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Abstract
Human-centric AI requires not only data-driven pattern recognition methods but also reasoning. Reasoning
requires rich models and we call the process of coming up with these models understanding. Understanding is
hard because in real world problem situations, the input for making a model is often fragmented, underspecified,
ambiguous and uncertain, and many sources of knowledge are required, including vision and pattern recognition,
language parsing, ontologies, knowledge graphs, discourse models, mental simulation, real world action and
episodic memory.

This paper reports on a way to measure progress in understanding. We frame the problem of understanding
in terms of a process of generating questions, reducing questions, and finding answers to questions. We
show how meta-level monitors can collect information so that we can quantitatively track the advances in
understanding. The paper is illustrated with an implemented system that combines knowledge from language,
ontologies, mental simulation and discourse memory to understand a cooking recipe phrased in natural
language (English).

1. Introduction
The current wave of data-driven AI almost exclu-
sively employs reactive intelligence but deliberative
AI, which was the core of knowledge-based systems
in the 1970s and 1980s, is nevertheless needed to
achieve some of the properties argued to be central
to human-centric AI, such as (i) providing explana-
tions comprehensible for humans, (ii) dealing with
outliers, (iii) learning by being told, (iv) being veri-
fiable and (v) seamlessly cooperating with humans
[1].

Using deliberative AI and integrating it with reac-
tive AI is a realistic target today because reactive AI
has advanced significantly to be usable in real world
applications and there is already a large number of
methods and technologies for deliberative AI from
past decades of AI research. There has been signifi-
cant research on grounding language and represen-
tations in sensory-motor data and behavior-based
robotics [2] and technology for symbolic knowledge
representation and logical inference is well estab-
lished. Moreover, there has been a considerable
growth in computationally accessible knowledge,
thanks to the crowdsourcing of encyclopedic knowl-
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edge and semantic web technology [3]. However,
there is one key issue which remains largely un-
solved, namely how to construct the rich models on
which deliberative intelligence relies. For example,
how to extract from a recipe a model which is de-
tailed enough to cook the recipe, answer questions,
or come up with alternatives if ingredients are not
available.

A rich model describes the problem situation and
possible paths to a solution from multiple perspec-
tives using categories that are both understandable
to humans and a solid basis to support reasoning.
For example, when cooking a dish from a recipe,
understanding means to identify the ingredients and
the food manipulations in sufficient detail to effec-
tively cook the recipe and possibly choose variations
if ingredients are missing, the cooking process does
not quite go the way it is described in the recipe,
or the cook wants to be creative [4]. In the case of
historical research, understanding an event such as
the French revolution means to construct a model
describing the key actors, their intentions and mo-
tivations, the salient events, the causal relations
between these events and the social and governmen-
tal changes they cause [5].

Understanding is the process of constructing rich
models [6]. Understanding is hard because mak-
ing sense of data inputs about real world situa-
tions, either obtained through sensing or measuring
or through narrations (texts, images, movies) con-
structed by other agents to convey their account
of events, poses non-trivial epistemological chal-
lenges. Typically the data or narrations are sparse,
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fragmented, underspecified, ambiguous, sometimes
contradictory and almost always uncertain.

Figure 1: Understanding is the process of constructing
a rich model for deliberative intelligence from diverse,
fragmented, ambiguous, uncertain, and incomplete inputs
and using a variety of knowledge sources.

Our human mind counteracts these difficulties
by combining contributions from sensory processing
and measurement, vision and pattern recognition,
language processing, ontologies, semantic memory
of facts, discourse memory, action execution, mental
simulation and episodic memory (see Figure 1). But
each of these knowledge sources is in turn incom-
plete, uncertain and not necessarily reliable as well,
so results cannot be taken at face value. Moreover,
there can not be a linear progression where one
algorithm feeds into another, as is common in the
pipelines of data-driven AI, because of a paradox
known as the hermeneutic circle: To understand
the whole we need to understand the parts but to
understand the parts we need to understand the
whole [7].

AI systems that understand need to use every
possible bit of information and every possible knowl-
edge source as quickly as possible in order to arrive
at the most coherent model that integrates all data
and constraints. Because of the hermeneutic circle
paradox, understanding typically unfolds as a spiral-
ing process. Starting from an initial examination of
some input elements (with a lot of ambiguity, uncer-
tainty and indeterminacy) the first hypotheses of the
whole are constructed, which then provide top-down
expectations to be tested by a more detailed exam-
ination of the same or additional input elements,
leading to a clearer view of the whole, which then
leads back to the examination of additional parts,
etc., until a satisfactory level of understanding, a
state known as narrative closure [8], is reached.

This paper builds further on ongoing research
into understanding. It does not discuss new techni-
cal advances to make understanding feasible by AI
systems but focuses instead on developing measures
for understanding. We want to define dynamically
evolving quantities that are increasing (or decreas-
ing) as the understanding process unfolds to even-
tually reach narrative closure or exhaustion of all
possible avenues. The paper is illustrated with a
concrete example from understanding a recipe for
preparing almond cookies worked out by Katrien
Beuls and Paul Van Eecke (for a webdemo, see [9]).
The example recipe goes as follows:

Recipe for almond cookies:
Ingredients: 226 grams butter, room
temperature. 116 grams sugar. 4
grams vanilla extract. 4 grams al-
mond extract. 340 grams flour. 112
grams almond flour. 29 grams pow-
dered sugar
Instructions:
1. Beat the butter and the sugar to-
gether until light and fluffy.
2. Add the vanilla and almond ex-
tracts and mix.
3. Add the flour and the almond flour.
4. Mix thoroughly.
5. Take generous tablespoons of the
dough and roll it into a small ball,
about an inch in diameter, and then
shape it into a crescent shape.
6. Place onto a parchment paper lined
baking sheet.
7. Bake at 175 degrees Celsius for 15
- 20 minutes.
8. Dust with powdered sugar.

The experiment reported in this paper uses this
recipe text as main input and applies language pars-
ing, ontologies, mental simulation and discourse
memory to develop a detailed model of the cooking
steps. We do not elaborate the technical details of
the example as developed by [9]. Neither do we con-
sider the robotic sensori-motor system for actually
performing the actions of the recipe (which would
be possible along the lines of [4]) nor consider visual
processing of recipes which is also an important
source of information [10].

2. Narrative networks
As elaborated in [11] we view understanding as a
spiraling dialogical process of generating and finding
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answers to questions. Different inputs and process-
ing achieve four things: (i) They introduce new
questions, (ii) introduce answers to questions, (iii)
introduce and exercise constraints on the answers
of questions, and (iv) shrink the set of questions by
realizing that the answers to two different questions
are in fact the same.

The main question posed and answered by the
Almond Cookies recipe is how to prepare almond
cookies. Narrative closure is reached when all the
information is found in order to do so. The main
question raises a host of other questions: what
utensils are needed (a baking tray, a bowl), where
can things be found or put in the kitchen (freezer,
pantry), what ingredients are necessary (116 grams
of sugar, 4 grams almond extract), which objects
need to be prepared (a mix of flour and almond
flour, a small ball of dough), which actions need to
be performed (add flour, bake), and properties of
all these entities and actions.

We operationalize this framework as follows:
1. Questions are operationalized as variables. A

variable has a name, a domain of possible values
(possibly with probabilities for each value), a value,
also called a binding, with an associated degree
of certainty, and bookkeeping information about
how the value was derived. Following AI custom,
the name of a variable is written as ?variable-name
where the variable-name is a symbol that is chosen
to be meaningful for us. Variable-names typically
have subscripts, as in ?bowl-1, ?bowl-2, ... , which
are presumably to be bound to specific bowls in the
kitchen while cooking a recipe.

2. Answers are operationalized in terms of enti-
ties. Entities are objects, events or (reified) concepts.
They are also designated with a symbol, but now
without a question mark and with angular brackets.
They also have a subscript, as in <butter-331> or
<bowl-710>. Entities are grounded either in real
world observational data, for example a region in
an image or a segment of instrumentation data, as
entities that may or may not exist in reality, or as en-
tities in a knowledge graph in which case we use the
URI (Universal Resource Identifier) as unique identi-
fier. Entities may have different states, for example
butter could be solid or become fluid when melted.
To represent this, an entity has a persistent id and
different temporal existences, marked with addi-
tional subscripts. For example, <butter-331-1>
with the persistent id <butter-331> might change
after heating into <butter-331-2> with the same
persistent id but different properties.

3. Constraints are operationalized in terms of
frames. In the tradition of frame-based knowledge

representation originating in the mid-1970s [12], a
frame is a data structure that describes the typical
features of a class of objects or events in terms of
a set of slots (also called roles) for entities. The
slots introduce questions that should be asked about
the entities belonging to the class covered by the
frame. Following the common convention of object-
oriented systems, one slot of a frame, called the
self, designates the entity being described by the
frame.

When a frame is used to describe a particular en-
tity or set of entities it is instantiated. Frames and
instances of frames are designated by symbols with
square brackets. Names of instances have indices.
In the recipe example, there is for example a frame
for [bowl] with slots for the bowl itself, the con-
tents, the size, the cover, whether the bowl has been
used, etc. A specific bowl entity, e.g. <bowl-75>, is
described by a frame instance, e.g. [bowl-75].1

Figure 2: Small fragment of a narrative network built
up for the Almond Recipe. Frames have square brackets
and inheritance links between frames are in red. Frame
instances also have square brackets but their names and
their slots are in black. Entities are in green and use
angular brackets. Binding relationships between variables
are in double lined green, such as between ?self-bowl-75
and ?source-37, and grounding relations are in dashed
green, such as between ?self-bowl-75 and the entity
<bowl-75>.

Frames are organized in multiple inheritance hi-
erarchies. For example, the [bowl] frame inher-
its from the [coverable-container] frame, which
introduces a slot for the cover. This frame inher-
its itself again from the [container] frame which
inherits from the [kitchen-entity] frame. The
[bowl] frame also inherits from the [reusable]
frame, which introduces a slot whether the entity
has been used (see Figure 2).

A frame contains also default values for its slots
and methods to determine a value from other val-
ues, stimulate the instantiation of other frames, or
change the certainty or justification of a binding.
The methods associated with frames are activated
either by explicitly calling them using a name (call

1All these indices are of course automatically constructed
by the understanding system itself.
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by name) or by checking which slots have already
values and then triggering the appropriate method
(pattern-directed invocation). Frames are symbolic
datastructures that are matched and merged using
unification operators. They can be extracted from
large frame inventories such as FrameNet, Wordnet
or Propbank [13], or they can be learned, either from
examples using anti-unification and pro-unification
operators or through hypothesize-and-test strate-
gies. For the present example, all frames have been
designed by hand.

Frame-instances, variables, entities and links be-
tween them form a graph called a narrative network
(see Figure 2). Narrative networks quickly get very
large, having hundreds of nodes and links, even for
a short text. The experiment reported here uses a
scala of AI programming tools for the implemen-
tation of frames and narrative networks, based on
the standard Common Lisp Object system (CLOS)
[14]: the constraint propagation system IRL [15],
the BABEL architecture for organizing the overall
understanding process in terms of tasks [16] and
Fluid Construction Grammar [17, 18] for linguistic
processing.

3. Knowledge Sources
The understanding process must rely on a wide
variety of knowledge sources in order to come up
with questions and answers. In the experiment
reported here, we only focus on contributions from
ontologies, language (lexicon & grammar), discourse
memory and mental simulation.

1. An ontology defines the inventory of available
frames for describing objects, events, actions and
properties of these. These frames contribute to the
construction of the narrative network by introducing
questions for their slots. The slots have often initial
or default values in which case the questions they
pose can also be (tentatively) answered. Because
frames inherit from one or more other frames, all
slots of these parent frames are added as well.

For instance, given the example sentence ‘Beat
the butter and the sugar together until light and
fluffy’ (sentence 1 in the instructions of the recipe),
lexical processing of the verb ‘beat’ would find the
beat-frame. Consultation of the ontology intro-
duces questions (i.e. variables) from the slots of this
frame, namely what tool should be used to beat
(by default a whisker), the initial and final kitchen
state respectively before and after beating, what
container contains the material to be beaten, what
the state of this container is after beating, when the
beating should stop, and more.

2. After tokenization, lemmatization and part of
speech tagging, lexical processing performs a map-
ping from lexical stems to frames, because stems
act as frame invoking elements. These frames are
then instantiated and their various slots added as
variables to the narrative network under construc-
tion.

Grammatical processing can invoke additional
frames, for example related to tense, aspect mood
and modality, but, more importantly, it can also
link parts of the narrative network together, which
means that the variables introduced by separate
frame-instances are made co-referential. For exam-
ple: ‘Beat the butter and the sugar together’ is
an example of a resultative construction where the
goal of the action is to fuse two substances, butter
and sugar, such that they become one. Thanks to
this construction we know that the answer to the
question ‘what should be beaten’ is equal to the
answers to the questions ‘what butter amount is to
be used’ and ‘what sugar amount is to be used’.

3. Mental simulation imagines the sequence of ac-
tions over time and records what consequences their
execution has on the various objects involved in the
action. Mental simulation can either take the form
of physical simulation, for example with realistic
computer graphics engines, or qualitative simulation
[19]. In this experiment we only look at qualitative
simulation. In the present experiment, qualitative
simulation is implemented through pattern-directed
methods associated with frames. These methods be-
come active when some variables have already been
bound and compute the values of other variables.
They also create additional objects and instantiate
more frames that are linked into the network.

4. Discourse memory contains information about
the way a narrative unfolds. For example, it is well
known from the study of pragmatics in linguistics
that languages contain various cues that bring enti-
ties into the attention span of the listener so that
they suggest referents for pronouns or underspeci-
fied descriptions [20]. The present experiment uses
only a rudimentary example of discourse memory,
namely one which marks entities which have been
mentioned directly or indirectly as being accessible
entities which can then be referred to by pronouns
or general descriptions (such as ‘the butter’).

4. Measuring progress in
understanding

There are many possible ways to measure the
progress and quality of understanding. Here are
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a few examples: Coverage - how much of input is
handled; closure - how many open questions are
left; fragmentation - how many unconnected sub-
graphs remain; ambiguity - how many choice points
could not be resolved; uncertainty - how much un-
certainty is left globally; dissonance - how much
of the outcome is incompatible with the frames in
the ontology; anchorage - how many non-grounded
entities are left.

In this paper we only focus on the increase and
decrease in the number of questions that pop up
during understanding and the increase in the num-
ber of answers that are found. Both the questions
and the answers are coming from different knowl-
edge sources but we can measure their contributions
separately.

To collect data during understanding we use a
meta-level facility available in the BABEL architec-
ture [16] which allows for the definition of monitors
that become active when a triggering condition, for
example the addition of a new node or link to the
narrative network, is detected. The monitors then
collect relevant information by observing the state
of understanding at that point, including which
knowledge source was responsible.

The first experiment considers only a subpart of
the recipe, namely the first four ingredients and the
first two instructions:

Ingredients: 226 grams butter,
room temperature. 116 grams sugar.
4 grams vanilla extract
Instructions:
1. Beat the butter and the sugar
together until light and fluffy.
2. Add the vanilla and almond
extracts and mix.

The graphs display absolute values both for the
number of questions and the number of answers.
The graph on the left of Figure 3 decomposes the
contributions by the different knowledge sources
with respect to questions and the graph next to it
decomposes them for answers. At the bottom of
the graphs we see the the names of the frames or
linguistic constructions that made the contribution.

There is a total of 165 questions being posed for
this first part of the recipe. Before parsing the first
sentence a complete kitchen-state with a baking
tray, bowls, ingredients stored in the refrigerator
or pantry, etc. is instantiated. The ontology raises
the first set of questions and the mental simulation
starts to provide the first answers. Parsing of ‘226

grams butter, room temperature’ and consultations
of the ontology for the frames triggered by the words
in this phrase starts triggering questions such as
what bowl is to be used, what material has to be
put in, what is the quantity and unit of measure-
ment, at what temperature does the material have
to be, etc. Some of these questions (for example
the quantity and measurement unit) are directly
answerable from the linguistic input, others require
mental simulation and some are obtained from the
ontology. After each set of parsing steps we see a
jump in available answers because mental simula-
tion is carried out after each sentence. Also the
discourse model gets updated and is used to answer
some of the questions later on. The discourse model
also keeps raising its own questions, namely about
what to do with elements that have been introduced
but not yet used in the cooking process.

The second experiment (see Figure 4) considers
the complete almond cooking recipe and now scales
values for questions and answers with respect to
the total number. Values are scaled to become
comparable to other cases of understanding. For the
complete recipe there is a total of 337 questions (159
triggered by language, 37 by the discourse model
and 141 by the ontology). There are 284 answers
(77 from language, 25 from the discourse model, 80
from mental simulation and 102 from the ontology).
All knowledge sources play an important role. There
are remaining questions at the end because there
is no activity of cleaning up the question, so the
questions are about what to do with the bowls that
were used. Narrative closure is reached because the
baking-tray contains the desired almond cookies.

We see in these examples that ontologies and
mental simulation of cooking actions play important
roles in addition to language. There are still other
knowledge sources that have not been incorporated
and are not explicitly mentioned in language but
known from common sense. The most obvious one
is to take the baking tray out of the oven, let the
cookies cool off and put them in a bowl for later
storage or immediate consumption.

5. Conclusions
We defined understanding as the construction of a
rich model of a problem situation based on frag-
mented, incomplete, uncertain and underspecified
sources. We explored a way to measure one central
aspect of the understanding process, namely track-
ing the addition, reduction or answering of questions
by different knowledge sources. More concretely, we
focused on the use of ontologies, language, discourse
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Figure 3: Fine-grained unscaled results of the understanding process for part of the recipe. Left: total number of
questions with decomposition of question contributions. Right: total number of questions with decomposition of
answer contributions. The y-axis maps to specific processing events, namely the application of constructions or
the interpretation of the meaning obtained by parsing a phrase. The bars on the y-axis show questions posed resp.
answers obtained. They are decomposed into sections with blue sections contributed by language processing, orange
ones by mental simulation, green ones by consultations of the discourse model and red ones by the ontology.

Figure 4: Coarse-grained scaled results of the understanding process for the complete recipe with decomposition of
answer contributions (left) and question contributions (right).

models and mental simulation. This work is just
one tiny step in building a quantitative infrastruc-
ture for tracking and evaluating understanding in
AI systems. Having quantitative measures is useful
to pin down precisely the contribution of a particu-
lar knowledge source or to provide feedback to the
attention mechanism that guides what knowledge
sources should preferentially be used or what areas
of a narrative network should be the focus of atten-
tion. Quantitative measures also will play a role
as feedback signal for improving the efficiency and
efficacy of understanding.
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