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Abstract
The ultimate goal of the evaluation is to understand when two IR systems are (significantly) different.
To this end, many comparison procedures have been developed over time. However, to date, most
reproducibility efforts focused just on reproducing systems and algorithms, almost fully neglecting to
investigate the reproducibility of the methods we use to compare our systems. In this paper, we focus on
methods based on ANalysis Of VAriance (ANOVA), which explicitly model the data in terms of different
contributing effects, allowing us to obtain a more accurate estimate of significant differences. In this
context, we compare statistical analysis methods based on “traditional” ANOVA (tANOVA) to those based
on a bootstrapped version of ANOVA (bANOVA) and those performing multiple comparisons relying on
a more conservative Family-wise Error Rate (FWER) controlling approach to those relying on a more
lenient False Discovery Rate (FDR) controlling approach. Our findings highlight that, compared to the
tANOVA approaches, bANOVA presents greater statistical power, at the cost of lower stability.

1. Introduction

Comparing IR systems and identifying when they are significantly different is a critical task
for both industry and academia [2, 3, 4, 5]. The literature still lacks reproducibility studies on
the statistical tools used to compare the performance of such systems and algorithms. Using
reproducible statistical tools is crucial to drawing robust inferences and conclusions. In this
context, ANalysis Of VAriance (ANOVA) [6] is a widely used technique, where we model
performance as a linear combination of factors, such as topic and system effects, and, by
developing more and more sophisticated models, we accrue higher sensitivity in determining
significant differences among systems. We focus on two recently developed ANOVA models,
bANOVA, developed by Ferro and Sanderson [7] and tANOVA, developed by Voorhees et al.
[8]. Voorhees et al. [8] used sharding of the document corpus to obtain the replicates of the
performance score for every (topic, system) pairs needed to develop a model accounting not
only for the main effects, but also for the interaction between topics and systems; Voorhees
et al. also used an ANOVA version based on residuals bootstrapping [9], which we call bANOVA.
Similarly, Ferro and Sanderson [7] used document sharding as well but they developed a more
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comprehensive model, based on traditional ANOVA, which also accounts for the shard factor,
the shard*system interaction, and the topic*shard interaction; we call this approach tANOVA.
Another fundamental aspect to consider when comparing several IR systems is the need to
adjust for multiple comparisons [10, 11]. Indeed, when comparing just two systems, significance
tests control the Type-I error at the significance level 𝛼. However, when 𝑐 simultaneous tests
are carried out, the probability of committing at least one Type-I error increases up to 1 −
(1− 𝛼)𝑐. To correct for the multiple comparisons problem, Voorhees et al. adopted a lenient
False Discovery Rate (FDR) correction by Benjamini and Hochberg [12]; Ferro and Sanderson
used a conservative Family-wise Error Rate (FWER) correction, using the Honestly Significant
Difference (HSD) method by Tukey [13]. In conclusion, we identified three aspects that can
impact the reproducibility of the above-mentioned ANOVA approaches: i) the strategy used to
obtain replicates, ii) the kind of ANOVA used, and iii) the control procedure for the pairwise
comparisons problem. Our work investigates behaviour of tANOVA and bANOVA (Voorhees et al.
[8]) under different experimental settings – with respect to the above-mentioned focal points –
and the generalizability of their results.

2. Experimental Analysis

2.1. Experimental Setup & ANOVA Models

Akin to Voorhees et al., we used two collections: the TREC-3 Adhoc track [14] and TREC-8
Adhoc track [15]. In this work we report results only on TREC-8, we refer to [1] for all the
experiments. We use Average Precision (AP) as performance measure. We consider three
ANOVA models: (MD1) : a traditional two-way ANOVA that accounts only for the topic and
the system factors; (MD2) : A second model, similar to the previous one, that considers also
the interaction between topics and systems; (MD3) : A third model that includes also the shard
factor and all the interactions between different factors.

2.2. Impact of the multiple comparison strategies and bootstrapping

To investigate the differences between ANOVA approaches, our first analysis compares the
number of statistically significantly different (s.s.d.) system pairs found by them. We consider the
following multiple comparison procedures: HSD for tANOVA, as originally proposed by Ferro and
Sanderson, indicated with tANOVA(HSD); Benjamini-Hochberg (BH) for bANOVA, as originally
proposed by Voorhees et al., indicated with bANOVA(BH); and, BH for tANOVA, indicated with
tANOVA(BH). tANOVA with Benjamini-Hochberg correction is here employed and analyzed for
the first time. It takes the p-values on the difference between levels of the factors produced
by the traditional ANOVA, but corrects them using the BH correction. The rationale behind
it is that it enjoys the statistical properties provided by the ANOVA while granting a higher
discriminative power, due to the BH correction procedure. zero has been used as interpolation
strategy; in Section 2.3 we empirically show that the interpolation strategy has a negligible
effect on the results. Finally, we experiment all the models from (MD1) to (MD3) with all the
ANOVA approaches; note that (MD3) has not been studied before for bANOVA and this represents
another generalizability aspect. Table 1 reports the results averaged over the five samples of



Table 1
s.s.d. pairs of systems for different ANOVA approaches, using AP.

Model Approach bANOVA(BH) tANOVA(BH) tANOVA(HSD)

(MD1)
bANOVA(BH) 6866.60 ± 36.965 329.20 ± 22.027 2275.80 ± 39.844
tANOVA(BH) - 6537.40 ± 57.107 1946.60 ± 23.190
tANOVA(HSD) - - 4590.80 ± 75.850

(MD2)
bANOVA(BH) 7231.80 ± 51.085 375.20 ± 17.436 2133.40 ± 70.456
tANOVA(BH) - 6856.60 ± 65.859 1758.20 ± 54.580
tANOVA(HSD) - - 5098.40 ± 113.429

(MD3)
bANOVA(BH) 7563.40 ± 15.273 262.00 ± 11.681 1655.80 ± 25.377
tANOVA(BH) - 7301.40 ± 11.734 1393.80 ± 32.585
tANOVA(HSD) - - 5907.60 ± 37.359

Table 2
Average number of Passive Disagreements (PD) for ANOVA model (MD2) and (MD3).

Model Approach Interp. zero lq mean one

((MD2))

tANOVA(HSD)

zero 230.60± 21.55 23.00± 15.21 100.20± 74.45 89.80± 82.47
lq — 239.20± 22.56 77.20± 62.86 85.60± 96.98
mean — — 253.20± 32.18 124.40± 92.81
one — — — 265.80± 53.21

bANOVA(BH)

zero 282.60± 13.70 5.80 ± 3.45 41.60 ± 24.44 33.20 ± 28.83
lq — 280.80± 12.99 35.80 ± 21.12 32.60 ± 30.75
mean — — 285.00 ± 13.24 49.20 ± 40.73
one — — — 288.40 ± 18.59

((MD3))

tANOVA(HSD)

zero 222.60± 15.392 0.00± 0.000 0.00± 0.000 0.00± 0.000
lq — 222.60± 15.392 0.00± 0.000 0.00± 0.000
mean — — 222.60± 15.392 0.00± 0.000
one — — — 222.60± 15.392

bANOVA(BH)

zero 279.20± 16.60 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
lq - 279.20± 16.60 0.00 ± 0.00 0.00 ± 0.00
mean - - 279.20± 16.60 0.00 ± 0.00
one - - - 279.20± 16.60

shards together with their confidence interval. Numbers on the diagonal of Table 1 describe how
many pairs of systems are considered s.s.d. by a given approach; numbers above the diagonal
are the additional s.s.d. pairs found by one method with respect to the other. Table 1 shows
that, as the complexity of the model increases from (MD1) to (MD3), the pairs of systems
deemed significantly different increase as well, confirming previous findings in the literature.
tANOVA(HSD) controls tANOVA(BH) since all the s.s.d. pairs for tANOVA(HSD) are significant also
for tANOVA(BH); this was expected since FWER controls FDR [16]. It is possible see this by
considering the differences between approaches (above diagonal): by summing the difference
between tANOVA(HSD) and tANOVA(BH) to the tANOVA(HSD) you obtain back the number of
s.s.d. pairs identified by tANOVA(BH). However, this pattern holds also for bANOVA(BH) and
tANOVA(BH), i.e. all the s.s.d. pairs of tANOVA(BH) are s.s.d. pairs for bANOVA(BH) too. While the
relation between BH and HSD was expected, this finding sheds some light on the difference
between using a traditional or a bootstrapped version of ANOVA. In summary, most of the
increase in the s.s.d. pairs is due to the correction procedure rather than the use of bootstrap.

2.3. Stability of ANOVA Models with respect to Different Interpolation Values

Both tANOVA and bANOVA are based on the concept of “corpus sharding”: divide the corpus in
non-overlapping subcopora, and use those to compute the systems performance. Problems arise
when a shard do not contain any relevant documents, since several Information Retrieval (IR)



measures are not defined. Thus, we study the impact of the interpolation strategy, i.e. how
to substitute missing values for topics without any relevant document on a given shard, for
the different approaches. If a shard does not contain any relevant document for a topic, we
interpolate the missing value using 4 possible strategies: zero; lq, the value of the lower
quartile of the measure scores; mean, the average value of the measure scores; and, one. To
assess the stability with respect to interpolation strategies, we resample shards 5 times ans
we consider the number of Passive Disagreements (PD), i.e. the number of pairs of systems
A and B for which an approach considers A to be significantly better than B on a sample but
A is not significantly better than B on the other sample. Here, for space reasons, we report
only the results for tANOVA(HSD) and bANOVA(BH), being the tANOVA(BH) midway between
these two. Table 2 reports the average PD counts together with their confidence interval for
models (MD2) and (MD3). Values on the diagonal are the average PD observed using the same
interpolation strategy, but over the pairs of shards samples. The upper triangle of the Table
contains the average PD when using two different interpolation values. Table 2 shows what
happens if, using model (MD2) by Voorhees et al., instead of re-sampling shards we use an
interpolation value. We can note that, as the interpolation value increases, the PD count on
the diagonal tends to increase too. When it comes to the upper triangles, we interestingly find
that bANOVA(BH) is much less sensitive to the interpolation values than tANOVA(HSD), being the
PD counts substantially lower. The bootstrapped version of ANOVA (bANOVA) appears to be
less stable with respect to the resharding (higher diagonal values). This phenomenon is likely
due to its greater discriminative power: since a small evidence for bANOVA is enough to assess
when two systems are different, the random resharding might produce spurious evidence and
thus large variation among different samples. In the part of Table 2 concerning (MD3), both
tANOVA(HSD) and bANOVA(BH) have upper triangle equal to zero, and thus are independent from
the interpolation values. Indeed, the bANOVA approach samples the residuals and Ferro and
Sanderson proved that they are independent of the interpolation value for (MD3). Therefore,
using (MD3) also the bootstrap approach by Voorhees et al. does not need to re-sample shards.

3. Conclusions and Future Work

In this work, we compared bANOVA [8] and tANOVA approaches under different conditions. We
found out that tANOVA tends to be more robust than bANOVA with respect to the actual random
shards used, suggesting more reliability in drawing the same conclusions. On the other hand,
when using partial ANOVA models like (MD2) which are not able to deal with shards without
relevant documents, bANOVA is more robust than tANOVA to the chosen interpolation value.
Regarding the multiple comparison strategy, we have found that tANOVA with HSD is more
restrictive than bANOVA but tANOVA with BH correction behaves similarly to bANOVA. Overall,
we can conclude that, the decision of the model and the correction technique depends on the
final aim of the researcher. If stability is more important, tANOVA(HSD) is preferable, since it is
more stable with respect to random shards and less computationally expensive. Conversely,
if the focus is on the number of pairs, bANOVA(BH) gives the maximum boost, at the price of
lower stability for random shards. Future work will investigate the use of uneven-size random
shards, instead of the even-size ones used in the literature so far.
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