataka. Tamil,
which is spoken by Tamil people in India, Singapore, and Sri Lanka, is another well-known
Dravidian language in India’s southern area. People on social media commonly use Roman
script to write these Dravidian languages since it is easy to do so with the keyboards accessible
on their devices. The majority of existing models trained to extract sentiment from a single
language fail to grasp the semantics of a code-mixed language. Due to its multilingual character,
extracting feelings from code mixed user-generated texts becomes more challenging [6, 7].
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The sentiment analysis of code-mixed language has recently caught the interest of the research
community [8, 9]. Kumar et al. [9] proposed a hybrid CNN and Bi-LSTM Network to classify
social media posts into different sentiment classes. Mahata et al. [10] proposed bi-directional
LSTM with language tagging to classify Tamil-English and Malayalam-English code-mixed
social media posts into different sentiment classes. Sharma and Mandalam [11], on the other
hand, employed sub-word level representation to capture text sentiment and implemented an
LSTM network to classify Tamil-English and Malayalam-English social media posts into the
different polarity classes. Patra et al. [12] presented a model for Bengali-English code mixed
data using a support vector machine with character n-grams features. To extract emotions from
Hinglish and Spanglish (Spanish + English) data, Advani et al. [13] utilised logistic regression
using handcrafted lexical and semantic features. Similarly, On Hinglish data, Goswami et al.
[14] presented a morphological attention model for sentiment analysis.
This paper presents an ensemble-based model that uses character-level TF-IDF features to

classify Kannada-English, Malayalam-English, and Tamil-English social media posts into five
different sentiment classes. The proposed model is validated on the dataset provided in the
DravidianCodeMix FIRE 2021 [15, 16] track. The dataset includes five distinct sentiment classes,
including ”positive,” ”negative,” ”mixed feelings,” ”unknown state,” and ”if the post is not in the
mentioned Dravidian languages.”

The rest of the sections are organized as follows: the proposed methodology is explained in
Section 2. The experimental findings are listed in Section 3 and Section 4 concludes the paper
by highlighting the main findings of this study.

2. Methodology

The systematic diagram of the proposed ensemble-based model for the Kannada-English lan-
guage can be seen in Figure 1 whereas, the proposed model for Malayalam-English and Tamil-
English can be seen in Figure 2. The proposed model is validated with the datasets given in the
DravidianCodeMix FIRE 2021 competition [16]. The overall data statistic for Kannada-English
[17], Malayalam-English [18], and Tamil-English [19] can be seen in Table 1.

Table 1
Overall data statistic for Kannada, Malayalam, and Tamil dataset

Class Kannada-English Malayalam-English Tamil-English
Train Validation Test Train Validation Test Train Validation Test

Mixed-feelings 574 52 65 926 102 134 4,020 438 470
Negative 1,188 139 157 2,105 237 258 4,271 480 477
Positive 2,823 321 374 6,421 706 780 20,070 2,257 2,546
Unknown state 711 69 62 5,279 580 643 5,628 611 665
Not-Kannada 916 110 110 - - - - - -
Not-Malayalam - - - 1,157 141 147 - - -
Not-Tamil - - - - - - 1,667 176 244
Total 6,212 691 768 15,888 1,766 1,962 35,156 3,962 4,402

Extensive experiments were carried out with a variety of popular machine learning classifiers
using various combinations of one-to-six gram word-level and character-level TF-IDF features.
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Figure 1: Proposed model for the Kannada-English language
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Figure 2: Proposed model for the Malayalam-English and Tamil-English languages

We found that the ensemble of Support Vector Machine (SVM), Logistic Regression (LR), and
Random Forest (RF) performed best on the Kannada-English dataset, while the ensemble of SVM
and LR performed best on the Malayalam-English and Tamil-English datasets. The proposed
models are described in detail in the following sections.

• Kannada-English: An ensemble-based model is proposed containing SVM, LR, and RF in
parallel (see Figure 1). This ensemble-based model uses one to six-gram character TF-IDF
features to predict the probability for each of the classes. To choose the suitable character
n-gram range, extensive experimentation was performed with one-gram to six-gram
character-level TF-IDF features. We found first 50,000 one to six-gram character-level
TF-IDF features were performed better than the other combination of character-level
n-gram TF-IDF features. The probabilities of all the three classifiers are then averaged
class-wise to get the final class probability. The final class for the post is assigned that
has the highest average class probability.



Table 2
Performance of the proposed model for Kannada, Malayalam, and Tamil social media posts

Class Kannada-English Malayalam-English Tamil-English
Precision Recall 𝐹1-score Precision Recall 𝐹1-score Precision Recall 𝐹1-score

Mixed-feelings 0.50 0.05 0.08 0.55 0.30 0.39 0.37 0.15 0.21
Negative 0.70 0.60 0.65 0.69 0.57 0.63 0.47 0.33 0.39
Positive 0.67 0.86 0.75 0.76 0.84 0.80 0.70 0.90 0.79
Unknown state 0.39 0.29 0.33 0.71 0.76 0.74 0.50 0.34 0.41
Not-Kannada 0.64 0.61 0.62 - - - - - -
Not-Malayalam - - - 0.83 0.74 0.78 - - -
Not-Tamil - - - - - - 0.73 0.53 0.61
Weighted Avg. 0.64 0.65 0.62 0.73 0.73 0.73 0.61 0.65 0.62
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Figure 3: Confusion matrix for the Kannada-English dataset

• Malayalam-English & Tamil-English: The proposed ensemble-based model con-
tains support vector machine and logistic regression in parallel (see Figure 2). For the
Malayalam-English language, first, 30,000 one to six-gram character-level TF-IDF fea-
tures performed best in comparison to other combinations of n-gram features. For the
Tamil-English language, the first 15,000 one to six-gram character-level TF-IDF features
performed best in comparison to other combinations of n-gram features. Similar to the
previous model (Figure 1) class-wise averaged probabilities were calculated and the final
class label is assigned that has the highest average class probability.

3. Results and Analysis

Precision, recall, and the 𝐹1-score are utilised to assess the suggested ensemble-based model’s
performance. The confusion matrix and AUC-ROC curve are also presented to highlight the
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Figure 4: ROC curve for the Kannada-English dataset
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Figure 5: Confusion matrix for the Malayalam-English dataset

model’s performance in addition to these measures. Table 2 shows the outcomes of the suggested
model for the Kannada-English, Malayalam-English, and Tamil-English languages.
The suggested ensemble-based model has a weighted precision of 0.64, recall of 0.65, and

𝐹1-score of 0.62 for the Kannada-English dataset. Figures 3 and 4 show the ROC curve and
confusion matrix for the Kannada-English dataset, respectively. The suggested ensemble-based
model had a weighted precision, recall, and 𝐹1-score of 0.73 for the Malayalam-English dataset.
Figures 5 and 6 show the confusion matrix and ROC curve for the Malayalam-English dataset,
respectively. The suggested ensemble-based model achieved a weighted precision of 0.61, recall
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Figure 6: ROC curve for the Malayalam-English dataset
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Figure 7: Confusion matrix for the Tamil-English dataset

of 0.65, and 𝐹1-score of 0.62, respectively, on the Tamil-English dataset. Figures 7 and 8 show
the confusion matrix and ROC curve for the Tamil-English dataset, respectively.

4. Conclusion

Sentiment analysis of social media messages is an essential task in natural language process-
ing, which analyses social discussions and feedback to discover the deeper context as they
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Figure 8: ROC curve for the Tamil-English dataset

pertain to a topic, brand, or theme. This work proposes an ensemble-based model to classify
Kannada-English, Malayalam-English, and Tamil-English social media postings into five dif-
ferent sentiment classes. The use of one to six-gram character-level feature performed best
with the other combinations of n-gram character-level features. For the Kannada-English,
Malayalam-English, and Tamil-English datasets, the suggested ensemble-based model achieved
weighted 𝐹1-scores of 0.62, 0.73, and 0.62, respectively. To improve performance, a robust
deep ensemble-based model can be developed in the future by integrating character-level and
word-level features.
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